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Abstract: Manufacturing error and assembly error should be taken into consideration during
evaluation and analysis of accurate product performance in the design phase. Traditional tolerance
analysis methods establish error propagation model based on dimension chains with tolerance
values being regarded as error boundaries, and obtain the limit of target feature error through
optimization methods or conducting statistical analysis with the tolerance domain being the boundary.
As deviations of the tolerance feature (TF) on degrees of freedom (DOF) have coupling relations,
accurate deviations on all DOF may not be obtained, even though these deviations constitute
the basis for product performance analysis. Therefore, taking the widely used shaft-hole fit as
an example, a pose decoupling model of the axis TF was proposed based on an area coordinate system.
This model realized decoupling analysis of any pose of the axis TF within the tolerance domain.
As proposed by the authors, by combining a tolerance analysis model based on tracking local
coordinate systems, ultimate pose analysis of the closed-loop system, namely the target feature,
as well as statistical analysis could be further implemented. This method contributed to analysis of
true product performance with arbitrary error in the product design phase from the angle of tolerance,
therefore, shortening the product research and development cycle. This method is demonstrated
through applying it to a real-life example.
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1. Introduction

Shaft-hole fit is a common form of fitting in rotating mechanical products. Dimension error,
geometric shape error, and fit error of shafts and holes are important sources of assembly error [1–3].
They directly affect the assembly accuracy, kinematic accuracy and service life of products, for example,
the rotation accuracy of a machine tool spindle, gear transmission error, and service life of the
bearing [4]. Therefore, it is necessary to discuss the relationship between assembly system performance
and geometric and fit error of the shaft-hole.

Historically, scholars have conducted extensive research work on this issue. However, most studies
have focused on the tolerance analysis of assembly systems, including the Direct Linearization
Method [5], Matrix method [6], Unified Jacobian-Torsor method [7], and the Small Displacement
Torsor method [8]. Assembly error with clearance fit is mainly studied by equivalent substitution.
For example, Desrochers et al. [9] proposed the Matrix method to view shaft-hole clearance fit
into coaxiality tolerance. Chase et al. [5] regarded different fit states in all kinds of kinematic pairs
according to the Direct Linearization Method. Desrochers et al. [7] expressed the contact and kinematic
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relationship between fitting parts by the Torsor method. They established error propagation models
based on the dimension chain, which regard the tolerance value and clearance value as constrained
boundaries for variation in the tolerance feature (TF) through an optimization method or conducting
statistical analysis with the tolerance domain being the boundary, so as to realize error analysis of the
assembly system [10].

Tolerance analysis models like the Matrix method and the Small Displacement Torsor method
give a range of 12 ultimate values for TF from the angle of six degrees of freedom (DOF). Influenced by
the principle of the algorithm itself, the search for the limiting state of TF by the optimization method
is probably formed by multiple uncertain combinations of deviations on multiple DOF, but it does
not determined the limit deviation from the expected DOF. Therefore, when the limiting situation
or statistical situation for all kinds of product performances with errors such as the kinematics and
dynamical properties, is carried out in the product design phase, input parameters may not be accurate
enough and will affect the accuracy of the analysis results. Therefore, before performance analysis
of products with errors, pose (position and orientation [11]) decoupling on six spatial DOF must be
implemented for TF so that the actual deviations of TF on all DOF are obtained [12,13]. In this way,
the error range of the target feature can be more accurately obtained and this range should be smaller
than error ranges given by the Matrix method and the Small Displacement Torsor method, etc.
Moreover, explicit analytic expression of target feature error can be obtained, especially when ultimate
error is not solved through optimized mathematical iteration method. Thus, explicit solutions for six
DOF at arbitrary positions, including the limiting position of TF, can be realized.

Currently, when prediction and analysis of the mechanical properties of assembly systems with
errors is conducted in the product design phase, the error value is usually manually set [14], and it
is not derived from tolerance values given by designers. Therefore, in order to explore a method
which establishes the relation between tolerance of part of the dimension chain and performance of the
assembly system, TF of shaft-hole fit-axis TF [15] was taken as an example in this paper, to examine
a pose decoupling model. Inspiration for this method came from the Tolerance-Map (T-Map) model
proposed by Davidson et al. [16] and the Deviation-Domain model proposed by Giordano et al. [15].
The two methods are still essentially tolerance analysis methods. The T-Map model is a widely used
method which uses a hypothetical Euclidean point-space of a convex polyhedron and is completely
compatible with ASME Y 14.5-1994 standards.

Its shape, dimension and internal subset reflect TF type, size, shape and all possible variations
of pose [17]. The variation range of each TF which is gained by the T-Map model through the
area coordinate system is also called the convex hull. Points in the convex hull have a one-to-one
mapping relation with all possible error variations of TFs in the tolerance zone. T-Map uses the
Minkowski mum algorithm to calculate the ultimate variation of the target feature. This algorithm
scans vertexes and boundaries of the convex hull along the dimension chain of TFs one by one in
a recursive manner, finally getting the convex hull which describes variations of the target feature.
This is a model that calculates the boundaries of target feature variation by geometric operation.
The calculation load of Minkowski sum shows exponential growth with the increase in component
links in the dimension chain. The calculation load for complicated dimension chains is extremely good.
As the T-Map method does not suggest an analytical model between the convex hull vertex of the
target feature and the convex hull vertex of each TF on the dimension chain, deviation data expressed
by the convex hull vertex of each TF and any point within the convex hull cannot be used in product
performance analysis.

Therefore, based on the T-Map, the area coordinate system was used in this paper to study
a shaft-hole relative pose description method with the existence of tolerance and clearance fit.
The mapping relationship between the area coordinate system and Cartesian coordinate system was
further established for each TF on the dimension chain. A tolerance analysis model based on tracking
local coordinate systems [18], as proposed previously, was combined to obtain analytic expression
of pose decoupling of the axis TF as expressed by the area coordinate system. This method not only
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accurately obtained the ultimate error of the target feature through permutation and combination of
ultimate area coordinate values, with a greatly reduced calculated quantity when compared with the
T-Map method, but also obtained the sole deviation value of TF on arbitrary DOF within the tolerance
domain by changing the corresponding area coordinate value. Therefore, it provides the foundations
for accurate analysis of product performance.

2. Error Transformation Matrix of Axis TF

For shaft-hole fit (Figure 1), the cylinder tolerance zone is acquired by expressing clearance
value at the axis, so the variation of shaft in the hole is equivalent to the variation of the axis in
the cylinder tolerance zone in Figure 2. During tolerance analysis, the error transformation matrix
Di reflects variation of TF [18]. Di is gained from homogeneous transform matrix (HTM) based
on DOF. According to TTRS(Technologically and Topologically Related Surfaces) theory [9], the axis
TF in Figure 2 has four DOFs in the Cartesian coordinate system O-XYZ, including the horizontal
displacement ui, vi along X and Y axes as well as rotation αi, βi around X and Y axes. Basic HTMs on
these four DOFs are:

Trans(ui) =


1 0 0 ui
0 1 0 0
0 0 1 0
0 0 0 1

 , Trans(vi) =


1 0 0 0
0 1 0 vi
0 0 1 0
0 0 0 1



Rot(αi) =


1 0 0 0
0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1

 , Rot(βi) =


cos βi 0 sin βi 0

0 1 0 0
− sin βi 0 cos βi 0

0 0 0 1


(1)
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Figure 1. Shaft-hole fit and cylinder tolerance zone. 
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Due to small errors, sin αi ≈ αi and cos αi ≈ 1. These are similar to βi. Therefore, the
corresponding error transformation matrix Di is:

Di = Trans(ui)Trans(vi)Rot(αi)Rot(βi) =


1 0 βi ui
0 1 −αi vi
−βi αi 1 0

0 0 0 1

 (2)

In fact, pose decoupling of axis TF determines the relationships between ui, vi, αi, βi and the
tolerance value and clearance value. Here, the analytic relationships of the tolerance value and
clearance value of shaft-hole fit with error variables on each DOF were disclosed according to the
T-Map followed by interpolation of area coordinate system in the Finite Element Theory. In this way,
pose decoupling of axis TF in the tolerance domain is realized.

3. Axis TF in the Area Coordinate System

3.1. Area Coordinate System

In Figure 3, three sub-triangles (Pjm, Pmi and Pij) are formed by connecting any point P in the
triangle ijm with its three vertexes i, j and m.
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Figure 3. Area coordinate system of triangles.

Location of point P in the triangle ijm can be determined by either the Cartesian coordinate
system O-XY or three sub-triangles. Areas of three sub-triangles (Pjm, Pmi and Pij) are ∆Pjm,
∆Pmi and ∆Pij, respectively. The ratios between areas of three sub-triangles and the area of the triangle
ijm (∆Pjm/∆, ∆Pmi/∆ and ∆Pij/∆), can be expressed as Li, Lj and Lm:

Li =
∆Pjm

∆ = ∆i
∆

Lj =
∆Pmi

∆ =
∆j
∆

Lm =
∆Pij

∆ = ∆m
∆

(3)

Li, Lj and Lm are area coordinate values of P. In Figure 3, the area coordinate value of any point on
relative sides of each vertex of the triangle is 0. Generally, the relationship between area coordinate
values is:

Li + Lj + Lm = 1 (4)

The mapping relation of P from O-XY to the area coordinate system is:
Li
Lj
Lm

 =
1

2∆

 ai bi ci
aj bj cj
am bm cm




1
x
y

 (5)
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where ai, bi, ci, aj, bj, cj, am, bm and cm are algebraic cofactor of elements in the first, second and third
rows at the right determinant of the calculation formula of triangle in Equation (6):

2∆ =

∣∣∣∣∣∣∣
1 xi yi
1 xj yj
1 xm ym

∣∣∣∣∣∣∣ (6)

According to properties of the determinant and Equation (4), the mapping relation of P from
O-XY to the area coordinate system is:

1
x
y

 =

 1 1 1
xi xj xm

yi yj ym




Li
Lj
Lm

 (7)

It can be known from Equations (5) and (7) that locations of P in O-XY correspond to ∆Pjm,
∆Pmi and ∆Pij.

3.2. Area Coordinate System Based on Axis DOFs

Equation (7) is equivalent to expressing the Cartesian coordinates of points in the triangle by
coordinate interpolation of triangle vertexes. Since axis TF in the cylinder tolerance zone has four DOFs,
interpolation of the ultimate state on each DOF can be used to express axis pose.

The cylinder tolerance zone in Figure 1 is extracted and amplified to Figure 4. Base lines $2 and
$3 in Figure 4 are pose of axis TF when the translational displacement along X and Y axes in O-XYZ
are at the maximum. Under this circumstance, the corresponding area coordinate values λ2 and λ3

are equal to 1. Their contribution to axis variation on the translational DOF are u and v. Base lines $4

and $5 are the pose of axis TF when the rotations around X and Y axes in O-XYZ are at the maximum.
At this time, the corresponding area coordinate values λ4 and λ5 are equal to 1. Their contributions to
axis rotation on the rotational DOF are α and β. $1 is pose of axis TF when there is no error. $ is the
axis of any pose in the tolerance zone and can be expressed by linear Equation (8) [19].
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Figure 4. Cylinder tolerance zone and baselines of area coordinate system corresponding to axis TF.

$ = λ1$1 + λ2$2 + λ3$3 + λ4$4 + λ5$5 (8)

Equation (8) reflects that any pose of axis TF correspond to one point in the four-dimensional
space in the area coordinate value (λ1, λ2, λ3, λ4, λ5). In other words, any axis pose in the tolerance
zone in Figure 1 can establish linear relationships with tolerance and clearance through Equation (8).
Here, (λ1, λ2, λ3, λ4, λ5) might be negative and is used to express situations when variables ui, vi, αi
and βi are negative. Therefore, with reference to Equation (4), the constraint relation between area
coordinate values of axis TF can be improved as:

|λ1|+ |λ2|+ |λ3|+ |λ4|+ |λ5| = 1 (9)

For instance, $1 expresses the ideal location of axis and (λ1, λ2, λ3, λ4, λ5) = (1, 0, 0, 0, 0). When the
axis is at $4, (λ1, λ2, λ3, λ4, λ5) = (0, 0, 0, 1, 0). When the axis is at $7, (λ1, λ2, λ3, λ4, λ5) = (0, 0,−1, 0, 0).
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This constraint relation ensures the coordinated relations among ultimate errors of axis TF on
multiple DOFs.

4. Pose Decoupling of Axis TF

Research of robotics and its associated mechanisms, including location recognition of
the mechanisms, kinematic control and dynamic simulation, all require pose decoupling analysis of the
mechanism first [20,21]. Since TF in the tolerance zone has strong coupling, performance evaluation
and analysis of assembly systems during the product design stage needs pose decoupling of TF of
uncertainty error.

The process of establishing the functional relationship of the tolerance value and clearance value
with the TF pose is known as TF decoupling.

4.1. Plücker Coordinates of Axis TF

Axis TF is determined by two end points on two end faces of the tolerance zone. Under this
circumstance, Plücker coordinates of the straight line are introduced in order to describe its pose [22].
In Figure 2, the points of intersection that the axis passes through the two end faces of the cylinder
tolerance zone are S1

(
x1, y1,− d

2

)
and S2

(
x2, y2, d

2

)
, thus getting the Grassmann determinant of axis TF:

∣∣∣∣∣ 1 x1 y1 − d
2

1 x2 y2
d
2

∣∣∣∣∣ (10)

According to Plücker [22], coordinate values (L, M, N; P, Q, R) of the axis correspond to 6 of
2 × 2 determinants:

L =

∣∣∣∣∣ 1 x1

1 x2

∣∣∣∣∣, M =

∣∣∣∣∣ 1 y1

1 y2

∣∣∣∣∣ , N =

∣∣∣∣∣ 1 − d
2

1 d
2

∣∣∣∣∣, P =

∣∣∣∣∣ y1 − d
2

y2
d
2

∣∣∣∣∣, Q =

∣∣∣∣∣ − d
2 x1

d
2 x2

∣∣∣∣∣, R =

∣∣∣∣∣ x1 y1

x2 y2

∣∣∣∣∣ (11)

(L, M, N; P, Q, R) is the pose of the axis in the tolerance domain, where L, M and N are direction
ratios of the axis, P, Q and R are moments of line of unit force on the axis, relative to the origin O.
It can be seen from Equation (11) that N = d is a zero-order constant. L, M, P and Q are first-order
small quantities with the same magnitude of tolerance [t], while R is the high-order small quantity of
[t]2 level. Therefore, R can be omitted [19].

Base lines $1, $2, $3, $4 and $5 in Figure 4 are ultimate locations on DOF when the axis is in the
tolerance zone. Therefore, Plücker coordinates of each base line in the tolerance zone can be expressed
as forms of matrix [X]. It can be seen from Equation (12), that the ith column in [X] is the Plücker
coordinate of $i (i = 1 to ~5).

[X] =


0 0 0 t 0
0 0 0 0 t
d d d d d
0 0 t

2 d 0 0
0 − t

2 d 0 0 0

 (12)

4.2. Mapping between the Area Coordinate System and Cartesian Coordinate System

For axis TF with any pose, Equation (8) can be expressed by a linear matrix:
L
M
N
P
Q

 = [X]


λ1

λ2

λ3

λ4

λ5

 (13)
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Combining Equations (11)–(13), the axis of any pose in the tolerance zone can be expressed by
either Plücker coordinates in the Cartesian coordinate system directly, or the linear sum of Plücker
coordinates of five base lines in the area coordinate system. These two expressions are equivalent:

L
M
N
P
Q

 =


tλ4

tλ5

d(λ1 + λ2 + λ3 + λ4 + λ5)
t
2 dλ3

− t
2 dλ2

 (14)

By solving the Equation (14), the S1(x1,y1,−d/2) and S2(x2,y2,d/2) which are coordinate values of
S1 and S2 in the expression of area coordinate values (λ1, λ2, λ3, λ4, λ5) can be obtained:

x1

y1

x2

y2

 =


t
2 (λ2 − λ4)
t
2 (λ3 − λ5)
t
2 (λ2 + λ4)
t
2 (λ3 + λ5)

 (15)

Similarly, the error transformation matrix can be expressed by area coordinate values (λ1, λ2,
λ3, λ4, λ5). It can be seen from Figure 2 that variables on four DOFs can be expressed by the area
coordinate system: 

ui =
t
2 λ2

vi =
t
2 λ3

αi = − t
d λ4

βi =
t
d λ5

(16)

By bringing Equation (16) into Equation (2), the error transformation matrix which is expressed
by the area coordinate system can be obtained.

The analytic expression of error propagation which is expressed by area coordinate values can
be gained from the tolerance analysis method based on the tracking local coordinate system [19].
Since (λ1, λ2, λ3, λ4, λ5) range from−1 to 1, any pose of axis TF in the tolerance zone can be decoupled
by changing (λ1, λ2, λ3, λ4, λ5).

When calculating the limits of target feature variations, basic area coordinate values (each row)
of the base line in the matrix (17) are permutated and combined, and then brought into the tolerance
analysis model, so the analytic expression of the convex hull model which reflects variations in the
target feature, can be found. 

{
λ1 λ2 λ3 λ4 λ5

}
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0



(17)
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5. Case Study

The gear pump [9,23] in Figure 5 is composed of (a) pump body, (b) leading shaft and gear,
and (c) shaft and gear. The gear is made of 45# steel. The number of teeth is z = 10 and the number of
modules is m = 1.5. Rated pressure is 25 Mpa and rated speed is 1450 r/min. The proportional factor
of temperature deviation is 1. In the following text, the proposed model is used for pose decoupling
analysis of the gear axis.

In Figure 5, local coordinate systems are constructed at TF of each part. Since the nominal
coordinate system is very close to the tracking local coordinate system and actual local coordinate
system, only the nominal coordinate system is expressed [19]. Through analysis, this gear pump can
construct two open-looped dimension chains which have a consistent starting point. The starting
point of two open-looped dimension chains is in the origin of the reference coordinate system, O0 in
Figure 5.

Dimension chain 1 included three links: tolerance feature C1 (corresponding to position tolerance
t1), tolerance features C1 & C2 (corresponding to clearance fit tolerance t2) and C3 (corresponding to
coaxiality tolerance t2), while dimension chain 2 only included two links: tolerance features E1 & E2
(corresponding to gap fit tolerance t4) and E3 (corresponding to coaxiality tolerance t5). Tolerance and
the type of TF of dimension chain 2 could be found in dimension chain 1 which was more complicated
with greater representativeness. Therefore, only dimension chain 1 was selected for explanation.
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Figure 5. Gear pump (Unit:mm): (a) Pump body; (b) Leading shaft and gear; (c) Shaft and gear.

Dimension chain 1 is formed by connecting nominal coordinate systems O0, O1, O2 and O3,
whereas dimension chain 2 is formed by connecting nominal coordinate systems O0, O4 and O5. Here,
the dimension chain 1 was used as the example. Transformation among the nominal local coordinate
systems (T1) is:

T1 = PO1→O0D1PO2→O1D2PO3→O2D3 (18)
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The homogeneous coordinate value of end point, M1 in the nominal local coordinate system, O3 is
[M1]O3

= (0, 0,−8, 1)T . Then, the coordinate value in the reference coordinate system O0 is [M1]O0:

[M1]O0
= T1[M1]O3

(19)

Combined with Equation (16), [M1]O0 which is expressed by the area coordinate value can be
obtained:

[M1]O0
=


λ2_1t1+λ2_2t2+λ2_3t3

2 +
15λ5_1t1+15λ5_2t2

d1
− 8λ5_3t3

d3
+ 15

λ3_1t1+λ3_2t2+λ3_3t3
2 − 15λ4_1t1+15λ4_2t2

d1
8λ5_3t3(λ5_1t1+λ5_2t2)

d1d3
+ 30

 (20)

Equation (20) not only establishes relationships between any pose of point M1 and the tolerance
value and clearance value, but it can also find the limits of target feature variations when λi = ±1
(i = 1~5), that is, the vertex of the convex hull. After calculation, permutation and combination of basic
area coordinate values in Equation (17) are brought into Equation (20), then the three-dimensional
scatter points in Euclidean space can be acquired. Each scatter point represents one possible limit value.
Next, using MATLAB (R2012b, MathWorks, Natick, MA, USA), the smallest convex hull model which
covers all scatter points is searched for Vertexes of the convex hull are the pose limits of point M1.
Convex hulls concerning variations of point M1 and point M2, as well as their projection on three
coordinate planes of the reference coordinate system, O0 are listed in Table 1.

Table 1. Envelope diagram concerning variations of end point M1 and M2 of the leading shaft.

The Type of Convex Hull End Point M1 End Point M2

Three-diminsional convex hull
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Similarly, convex hulls of end point M3 and M4 variations, as well as their projections on three
coordinate planes of the reference coordinate system, O0 are listed in Table 2.

Table 2. Envelope diagram concerning variations of end point M3 and M4 of shaft and gear axis.

The Type of Convex Hull End Point M3 End Point M4

Three-diminsional convex hull
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Accurate coordinate values for the variation range of end points of the gear axis with consideration
to deviations can be gained from Tables 1 and 2. They are listed in Table 3. Therefore, accurate pose of
the gear axis with different ultimate deviations could be acquired, thus enabling simulation analysis on
the performance of the gear pump with consideration of deviation. Table 3 reveals that the maximum
magnitude of deviation along Z direction is 10−4 and the magnitude along X and Y directions ranges
from 10−1 to ~10−2. Generally, deviation along the Z direction can be neglected.
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Table 3. Variation ranges of four end points of the gear axis (Unit: mm).

End Point Variation Range of X Axis Variation Range of Y Axis Variation Range of Z Axis

Point M1 (14.8815, 15.1185) (−0.1185, 0.1185) (29.99971, 30.00023)
Point M2 (14.8084, 15.1916) (−0.1916, 0.1916) (45.9996, 46.0002)
Point M3 (−0.0685, 0.0685) (−0.0685, 0.0685) (29.99993, 30.00006)
Point M4 (−0.08515, 0.08515) (−0.08515, 0.08515) (45.99994, 46.00006)

For gear pump (see Figure 5), gear engagement performance can significantly influence the flow
rate of the gear pump. The parallel misalignment, deviation of the angle of intersection and deviation
of the angle of stagger between M1M2 and M3M4 will influence gear engagement, thus affecting the
service ability of the gear pump. Therefore, all accumulated errors on dimension chain 1 and dimension
chain 2 can be concentrated into the gear axis during performance simulation of the gear pump. This is
demonstrated by taking the angle of intersection, for example.

According to the definition of an intersection angle, it can easily be seen from the second row
of Tables 1 and 2, that the extreme value of the error in the angle intersection is 1.6604◦. As the
deviation along the Z axis is neglected, the error is a combined effect of deviations at two DOFs,
namely, translation along the X axis and rotation around the Y axis. Ultimate pose combinations of
two gear axes are M11M23 + M33M41 and M13M21 + M31M43, respectively. Since the tolerance zone is
symmetric in this case, the ultimate angles of interaction which is gained from the combination of two
groups of poses are equal in numerical value and opposite in direction. Therefore, calculating the angle
of intersection of one combination is enough. In the following analysis, M11M23 + M33M41 is chosen.
Accumulative errors of the two dimension chains are converted to local coordinate systems O3 and O5,
so translation deviations of M1M2 and M3M4 in dimension chains 1 and 2 along the X axis are u3_C1

and u5_C2, and the rotation deviations around the Y axis are β3_C1 and β5_C2. Specific data are listed in
Table 4. It only remains to bring these data into gear engagement analysis with the ultimate deviation of
angle of intersection. Similarly, the translation deviation and rotation deviation of M13M21 + M31M43

could be acquired.

Table 4. Ultimate deviation of angle of intersection and pose expression of gear axis.
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Ultimate Deviation of Gear Axis M1M2 M3M4

u3_C1 −0.03655 mm
β3_C1 −0.01938◦

u5_C2 0.008325 mm

β5_C2 0.009603◦

Therefore, the accurate ultimate deviation of the angle of intersection can be obtained through
pose decoupling of the gear axis. Similarly, the pose combinations of ultimate parallel misalignment
between two gear axes are M11M21 + M33M43 and M13M23 + M31M41, and the pose combinations
of ultimate angle deviation of stagger are M12M24 + M34M42 and M14M22 + M32M44, respectively.
Accurate deviations on corresponding DOF can be gained in the same way as the angle of interaction.

This decoupling model is also applicable to statistical analysis. It is already known that area
coordinate values of TFi meet constraint relation as shown in Formula (9), based on which area
coordinate values λ2_1, λ3_1, λ4_1, λ5_1; λ2_2, λ3_2, λ4_2, λ5_2; λ2_3, λ3_3, λ5_3 in Formula (20) can
be given through sampling method in statistics. Through multiple simulations in Formula (20),
namely Monte Carlo simulation, the distribution diagram of four end points M1, M2, M3 and M4 of
gear axis can be obtained in Table 5.
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Table 5. Statistical distribution of end points of the gear axis.
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The error value of each TF in the corresponding dimension chain can be found for each point in
in Table 5. The error value can be the input data in the analysis of product performance.

6. Conclusions

Based on the widely-used shaft-hole fit, a decoupling model of axis TF in the cylinder tolerance
zone was proposed based on an area coordinate system. By combining the improved tolerance analysis
model based on tracking the local coordinate system, this model not only obtains expression of pose
decoupling analysis on the dimension chain, but also visually displays the limits of target feature
variations through a convex hull model. That is, the proposed model lays the foundation for product
performance evaluation of axis TF assembly systems with any error.
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