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Abstract: A novel control algorithm combining the linear quadratic regulator (LQR) control and 

trajectory planning (TP) is proposed for the control of an underactuated crane system, targeting 

position adjustment and swing suppression. The TP is employed to control the swing angle within 

certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the 

accuracy of the position control, a differential-integral control loop is applied. The weighted LQR 

matrices representing priorities of the state variables for the bridge crane motion are searched by 

the multi-objective genetic algorithm (MOGA). The stability proof is provided in order to validate 

the effectiveness of the proposed algorithm. Numerous simulation and experimental validations 

justify the feasibility of the proposed method. 

Keywords: anti-disturbance; bridge crane system; linear quadratic regulator (LQR); multi-objective 
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1. Introduction 

Nowadays, the development of port transportation brings with it increasing demands of cargo 

movement. The bridge crane system is widely applied in order to move the cargo with less cost 

compared to other transit systems [1]. For the crane system, it is imperative to design an effective 

controller that can achieve fast and safe cargo movement. 

For the cargo movement control, in addition to satisfying the target position, some constraints 

and disturbances need to be properly dealt with, including maximum moving speed and distance, 

maximum swing angle, etc. Focusing on these practical challenges, the designed controller should 

satisfy the demands, including fast response, high robustness, and stability, as well as strong anti-

disturbance. Among them, the most important task is to regulate the crane to the desired position, 

and meanwhile to suppress the payload swing. In terms of this, the traditional control methods can 

be divided into two categories, i.e., open loop and closed loop methods. 

For open loop control methods, the control commands are determined in advance according to 

the requirements before operation. The popular methods include input shaping control [2,3], 

trajectory planning (TP) control [4,5], etc. The input shaping control is imposed in order to produce 

a series of pulses according to the ratio between the system frequency and the damping; then, the 

convolution between the pulse and the reference trajectory is conducted in order to generate the 

control command. This method can guarantee the control performance for the crane position when 

the cable length changes, whereas the residual swing of the payload cannot be eliminated. By TP, the 
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crane trajectory can be designed based on the nonlinear coupling relationship between the crane 

position and the swing angle, thereby ensuring the cargo’s safety when moving and suppressing the 

residual oscillation. Both methods can satisfy the controlling target. However, when the system is 

under external disturbance, such as wind and human touch, the payload oscillation can be potentially 

triggered, and yet cannot be eliminated effectively based on the open loop methods. 

In order to overcome the influence of the external disturbance, various closed loop methods are 

proposed, which can be divided into adaptive control [6–8], fuzzy logic-based control [9,10], genetic 

algorithms (GA) [11,12], feedback linearization control [13,14], linear quadratic regulator (LQR) 

control [15–17], proportional–integral–differential (PID) control [18–20], etc. In [21], Zhang and He 

considered the crane velocity, the position error, and the swing angle totally in a linearized manner, 

and an adaptive sliding mode controller is designed. However, the convergence and boundedness 

proof of the position error and swing angle are not given. Based on linearization, the PID control 

algorithm, regulated by the fuzzy logic algorithm, is employed in order to improve the crane’s 

transient performance and robustness. Since the GA is capable of finding the optimal solutions, a 

nonlinear control algorithm is proposed based on a real-time GA in order to solve the difficulty of 

regulating the control gain [12,22–24]. In this manner, the whole control performance of the crane 

system is improved. Actually, it is difficult for the GA algorithm to ensure the stability strictly at the 

equilibrium point theoretically, and the controller design is relatively complex, bringing 

inconvenience for practical application. 

For sake of reducing the controller complexity and easily applying it in actual operation, the 

feedback linearization control algorithm is introduced based on the simplified crane model, which 

divides the crane motion and the payload swing into two subsystems [25–28]. A nonlinear coupling 

control method is designed to ensure that the crane position and the payload swing can finally 

converge to specified ranges. Based on the model linearization, the LQR method is harnessed to 

achieve the control using the feedback gain of the linear systems [29]. Although the LQR method is 

simple and highly efficient, the system states can possibly deviate from the equilibrium points when 

the system is disturbed by external signals, and thus, it is difficult to guarantee the stability of the 

control performance. To solve this problem, the constraint of the payload swing and the capability of 

anti-disturbances need to be taken into account, and some combined algorithms of open loop and 

closed loop methods are introduced [30–32]. In [30], Blajer and Kołodziejczyk employed the 

feedforward control and the feedback PID control together, according to the inverse dynamics 

analysis. However, this method lacks the stability analysis, and it is difficult to satisfy the demand of 

the payload angle and crane position simultaneously with the PID control. 

Aiming at these considerations, a combined open loop and closed loop method is herein 

proposed to satisfy the constraint of the payload swing, and precisely realize the position control of 

the crane. First, the motion path of the crane is designed by TP, which keeps the payload swing states 

in the vicinity of the equilibrium point due to the underactuated characteristics. By this manner, the 

constraints of the swing angle can be satisfied, and the residual swing can be eliminated. Then, an 

updated LQR algorithm is introduced to improve the precision of the crane position and the payload 

swing control, which are immune from external disturbance. Here, for the sake of the multi-freedom 

control for the crane position, a differential and integral control loop is added to track the crane 

position with fast speed. In order to gain preferable control effects, a multi-objective GA (MOGA) 

algorithm is employed to achieve the different motion state optimization by searching the weighed 

matrices of the LQR [33]. The MOGA is characterized by the weight of the multi-objective functions 

being assigned randomly; thus, its search direction is not fixed. A set of Pareto optimal solutions can 

be retained and uniformly distributed during implementation [34,35]. By this manner, the MOGA 

exhibits the advantage of the diversity of solutions, and meanwhile, the computational complexity is 

lower compared with the traditional GA [36,37]. Finally, the quasioptimal control of the crane is 

reached by simulation and experiment validation. 

The remainder of this paper is structured as follows. The detailed modeling and associated 

constraints are introduced in Section 2. The controller design and its stability proof are provided in 
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Section 3. The feasibility of the proposed method is verified by the simulation and experiments in 

Sections 4 and 5, respectively. Finally, conclusions are drawn in Section 6. 

2. Dynamic Modeling of the Crane System 

In order to design an algorithm with the target of precise position control and anti-disturbance, 

the physical model of the two-dimensional (2D) underactuated system is established, as shown in 

Figure 1. In order to simplify the modeling, some assumptions are made. 

 

Figure 1. Crane physical model. 

Assumption 1. The crane is a rigid driving system, and the payload is assumed to be a rigid body. Additionally, 

the air friction is neglected. 

Assumption 2. The cable length is unchanged. 

Assumption 3. The payload swing angle   satisfies / 2  < ( )t  < / 2 . 

With these assumptions, dynamic equations can be formulated [32]: 

2( ) cos sinT P T P Pm m x m L m L F        
(1) 

cos sin 0Tx L g      
(2) 

where Px  is the horizontal position of the payload, Tx  is the crane horizontal position, L  is the 

cable length, Tm  and Pm  are the mass of the crane and payload, respectively, g  presents the 

gravity factor, and F  is the driving force. Through the geometric operation and analysis, the 

payload position Px  can be obtained: 

sinP Tx x l    (3) 

It can be found that due to the underactuated characteristics, the payload swing cannot be 

designed directly, and instead it can be planned by the coupling relationship between the crane and 

the payload. From Equation (2), we can provide the theoretical analysis for the subsequent control 

methods. 

During the process of the actual transportation, the payload swing should be imposed within 

the small angle, i.e.,: 

sin

cos 1

0L L

 







  

 (4) 

According to Equations (2) and (4), the dynamic equations can be simplified as: 
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
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0Tx L g     (5) 

In order to fully consider the Stribeck effect, the friction, and the crane mass, Tx  is selected as 

the control command. Now, the matrix equation of model can be established according to Equation 

(5): 

 

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 / 0 1/

1 1 1 1

X X u

g L L

Y X

   
   
    
   
   

    



 (6) 

where [ , , , ]T

T TX x x    is the state matrix of the bridge crane, T states the matrix transposition, and 

( ) Tu t x  denotes the crane acceleration. 

Aiming to satisfy the real-world requirement, three constraints are considered. 

Constraint 1. The crane is required to reach the target position dx R  within a limited time totalt : 

( ) ,T d totalx t x t t    (7) 

Constraint 2. The velocity and acceleration of the crane should be restricted due to the actual limitation of 

actuators: 

lim lim( ) , ( )T Tx t v x t a   (8) 

Constraint 3. The maximum swing angle of the payload should be bounded: 

lim( )t   (9) 

where 
lim lim,v a R  are defined as the maximum velocity and maximum acceleration, respectively, 

and lim R   is the limited maximum swing angle. 

Next, the corresponding controller design is detailed in the following section. 

3. Control Design 

In this paper, a LQR algorithm based on the TP is proposed for the 2D underactuated system 

with the target of minimizing the regulating time and guaranteeing the swing angle under the 

constraints. The flowchart of the overall controller design is shown in Figure 2. 
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 














Tx

Tx

( )u t

dx

0







Multi-objective 

Genetic Algorithm

Crane Model




Tx

 1 2 3 4k k k k  Q R

Trajectory

Planning
Differential and 

integral control


dx

Tx
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Figure 2. Flowchart of the controller design. 
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As can be seen in Figure 2, the whole control framework consists of four parts, namely: the 

trajectory planning, the LQR controller, the crane model, and the MOGA algorithm. First, according 

to the desired position, the planning trajectory of the crane motion is planned in advance. Then, the 

modified LQR algorithm, which combines the differential and integral controllers, is implemented to 

control the bridge crane system with the help of the designed trajectory. The weighted matrixes of 

the improved LQR controller are determined based on the MOGA, with the target of minimizing the 

integration of the time-weighted absolute value of the errors (ITAEs) for the payload swing and the 

crane position. By this manner, the control merits of the TP and LQR can be combined to better reach 

the control target. 

3.1. Trajectory Planning Control 

Based on the geometrical analysis, an efficient trajectory imposed by Constraints 1 to 3 can be 

acquired. The second-order ordinary differential equation and its derivative equation are solved 

based on Equation (5): 

0

0

( )
( ) ( ) cos sin (1 cos )n n n

n

t a
t t t t t

g


    


     (10) 

0 0( ) ( ) sin ( )cos sinn

n n n n

a
t t t t t t

g


           (11) 

where /n g L  , Ta x , 0( )t  and 0( )t  denote the initial swing and the angle velocity of the 

payload, respectively. 

Since the payload does not oscillate at the initial motion point, 0( )t  and 0( )t  equal zero. 

Based on Equations (10) and (11), we can get: 

2 2

2 )( ) (
a a

t
g

t
g


   

    
  




  (12) 

where ( ) ( ) / nt t   . 

Now, the phase plane is employed in terms of Equation (12) for further analysis, of which ( )t  

and ( )t  refer to the longitudinal coordinate and the horizontal coordinate, respectively, as shown 

in Figure 3. To implement the intuitive illustration, the following three cases are discussed according 

to different values of the acceleration. 

 

Figure 3. Phase plane of the payload. 

Case 1. When 0a  , the vector in the phase plane moves in the clockwise direction at a constant angular 

velocity n ; 

Case 2. When 0a  , the vector moves in the counterclockwise direction at the same velocity; 

( )t

( )tO
1O

2O
2A1A

Case1 Case2

Case3
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Case 3. When 0a  , the vector stays in the original point; namely, there does not exist any relative motion 

between the crane and the payload. 

Here, an appropriate trajectory is determined considering the geometric properties. Based on 

the above analysis, the primary expression can be furnished as: 

max

max

, 0

, 2

0,

acc

acc cnst acc cnst

a t t

x a t t t t t

else

 


     



 (13) 

where acct  is the duration of the acceleration, and cnstt  is the duration for the constant speed stage. 

As shown in Figure 3, acct , cnstt  and maxa  can be determined according to the geometric 

properties. At the beginning of acceleration, the vector starts to move from the original point towards 

2O  with the angular velocity n . After reaching 2A , the maximum payload swing is achieved, and 

the relationship with respect to max  and maxa  can be determined, i.e.,: 

max

max
2

g
a


  (14) 

and they should be satisfied with the following constraints: 

max max lim,lim a a    (15) 

The payload swing reaches zero after one complete acceleration cycle. At T , the crane stops 

accelerating and keeps its speed unchanged, while the load’s swing angle maintains zero, as stated 

in Case 2. In addition, during the deceleration process presented in Case 3, the similar phenomenon 

can also be observed: that one cycle is required to be undergone in order to reach the target position 

through point 2A , during which the residual angle can be eliminated. 

Based on the previous analysis, the duration in terms of acceleration/deceleration stages requires 

the same time cost, i.e., T . Given the chosen target position, the motion states can be determined 

after an integral calculation: 

max

max

max

, 0

,
( )

( ),

0,

acc

acc acc acc cnst

total acc cnst total

a t t t

a t t t t t
x t

a t T t t t t

else

 


  
 

    


 (16) 

2

max

max

2

max

1
, 0

2

,
( )

1
( ),
2

0,

acc

acc acc acc cnst

total acc cnst total

a t t t

a t t t t t t
x t

a t T t t t t t

else


 


  

 
    




 (17) 

The displacement of the entire operation period can be calculated as: 

max
0

( ) ( )
totalT

total acc acc cnstS x t dt a t t t    (18) 

where 2total acc cnstT t t  . Moreover, the duration during the acceleration and constant velocity period 

can be calculated: 
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 max

2 /

/ 2 /

acc

cnst total

t T L g

t S v L g





  


 

 (19) 

where max max accv a t  is the maximum velocity of the crane. Note that a pivotal condition versus maxv  

should be considered here due to 0cnstt  , which can be furnished as: 

max lim
2 /

totalS
v v

L g
   (20) 

Combining with Equations (9), (14), and (19), the constraint can be set: 

max

max lim

2a

g
    (21) 

Now, based on Equations (8) and (21), the upper limit of the maximum acceleration can be 

yielded: 

lim

max lim ,
2

g
a min a

 
  

 
 (22) 

where lima  indicates the boundary value of the acceleration, and finally, max max accv a t . The velocity 

constraint can be calculated considering Equation (20) in order to improve the efficiency, and thus, 

the maximum velocity can be defined as: 

max lim lim, ,2 /
2 /

totalS
v min v a L g

L g




 
  

 
 

 (23) 

Meanwhile, the maximum acceleration can be determined: 

max

max
2 /

v
a

L g
  (24) 

Now, all of the parameters are determined considering the designed requirements. In the next 

step, the corresponding controller and its parameters are designed with care. 

3.2. LQR Control Based on Trajectory Planning 

The TP algorithm is easy to apply, which can take the moving efficiency and maximum payload 

swing into account. However, it is difficult to adaptively adjust the swing for the payload in practical 

conditions, and the oscillation cannot be suppressed when external disturbance exists. Hence, the TP 

algorithm combined with the closed-loop control can effectively solve these problems. 

For the underactuated system, there exists multiple motion states, and thus, it is necessary to 

attain the feedback control. According to Equation (6), the LQR control law from the feedback input 

LQRu KX   yields: 

( )X A BK X   (25) 

where K  can be calculated by minimizing the energy function of LQR LQRE , as:  

 
0

1

2

T T

LQR LQR LQRE X QX u Ru dt


   (26) 

where Q  is a semi-definite matrix of 4  4 , and R  is a positive define matrix constant of 1  1 . 

Then, K  can be calculated as: 

1 TK R B P  (27) 
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where P   is a positive definite symmetric matrix, which is evaluated from the Algebraic Riccati 

equation (ARE) as: 

1 0T TA P PA Q PBR B P     (28) 

By this manner, the gain of LQR feedback K   
1 2 3 4[ , , , ]k k k k   can be estimated, and the crane 

acceleration u  can thus be determined. In order to accomplish the position control accurately, the 

differential and integral control is introduced for the crane’s position adjustment. Hence, the 

improved controller can be expressed as: 

1 2 3 4
0

( )
t

I T D T T Tu t K e dt K e k x k x k k        (29) 

where ( )u t  is the control input; and 1k , 2k , 3k , and 4k , belonging to K , are defined as feedback 

gains for the crane position and velocity, the payload swing, and the angular velocity, respectively. 

T d Te x x   is the error trajectory of the crane system, and K  can be determined based on Q  and 

R  by engineering experience. However, it is difficult to find the optimal solution in this manner. IK  

and DK  are integral and differential gains, which are designed by the response optimization, and 

the constraint of the response optimization can be expressed as: 

0 10
( , ) min max( )

0 0.320 0 1.2
. .

0.285 0.302 1.2 10

I D Tsim Tbnd
t

T

T

optimal K K x x

x t
s t

x t

 

  
 

   


   

 (30) 

where Tsimx  is the simulated response of the crane position, and Tbndx  is the piecewise linear bound 

of the crane position. 

3.3. Multi-Objective Optimization 

It is critical to determine the control parameters of the designed algorithm, i.e., 1k , 2k , 3k , and 

4k , and thus, the weighted matrixes Q  and R  need to be optimized. Here, integration of time-

weighted absolute value of the error (ITAE) is introduced in order to evaluate the convergence and 

oscillation of the system, as: 

0

0

( )

( )T T

J t e t dt

J t e t dt

 





 


 





 (31) 

where J  and TJ  denote the ITAEs of the payload swing and the crane position, respectively. Here, 

the MOGA is applied to find optimal solutions among multiple objective functions. According to the 

optimal method, a series of points reflecting the control effects can be presented based on the ITAEs 

of the crane and payload. In addition, the optimization process should be subject to the following 

constraints: 
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 

max lim lim

lim

max lim

,

, , 2 /
2 /

. / 2 ( ) / 2

,
2

Pareto T

total

f min J J

S
v min v a L g

L g

s t t

g
a min a






  





  
  

   

  


    
  


 (32) 

Here, we employed the MOGA algorithm to calculate the optimization parameters with the 

criteria of minimizing the ITAE of the crane position and the payload swing. As can be seen in the 

Figure 4, the whole process will first choose the initial weighted matrixes Q  and R  randomly. 

Then, the control commands can be generated based on the constraints and the updated ITAE of the 

crane position, and the payload swing can be calculated based on the fitness function. In the next 

step, the MOGA is applied to search the optimal parameters through a series of the selection, 

crossover, and mutation, wherein the roulette wheel selection and the two-point crossover are 

adopted. For the MOGA algorithm, first, some existing populations are selected to generate the next 

generation, and this process is known as selection. Some existing populations are considered as 

elitists, and are directly selected as next generations without any change. The selection criteria is 

based on the fitness function and their corresponding constraints. During the crossover process, the 

parent chromosomes are hybridized to generate new offsprings, and meanwhile, some bits of 

chromosomes are uniformly or randomly changed with a certain possibility. This is the so-called 

mutation, of which the main function is to avoid falling into a local optimum. By means of these 

actions, a new chromosome group is generated, which is different from the previous version. The 

whole action is operated iteratively until the terminal condition is reached, which usually includes 

exceeding the budget time, reaching the maximum allowable amount, etc. Finally, the Pareto fronts 

and the optimized parameters can be found. In this paper, the population size, the crossover rate, 

and the mutation rate of the MOGA algorithm are set to 40, 0.8, and 0.05, respectively, and the number 

of iterations is set to 50 after repetitive tunning. Furthermore, the constraint lim  of the payload 

swing is set to be less than 4°, the maximum acceleration is defined as 5 m/s2, the maximum crane 

velocity is 1.5 m/s, the target position is 0.4dx   m, and the error of two objective functions is limited 

within 41  10 . 

Next, the stability analysis is conducted, and the stability proof is given. 

Selection Crossover Mutation
Fitness Functions 

Evaluation

Individuals 

Selection

Offspring Elitism

Initialize Population

Matrixes Q and R

Fitness Functions 

Evaluation

Rank 

Population
Encoding

 , Tmin J J

Pareto 

Front

No

Yes

Decoding

 

Figure 4. Flowchart of multi-objective genetic algorithm. 

3.4. Stability Analysis 

Theorem. Independently from the stochastic initial payload swing, the proposed algorithm given by Equation 

(29) can control the crane to the desired position and suppress the payload swing, i.e.,: 
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 0 0 0 0 0T T T d
t
lim x x x x  


   
 (33) 

Proof. In order to meet the demand of the theorem, a non-negative function is selected as: 

21
( ) +g(1-cos ) 0

2
V t L    (34) 

Differentiating Equation (34) and combining Equation (2) with Equation (29), we can get: 

1 2 3 4
0

( ) ( sin )

cos ( )
t

I T D T T T

V t L g

K e dt K e k x k x k k

  

   

 

      
 (35) 

According to the principle of the arithmetic mean–geometric mean (AM–GM) inequality, 

Equation (35) can be rewritten as: 

 

   

2
2 2

1 2 3 4
0

2
22 2 2 2 2 2 2 2 2 2

2 1 3 4
0

1 1
( ) cos

2 2

1 5
cos

2 2

t

I T D T T T

t

I T D T T

V t K e dt K e k x k x k k

K e dt K k x k x k k

   

   

      

 
       

 




 (36) 

By integrating Equation (34), we can further get: 

 
 

2
2 2 2

0 0 0

2 2 2 2 2 2 2 2

2 1 3 4
0 0 0 0

1 5
( ) (0) cos

2 2

5 5 5 5

2 2 2 2

t t t

I T

t t t t

D T T

V t V dt K e dt dt

K k x dt k x dt k dt k dt

 

 

  

    

  

   

 (37) 

In Equation (37), we can find that all of the integration items are bounded. Based on Equations 

(4) and (34), it can prove that: 

2 2

0

1
cos

2

t

dt L    (38) 

Therefore, Equation (37) can be utilized to show that ( )V t L , Based on this fact, the following 

conclusion can be drawn from Equation (2). It can be proven that: 

( ), ( )Tt x t L   (39) 

Then, Barbalat lemma [38] can then be directly utilized to show that: 

0, 0T
t t
lim lim x
 

   (40) 

And Equation (37) can be rewritten as: 

   
2

22 2 2 2 2 2 2 2

2 1 3 4
0 0 0 0 0 0

2 2

0

5

2

1
(0) ( ) cos

2

t t t t t t

I T D T T

t

K e dt dt K k x dt k x dt k dt k dt

V V t dt

 

 

 
      

 

  

     



 (41) 

Based on ( )V t L  and Equation (38), Equation (41) can then be employed to conclude that: 

( ), ( ), ( ), ( )T Tt t x t x t L    (42) 

According to Equations (37) and (42), it is easy to show that: 

0, 0T
t t
lim lim x
 

   (43) 

Based on Equations (2), (40), and (43), we can go through a similar analysis to show that: 
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sin 0
t
lim 


  (44) 

Thus, Assumption 3 and Equation (4) can be employed to conclude that: 

0
t
lim


  (45) 

From Equations (29), (41) and (45), it is clear that: 

T d
t
lim x x


  (46) 

Now, the designed controller is proved to be asymptotically stable. Next, numerical simulation 

and experimental validation are performed in order to validate the proposed algorithm. 

4. Numerical Simulation 

In this section, the simulation validation and control performance validation are conducted. All 

simulations are carried out based on Matlab/Simulink, and the MOGA is implemented with its built-

in standard code. The crane trajectory is designed with the constraints provided by the TP. The anti-

disturbance of the control is solved combining the LQR. The model parameters are shown in Table 1. 

Table 1. Model parameters. 

Parameter Note Value 

L  Payload length 0.122 m 
g  Gravity 9.81 m/s2 

Based on the MOGA, a series of Pareto fronts can be achieved in light of the different 

requirements after iterations. Since the security of the cargo has a higher priority, the swing optimal 

solution is considered chiefly in this section, and the optimal control solutions of the Pareto front are 

shown in Figure 5. The horizontal coordinate and the vertical coordinate denote the ITAEs of the 

swing angle and the crane’s position, respectively. According to the actual application, three 

solutions, including the time optimization, swing angle minimization, and the trade-off in between, 

are selected for further analysis, as marked in Figure 6. The weighted matrixes of three solutions, Q  

and R , are obtained by the MOGA; then, the feedback gain K  is achieved with these weighted 

matrixes. The gain of the integration control and differential control, i.e., IK  and DK , are acquired 

by the response optimization. The weighted matrixes and the parameters of these three solutions are 

displayed in Table 2, and the performances of them are shown in Table 3. The main tasks of Solutions 

1 and 3 are to minimize the swing angle and the regulation time, respectively. The main destination 

of Solution 2 is the trade-off between solutions 1 and 3. 

Table 2. Performance of three solutions. 

Parameter Solution 1 Solution 2 Solution 3 

Q  

470.19 0 0 0

0 219.74 0 0

0 0 465.33 0

0 0 0 2.01

 
 
 
 
 
 

 

498.57 0 0 0

0 230.79 0 0

0 0 503.24 0

0 0 0 2.01

 
 
 
 
 
 

 

474.60 0 0 0

0 230.78 0 0

0 0 450.99 0

0 0 0 2.06

 
 
 
 
 
 

 

R  2.21 2.05 2.42 

1 2 3 4[ , , , ]k k k k  [14.60,13.13, 14.66, 0.93]   [15.89,13.93, 15.89, 0.95]   [13.99,12.75, 13.75, 0.90]   

IK  0.02 0.02 0.04 

DK  166.82 169.34 175.86 
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Figure 5. Pareto optimal front. 

 

Figure 6. The response of three kinds of solutions. 

Table 3. Performance of three solutions. ITAE: integration of the time-weighted absolute 

value of the errors. 

Performance Solution 1 Solution 2 Solution 3 

Settling time (s) 4.21 2.68 1.86 

Maximum payload swing (deg) 1.00 2.00 4.00 

ITAE of swing 2469.21 2993.82 3999.16 

ITAE of positon 910.92 328.69 154.58 

It can be observed that Solution 1 is able to achieve the minimal payload swing. The maximum 

payload swing is 1°, and the ITAE of the swing is 2469.21, whereas it takes a longer time, i.e., 4.21 s, 

to reach control command. Solution 3 achieves the optimized time regulation, in which the minimum 

settling time is required to sacrifice the regulation swing. The settling time is 2.35 s, and the ITAE of 

the position control declines by 83.03%. However, the maximum payload swing increases by 3° 

compared with Solution 1. Solution 2 is the trade-off regulation, which means that the time is not at 

its minimum, and the swing is not yet smallest when compared with solutions 1 and 3. This solution 

is the most reasonable choice, since that its settling time is reduced by 1.53 s compared with Solution 

1, and the payload swing decreases by 2° compared with Solution 3. Thus, Solution 2 can be selected 

as the control algorithm for the following study, since it can not only ensure the load swing angle 

within a small range, it can also control the load to reach the target position with fast speed. 

By simulation, the parameters based on the LQR and the proposed algorithm are shown in Table 

4, respectively. There exists obvious difference among the algorithm parameters, since the crane 

trajectory is predetermined by the proposed algorithm. From Figure 7, although the TP and LQR can 

achieve the effective control, the proposed controller can improve the efficiency that the TP algorithm 

cannot handle. As displayed in Figure 8, the performance indicators of the proposed algorithm are 

preferably superior to those of the other two control methods under the same swing constraint. 

Compared with the TP, the settling time shortens to be 1.35 s, the ITAE of the swing angle decreases 
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by 3.24%, and the ITAE of the position decreases by 98.05%. Compared with LQR, the settling time 

reduced by 1.11 s, the ITAE of swing decreased by 12.82%, and the ITAE of position fell by 68.13%. 

Based on the above comparative analysis, we can conclude that the proposed method can achieve the 

position control rapidly, and meanwhile satisfy the swing constraint requirement. 

Table 4. Parameters of the linear quadratic regulator (LQR), and the proposed method. 

Parameter LQR Proposed Method 

IK  NA 0.02 

DK  NA 169.34 

1 2 3 4[ , , , ]k k k k  [1.46,2.56, 3.13, 1.35]   [15.89,13.93, 15.89, 0.95]   

 

Figure 7. Control response of trajectory planning (TP), linear quadratic regulator (LQR), and the 

proposed method. 

 

Figure 8. Performance of three controllers. 

In order to verify the anti-disturbance performance, an acceleration excitation is given to the 

crane, thereby leading to a certain swing angle for the payload. Here, the acceleration is set as 0.8 

m/s2, and its duration as 0.2 s. The responses of the TP, LQR, and proposed algorithm are compared 

in Figure 9. It can be observed that the maximum payload swing of TP is 7.3° when the external 

disturbance occurs; obviously, it cannot meet the control demands. In addition, the LQR algorithm 

can suppress the swing, and the maximum swing is 2.03°. However, the whole duration is still 1.66 

s. The performance of the proposed algorithm is superior to that of other control methods, and the 

settling time is 1.44 s. Thus, it proves that the algorithm can achieve fast, stable ability and realize 

immune control of external disturbances. 
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Figure 9. Response of different controllers with external disturbances. 

Next, experimental validation is performed to further justify the feasibility of the proposed 

algorithm. 

5. Experimental Verification 

In order to ensure the safety of the cargo, the payload swing should be the prior control object, 

and Solution 2 is selected as the method of the experiment. The experimental validation is conducted 

based on a test platform of B&R Industrial Automation Ltd., which supplies an integrated solution 

for automation systems [39]. The experimental equipment is designed based on a downsized model 

according to the actual bridge crane [40], as shown in Figure 10. It employs a metal lever and a metal 

load to simulate the actual crane line and the payload, respectively. The system applies a motor to 

move the crane system in a horizontal direction, thereby simulating the actual cargo transportation. 

Compared with actual cranes, the downsized model can meet the requirements of control algorithm 

regulation, and yet, the weight and vertical swing of the cable and the friction of the crane during 

movement cannot be taken into account [41]. 

 

Figure 10. Anti-swing control equipment. 

In the actual application, there are several factors that can possibly influence the control 

precision, e.g., the target position, the payload weight, the cable length, and the external disturbance. 

In order to justify the advance of the proposed algorithm, a series of experimental validations are 

carried out considering different constraints, different payloads, different cable lengths, and 

disturbances, respectively. 

5.1. Constraints Condition 

In order to verify whether the constraints of the payload swing and the settling time can be both 

satisfied under different target positions, two groups of experiments are conducted. Here, the 

maximum swing angle is set to be 2°. The corresponding responses with respect to different moving 

ranges are shown in Figure 11 and Table 5, respectively. It can be found that the actual maximum 
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swing angle is 1.92°, which satisfies the setting requirement. The regulation time is almost the same, 

and the responses are shown in Figure 12 and Table 6. The results show that all of the regulated time 

is less than 1.64 s. When the target position changes, the regulated time basically remains unchanged. 

To summarize, for different target positions, the proposed algorithm can achieve effective control. 

 

Figure 11. The response within an angle constraint scheme. 

Table 5. Performance within angle constraint. 

Target Position Settling Time (s) Maximum Payload Swing (deg) 

0.2 m 1.87 1.93 

0.3 m 2.35 1.85 

0.4 m 2.67 1.93 

 

Figure 12. The time-optimization response within a time-optimal scheme. 

Table 6. Performance within a time optimal solution. 

Target Position Settling Time (s) Maximum Payload Swing (Deg) 

0.2 m 1.63 2.0 

0.3 m 1.64 3.2 

0.4 m 1.66 4.0 

5.2. Different Payload Condition 

Some magnetic sheets are attached to the original load to simulate the weight variation, as shown 

in Figure 13. When the weight changes, the controller can still move the cargo to the desired position 

with almost the same maximum swing angle. The maximum difference is less than 0.06°. Thus, the 

variation of the payload cannot affect the settling time and the maximum swing, and the robustness 

of the proposed algorithm is proved to some extent. 
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Figure 13. The response for different weights of payloads. 

5.3. Different Cable Length Condition 

In addition, it is imperative to consider different cable lengths in order to verify the algorithm. 

The response is shown in Figure 14. The maximum payload swing increases by 0.2° when the cable 

length varies from 0.092 m to 0.122 m. Certainly, longer cable length brings larger swing angle. 

Nonetheless, it can still satisfy the constraint of the maximum angle, i.e., 2°. Thus, the controller can 

effectively control the crane to reach the target position, and meanwhile can satisfy the maximum 

angle constraint when the payload and cable length change. 

 

Figure 14. The response in different cable lengths. 

5.4. Disturbance Condition 

Moreover, the control performance needs to be validated when external disturbance exists. Here, 

the disturbance is maintained for 3 s to 5 s. Similar to that of the simulation, an external acceleration 

of 0.8 m/s2 is added, and its duration is 0.2 s. By comparing the responses of three different controllers 

in Figure 15, the proposed algorithm can realize the optimal control effect compared with the other 

methods. The proposed algorithm can reach the target position with the shortest time. It can also be 

observed that the TP algorithm cannot suppress the payload swing, and the LQR algorithm can 

induce the swing angle by 1.41°. In this manner, conclusions can be made that the proposed method 

can effectively suppress the external disturbance. 
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Figure 15. The response of three controls with disturbance. 

6. Conclusions 

In this paper, a novel algorithm combining the TP and the LQR is employed to achieve control 

of the anti-swing crane system. The proposed algorithm takes the acceleration of the payload as the 

control variable, and the ITAEs of the position and the swing angle as the criterion of evaluation. The 

MOGA is applied to find the optimal algorithm parameters. Compared with the TP algorithm and 

the LQR algorithm, the proposed algorithm can reach the control settings. The regulation time can be 

shortened, and the maximum swing angle can be reduced. Simulation and experimental validation 

justify the feasibility of the proposed algorithm. 

Following works will focus on the real implementation of the proposed algorithm in port cargo 

transportation. 
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