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Abstract: We report an all-solid-state continuous wave (CW) tunable orange laser based on cascaded
single-pass sum-frequency generation with fundamental wavelengths at 1545.7 and 975.2 nm using
two quasi-phase-matched (QPM) MgO-doped periodically poled lithium niobate (MgO:PPLN)
crystals. Up to 10 mW of orange laser is generated in the cascaded module corresponding to a
10.4%/W nonlinear conversion efficiency. The orange output showed a temperature tuning rate
of ~0.05 nm/◦C, and the beam quality (M2) value of the orange laser was about 2.0. We use this
technique to combine the high efficiency offered by uniformly poled crystals and the broad input
wavelength acceptance characteristic of step-chirped structures.
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1. Introduction

Orange lasers with wavelengths near ~600 nm play an important role in a number of scientific
applications such as photodynamic therapy [1], flow cytometry for excitation of fluorescent probes of
595 nm excitation wavelength [2], spectroscopy [3], astronomy [4], optogenetics and neuroscience [5],
and laser projection displays [6]. So far, however, there have been no available conventional diode
lasers in this spectral region due to a lack of suitable direct band gap materials [7]. Therefore, compact,
stable, and efficient all-solid-state laser sources generated by nonlinear effects have gained popularity
over the past thirty years with a view of overcoming this limitation. The abilities of sum frequency
generation (SFG) to efficiently mix two fundamental wavelengths to generate a third wavelength is a
potential technique to attain such new wavelengths with periodically poled ferroelectric crystals [8].
On the other hand, the quasi phase-matching (QPM) technique using periodically poled lithium niobate
(PPLN) is quite attractive for implementing broadband SFG owing to its wide optical transparency
window (350–5000 nm), a large nonlinear coefficient (d33), a flexible design, and a high conversion
efficiency [9]. However, reaching high efficiencies in broadband wavelength conversion remains a
challenge. Nevertheless, in order to increase the input wavelength acceptance range and achieve
the high efficiency of a QPM process, complementary properties of uniform poled and step-chirped
crystals in a cascaded configuration can be exploited as proposed herein. The pump and signal lasers
are focused into the first crystal and the generated sum frequency light co-propagates in the second
crystal in which the pump and the signal are re-focused. In both crystals, SFG occurs separately,
increasing the total output power and, consequently, improving the overall conversion efficiency.

Previous studies demonstrating the generation of continuous wave (CW) coherent light using
cascaded crystals have been reported. For instance, a two-crystal cascade to generate 491 nm and
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429 nm light with conversion efficiencies of 2.4%/W and 3.1%/W respectively in KNbO3 crystals
was demonstrated [10]. Up to 13 W of green light at 532 nm with 5%/W conversion efficiency based
on two-crystal cascade PPLT crystals has also been reported [11]. Using two PPLN crystals, 780 nm
second harmonic generation has been achieved with 5.6%/W conversion efficiency. Recently, 5.5 W
SFG of green light was demonstrated in a two-crystal cascade of PPLN and PPLT crystals with a 50%
conversion efficiency of the total fundamental power [12]. In the orange spectral region, a tunable
orange laser from 601 nm to 604 nm range was successfully generated by tuning the temperature of
quasi-periodically poled lithium tantalate (LT) superlattice from 150 to 195 ◦C, yielding a maximum
output of 310 mW [13]. Up to 23 mW of narrow-line 593 nm light via intracavity SFG of a CW
dual-wavelength Nd:YVO4 laser has also been demonstrated using two volume Bragg gratings in a
three-mirror cavity configuration with a temperature tunability of ~5 pm/◦C [14]. Recently, also, more
than 1 W all-solid state optical parametric oscillator (OPO) in the spectral range from 605 to 616 nm
based on MgO:PPLN with different poling sections was reported [15]. In this scheme, tuning was
achieved by varying the crystal position, temperature and etalon tilt angle. Whilst various schemes
of generating visible light in the 600 nm spectral range have been extensively studied, no work has
been reported on high efficiency, tunable wavelength conversion by cascaded nonlinear crystals in
this range.

Here, we report the generation of all-solid state, efficient, tunable orange light by single-pass sum
frequency mixing of ~1545.7 nm and ~975.2 nm laser sources in two cascaded MgO:PPLN bulk crystals.
The proposed configuration offers the advantage of combining desirable solid-state properties such as
the tunability of pump lasers in the 1527–1565 nm range, the high output power of ~980 nm signal
laser module, high conversion efficiency offered by uniformly poled QPM crystal and wide input
wavelength acceptance range due to a step-chirped (SC-PPLN) crystal. If, for instance, a broadband
laser source is used rather than a narrow band highly coherent source for wavelength mixing, multiple
wavelengths can be generated simultaneously in SC-PPLN. Up to 7.1 mW SFG output power was
detected for the 50 mm PPLN crystal, 4.3 mW for the 20 mm SC-PPLN crystal, and 10 mW for the
cascaded module corresponding to 7.4%/W, 4.5%/W, and 10.4%/W nonlinear conversion efficiencies
of the total input power of the fundamental lasers, respectively. To the best of our knowledge, no work
has been reported on the generation of an orange laser using MgO:PPLN bulk crystal in terms of
cascaded single-pass sum frequency mixing of uniformly poled and SC-PPLN crystals, which has the
advantage of tunability and high conversion efficiency.

2. Theoretical Considerations

For two fundamental lasers with input powers P1 and P2 incident on a nonlinear crystal of length
L, the theoretical sum frequency output power can be estimated using the relation

PSFG =
32π2d2

e f f P1P2L

nSFGε0λ2
SFGc(n1λ1 + n2λ2)

(1)

and the corresponding conversion efficiency can be given as

η =
PSFG
P1P2

(2)

where c is the speed of light in vacuum, ε0 is the permittivity in vacuum, and de f f = 2d33/π

(d33 = 27.2 pm/V) is the effective nonlinear coefficient of MgO:PPLN [16]. nSFG, n1, and n2 are
refractive indices at λSFG, λ1, and λ2, respectively. For the cascaded module, the expected conversion
efficiency for two crystals can be shown as

ηC1+C2 = (
√

ηC1 +
√

ηC2)
2 (3)
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where ηC1 and ηC2 are the nonlinear efficiencies measured individually for Crystals 1 and 2, respectively,
which follows from the superposition principle as detailed in [17].

3. Experimental Setup

The setup used in our experiment for cascaded MgO:PPLN single-pass sum-frequency generation
is shown in Figure 1. The output of wavelength division multiplexer (WDM) tunable laser source
(TLS) with a linewidth of <100 kHz (FWHM) in the C-band (1527–1565 nm) is amplified using an
erbium-doped fiber amplifier (EDFA). It is combined with a ~980 nm module diode laser (RMS centre
wavelength 973.9 nm and 0.20 nm spectral width) by a 980/1550 nm wavelength division multiplexer
(WDM) with 0.26 and 0.28 dB insertion losses at 980 nm and 1550 nm respectively. The output from
the single mode fiber (SMF) that is terminated with a collimator is passed through the first nonlinear
uniformly poled MgO:PPLN crystal. The two overlapped input beams are focused into the first crystal
and the SFG of the first crystal together with the input beams are re-focused into the second SC-PPLN
nonlinear crystal with a 125 mm focal length plano-convex lenses.
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Figure 1. Schematic of the experimental setup. The beams are focused into single-pass cascaded
module to generate orange output by sum frequency generation (SFG). EDFA: erbium-doped fiber
amplifier; WDM: wave division multiplexer; CL: collimator; L1 and L2: lenses; PM: power meter;
OSA: optical spectrum analyzer; TLS, tunable laser source; LD, laser diode.

Here, the period of the first MgO:PPLN crystal is 10.3 µm and the length is 50 mm. The second
MgO:PPLN crystal is a step-chirped structure with poling periods from 10.1 to 10.5 µm with a
precision of 0.1 µm increase and the length is 20 mm with five equal sections. The SFG phase-matching
wavelength for Crystal 1 is 1544.9 nm, while Crystal 2 showed two phase matching wavelengths at
1545.7 nm and 1556.6 nm. Both crystals were temperature-stabilized close to 31 ◦C and 25 ◦C for
QPM, respectively. The output power and spectra of the up-converted orange output beam after an
optical filter was measured using a laser power meter (PM100D, Thorlabs, Newton, NJ, USA) and a
fiber spectrometer (BIM-6001, Brolight, Hangzhou, China) with a resolution of 0.35–1 nm, respectively,
whereas the M2 factor was measured using knife-edge method with Beamgage (Ophir-Spiricon, Inc.,
Jerusalem, Israel) laser beam analyzer.

4. Results and Discussion

4.1. Power Dependence

The maximum input fundamental powers were measured before Crystal 1 to be 418 mW (P1) at
1545.7 nm (λ1) and 229 mW (P2) at 975.2 nm (λ2). We estimated the beam waist radii of λ1 and λ2 to be
~68 µm and ~43 µm inside the crystals, respectively. A comparison of the resulting maximum output
powers and corresponding conversion efficiencies with expected calculated values are summarized
in Table 1. Perhaps, the total orange output power can be enhanced by anti-reflection (AR) coating
the end faces of each crystal in order to minimize Fresnel reflection losses. We can infer from Table 1
that, in comparison to single crystals, the conversion efficiency is higher in the cascaded module
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although lower than the expected conversion efficiency. We attribute the losses to the relative phase
offset between the fundamental and SFG beams primarily due to dispersion in air and focusing lenses.
The refractive nature of the lens causes color aberration since the focusing lengths for both fundamental
wavelengths are different and consequently different beam waist radii results in the second crystal.
In order to optimize the conversion efficiency, these limitations can be overcome by focusing the
fundamental sources separately into the second crystal. Other possible reasons for the discrepancy
between experimental and calculated values may originate from uneven temperature distribution
within the crystals and/or poling imperfections in the QPM structure.

Table 1. Calculated and experimental comparison of output powers and conversion efficiencies in
single crystals and cascaded module.

Crystal PSFG (mW) Conversion Efficiency (% W−1)

Calculated a Experiment Calculated b Experiment

Crystal 1 38.2 7.1 39.9 7.4
Crystal 2 15.2 4.3 15.9 4.5

Cascaded module - 10.0 23.4 10.4
a From Equation (1). b From Equation (2) for Crystals 1 & 2, and Equation (3) for cascaded crystals.

Figure 2a shows the CW orange power as a function of the total input power incident on the two
individual crystals and for the cascaded case. The TLS power, P1 was fixed at 418 mW (maximum) and
the LD power, P2 was increased steadily to a maximum value of 229 mW by varying the operating
current. Figure 2b shows the measured beam profiles when P1 and P2 were 418 mW and 229 mW,
respectively. For all the cases, the SFG beam was nearly identical in the horizontal direction with
M2

x ∼ 2.1 at 595.9 nm, 597.3 nm, and 596.9 nm for Crystal 1, Crystal 2, and the cascaded module,
respectively. In the vertical direction, we measured M2

y ∼ 1.9, M2
y ∼ 2.0, and M2

y ∼ 4.1 for Crystal 1,
Crystal 2, and the cascaded module, respectively.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 9 

from Table 1 that, in comparison to single crystals, the conversion efficiency is higher in the cascaded 
module although lower than the expected conversion efficiency. We attribute the losses to the relative 
phase offset between the fundamental and SFG beams primarily due to dispersion in air and focusing 
lenses. The refractive nature of the lens causes color aberration since the focusing lengths for both 
fundamental wavelengths are different and consequently different beam waist radii results in the 
second crystal. In order to optimize the conversion efficiency, these limitations can be overcome by 
focusing the fundamental sources separately into the second crystal. Other possible reasons for the 
discrepancy between experimental and calculated values may originate from uneven temperature 
distribution within the crystals and/or poling imperfections in the QPM structure. 

Table 1. Calculated and experimental comparison of output powers and conversion efficiencies in 
single crystals and cascaded module. 

Crystal 
PSFG (mW) Conversion Efficiency (% W−1) 

Calculated a Experiment Calculated b Experiment 
Crystal 1 38.2 7.1 39.9 7.4 
Crystal 2 15.2 4.3 15.9 4.5 

Cascaded module - 10.0 23.4 10.4 
a From Equation (1). b From Equation (2) for Crystals 1 & 2, and Equation (3) for cascaded crystals. 

Figure 2a shows the CW orange power as a function of the total input power incident on the two 
individual crystals and for the cascaded case. The TLS power, P1 was fixed at 418 mW (maximum) 
and the LD power, P2 was increased steadily to a maximum value of 229 mW by varying the operating 
current. Figure 2b shows the measured beam profiles when P1 and P2 were 418 mW and 229 mW, 
respectively. For all the cases, the SFG beam was nearly identical in the horizontal direction with 

2 2.1xM   at 595.9 nm, 597.3 nm, and 596.9 nm for Crystal 1, Crystal 2, and the cascaded module, 

respectively. In the vertical direction, we measured 2 1.9yM  , 2 2.0yM  , and 2 4.1yM   for Crystal 1, 

Crystal 2, and the cascaded module, respectively. 

(a)

Figure 2. Cont.



Appl. Sci. 2018, 8, 439 5 of 9Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 9 

(b)

Figure 2. (a) Power of the generated orange light as a function of the total input fundamental power. 
(b) Beam profiles at 595.9 nm, 597.3 nm, and 596.9 nm for the three cases studied taken when P1 and 
P2 were 418 mW and 229 mW, respectively. 

4.2. Output Spectra, Tunability, and Beam Stability 

Figure 3 shows the normalized experimental spectra for the SFG process in Crystal 1, Crystal 2, 
and the cascaded module. The intensities are normalized to the maximum detection limit of our 
spectrometer. 

 
Figure 3. Normalized spectrum of the generated orange light for Crystal 1 (black), Crystal 2 (red), and 
the cascaded module (green). 

We further established the tunability of the orange output by increasing the temperature of 
Crystal 1 from 25 to 90 °C, while simultaneously tuning the pump laser from 1527 to 1565 nm (upper 
horizontal axis) as seen in Figure 4. The corresponding output wavelengths are shown in the lower 
horizontal axis with a spectral resolution of ~0.75 nm. As the input pump wavelength was tuned, the 
SFG intensity exhibited oscillations as seen in Figure 5. While Crystal 1 showed a single phase 
matching point at 1544.9 nm, Crystal 2 revealed two phase matching points at 1545.7 nm and 1556.5 
nm. The cascaded module has a broader input wavelength acceptance range compared to Crystals 1 
and 2. This technique allows the pump wavelengths ranging from 1527 to ~1545 nm to be utilized for 
SFG, which is not achievable with individual crystals. It is worth noting that the orange intensity 
dependence on the pump wavelength shown in Figure 5 (green curve) for the cascaded case does not 
fit to Equation (3) as expected, from which we can conclude that the theory is not valid for this case. 

Figure 2. (a) Power of the generated orange light as a function of the total input fundamental power.
(b) Beam profiles at 595.9 nm, 597.3 nm, and 596.9 nm for the three cases studied taken when P1 and P2

were 418 mW and 229 mW, respectively.

4.2. Output Spectra, Tunability, and Beam Stability

Figure 3 shows the normalized experimental spectra for the SFG process in Crystal 1, Crystal 2, and
the cascaded module. The intensities are normalized to the maximum detection limit of our spectrometer.
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We further established the tunability of the orange output by increasing the temperature of Crystal
1 from 25 to 90 ◦C, while simultaneously tuning the pump laser from 1527 to 1565 nm (upper horizontal
axis) as seen in Figure 4. The corresponding output wavelengths are shown in the lower horizontal axis
with a spectral resolution of ~0.75 nm. As the input pump wavelength was tuned, the SFG intensity
exhibited oscillations as seen in Figure 5. While Crystal 1 showed a single phase matching point at
1544.9 nm, Crystal 2 revealed two phase matching points at 1545.7 nm and 1556.5 nm. The cascaded
module has a broader input wavelength acceptance range compared to Crystals 1 and 2. This technique
allows the pump wavelengths ranging from 1527 to ~1545 nm to be utilized for SFG, which is not
achievable with individual crystals. It is worth noting that the orange intensity dependence on the
pump wavelength shown in Figure 5 (green curve) for the cascaded case does not fit to Equation (3) as
expected, from which we can conclude that the theory is not valid for this case.
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Thus, by temperature tuning, the SFG quasi phase-matching condition can be shifted owing to
the fact that the refractive index of MgO:PPLN is temperature-dependent according to the Sellmeier
equation. In particular, the phase-matching condition shifts to longer wavelengths with an increase in
temperature. According to Figure 6, the orange light output as a function of crystal temperature can be
tuned by ~0.05 nm/◦C without affecting the SFG conversion efficiency for the PPLN crystal used in
this work. We therefore benefit from a temperature-assisted tunable orange light source.
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In addition, the stability of the orange light output generated by the cascaded module for one
hour was measured using a power meter, showing <2.5% fluctuation of the output power around an
average of 10 mW (Figure 7). We attribute this fluctuation to the stability of both fundamental lasers.
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5. Conclusions

We have demonstrated an all-solid-state CW broadband orange laser by cascaded single-pass
sum-frequency generation with fundamental wavelengths at 1545.7 nm and ~975.1 nm. Up to 7.1 mW
orange output power was detected for the 50 mm PPLN crystal, 4.3 mW for the 20 mm SC-PPLN crystal,
and 10 mW for the cascaded module corresponding to 7.4%/W, 4.5%/W, and 10.4%/W nonlinear
conversion efficiencies of the total input power of the fundamental lasers, respectively. A temperature
tuning rate of ~0.05 nm/◦C was noted, which can be understood from the temperature dependence
of the refractive index of MgO:PPLN according to the Sellmeier equation. To further improve the
conversion efficiency, one will need to minimize Fresnel losses by anti-reflection coating the end faces
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of the two crystals as well as increasing the fundamental powers. We use this technique to combine
the high efficiency offered by uniformly poled crystals and the broad input wavelength acceptance
characteristic of step-chirped structures.
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