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Abstract: Vehicle navigation is widely used in path planning of self driving travel, and it plays an
increasing important role in people's daily trips. Therefore, path planning algorithms have attracted
substantial attention. However, most path planning methods are based on public data, aiming at
different driver groups rather than a specific user. Hence, this study proposes a personalized path
decision algorithm that is based on user habits. First, the categories of driving characteristics are
obtained through the investigation of public users, and the clustering results corresponding to the
category space are obtained by log fuzzy C-means clustering algorithm (LFCM) based on the driving
information contained in the log trajectories. Then, the road performance personalized quantization
algorithm evaluation is proposed to evaluate roads from the user’s field of vision. Finally, adaptive ant
colony algorithm is improved and used to validate the path planning based on the road performance
personalized values. Results show that the algorithm can meet the personalized requirements of the
user path selection in the path decision.

Keywords: individualization; dynamic path planning; driving habits; personalized performance
evaluation

1. Introduction

With the rapid development of the modern automobile industry, self-driving groups are steadily
increasing and road traffic pressure is increasing. These changes do not match users’ demand for
comfortable travel. In addition to the expansion of existing road networks, attempts have been made
to avoid the clustering effect caused by the planning of the integration of personalized travel path for
users. For example, the full use of existing resources in public transportation can ease traffic pressure
and improve user experience in personalized travel. Therefore, studying the personalized paths of
users is of great social and economic significance.

Mature navigation systems and path planning algorithms mainly focus on the fastest path [1–4],
the shortest path [5–8] or the most comfortable path [4,9] between specified starting and target
points. In recent years, path optimization algorithms of multi-objective optimization [10–14] and
single-objective optimization [15,16], as well as a few traffic impact factors, have deepened [17,18] and
popular routes planning [19,20]. Moreover, significant attention has been directed toward personalized
path guidance systems. Campigotto P [20] introduces the favorite route recommendation (FAVOUR)
approach to provide a personalized, situation-aware route based on the information updating through
Bayesian learning, which was obtained from initial configuration files (home location, work place,
mobility options, etc.). A personalized fuzzy path planning algorithm based on the fuzzy sorting
of the center of gravity was proposed by Nadi [21], in which a optimization route according to user
standard types was formulated through analyzing the uncertainty of user preferences through the
expression of fuzzy linguistic preference relations. A personalized recommendation route algorithm
based on large trajectory data was proposed by Dai J [22] where both drivers’ driving preferences
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and multiple travel costs were considered to recommend personalized routes to individual drivers,
however, the shortcoming was that the trajectory data were based on public drivers. A trip router
planning method with individualized preferences was proposed by Letchner J [23] which presents a
set of methods for including driver preferences and time-variant traffic condition estimates during
route planning. Zhu X [24] put forward a personalized and time-sensitive route recommendation
system, in which user preferences and time information were acquired through location-based social
network where users’ location and access information was shared by different users. Qiong Long [25]
proposed a dynamic route guidance method for drivers’ personalized needs where a qualitative
and personalized evaluation was conducted on road networks with consideration of preferences
according to the premise of obtaining user preferences, and then Dijkstra algorithm was used to find
the optimal path.

The aforementioned results lay a good theoretical foundation; however, there still exist three
shortcomings: (1) the personalized path planning algorithm is aimed at different driver groups but
not at a specific user; (2) driver feature data are based on public trajectories or public information,
which leads to the lack of pertinence; and (3) personalized performance values fail to be obtained in
the evaluation of road traffic network performance.

Hence, to the best of our knowledge, this paper explores the possibility of providing a higher level
of personalized path planning using trajectory information. Specifically, three major contributions have
been made and structured as follows. First, a log C-means clustering algorithm (LFCM) is introduced
in Section 2.1 to lead the characteristic mining and clustering process of a specific user who provides
the log trajectories. Second, an individualized quantitative evaluation system of road performance
is built in Section 2.2 to obtain specific performance value in the view of the owner of the log tracks.
Third, adaptive ant colony algorithm is improved and utilized to validate the path planning based on
the personalized road values in Section 2.3 to find the optimal individualized path.

2. Materials and Methods

2.1. Mining and Clustering of Users’ Driving Habits

2.1.1. Establishment of Driving Style Space

Driving style space should be analyzed before driver style clustering to ensure the rationality
and reliability of the results of the LFCM. A driver can choose from a wide selection of varied details,
generally, including time-saving [1–3], economic [26,27] and comfort [4,9]. For ease of discussion,
we record the set of three indicators above as a style space. For most users, the style features are
not limited to a single element of the style space, but a coexistence of multiple coupling indexes,
whose index weight varies in each individual.

2.1.2. Acquisition of Individualized Driving Styles

Based on the fuzzy C-means algorithm [28], we integrate driving behavior characteristics and
introduce the log fuzzy C-means algorithm (LFCM) to guide the clustering of driving characteristics in
the style space. The LFCM algorithm is shown in Figure 1.

• Selection of style clustering center

(1) Mining of driving characteristics

Driving characteristics in log trajectories should be mined [29] before the core process of
feature clustering. Here, space–time paths of time geography [30] are used to excavate the driving
characteristics (Figure 2), in which the two-dimensional coordinates represent the historical space
position of the vehicle, while the vertical coordinates indicate the time of the vehicle arriving at the
corresponding space position.
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Figure 2. Vehicle space–time path.

The relationships among the speed of driving vt at any time t, the acceleration of driving at, and
the tangent slope of the inclined curve kt is shown in Formulas (1) and (2).

vt =
1
kt

(1)

at = lim
τ→t

1
kτ
− 1

kt

τ − t
(2)

The total square root acceleration of the total weight av in ISO2631 is used to approximate the
comfort level of the human body; it is defined as follows:

av =
(

λ2
xa2

x + λ2
ya2

y + λ2
z a2

z

) 1
2 (3)

where ax, ay, az, λx, λy, and λz, respectively, represent the square root acceleration and the direction
factors in the forward, horizontal, and vertical directions of the vehicle. The comparison between the
root acceleration of the total weight of different values and the comfort level of the human body is
shown in Table 1.
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The quality of the natural environment has a significant impact on the outcome of a user’s path
selection. The definition of the evaluation index is

I =
m

∑
i=1

Ii =
m

∑
i=1

Ci
Si

(4)

where Ii, Ci, and Si represent the environmental quality index, coverage rate, and evaluation standard
of the natural environment factors i; m is the species number of i, including the road greening
rate, river distribution, and air quality; and I denotes positive correlation with the comprehensive
road environment.

Table 1. Corresponding relation between acceleration and comfort level.

Total Vibration av/m·s−2 Time Feature Weight ωt

<0.315 Without malaise
0.315–0.63 Slightly uncomfortable

0.5–1 Quite uncomfortable
0.8–1.6 Uncomfortable

51.25–2.5 Extremely uncomfortable
>2 Terrible

(2) Selection of cluster center

To minimize the clustering convergence time and avoid the local optima [31,32] before the
clustering of characteristics, we must fully utilize the human inductive ability to restrict and select the
value of the initial cluster center. The following principles are adopted for selecting the time, economic
value, and comfort index of the cluster center.

Time clustering center: v ≥ v0, |a| ≥ |a0|, where v0, a0 according depend on adjustments to a
specific situation.

Economic cluster center: |a| ≤ |a0|, c0 → c0·min , where c0 represents the consumption rate for oil
and facilities, and c0·min represents the minimum consumption rate for fuel and facilities.

Comfort clustering center: |av| ≤ |av0|, I ≥ I0, where av0 is routinely specified as 0.63 while I0 is
adjusted according to user requirements.

(3) Improved fuzzy C-means clustering

The minimum element, which contains the driving characteristics, is defined as the vector
eigenvalue and is called the vector element. The Hausdorff distance [33–36] of each vector element
to the time, economy, and comfort clustering centers is calculated, and the contribution of driving
information to three different driving styles is measured. The fuzzy C-means algorithm is used to
complete the clustering of the characteristics of each vector element. The concrete steps are as follows.

Step 1: A three-dimensional cluster coordinate system is established based on driving speed,
consumption rate for fuel and facilities, total root mean square acceleration, and integrated
environmental quality. The time, economic, and comfort information contained in each log vector
element are expressed in the cluster coordinate system.

Step 2: According to the selection principle of clustering centers, the initial time, economic,
and comfort clustering centers are ensured when constraint conditions are satisfied. In this way,
the three cluster centers are moderately separated.

Step 3: The Hausdorff distance dHD( f , o) of the log road vector element f to the time, economy,
and comfort cluster centers O is calculated in Formula (5), where F is the finite set of vector elements,
and O is the set of time, economy, and comfort clustering centers.
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dHD( f , o) = min

(
h(F, O), h(O, F)

)
h(F, O) = max

f∈F
min
o∈O

d( f , o)

h(O, F) = max
o∈O

min
f∈F

d(o, f )
(5)

Step 4: The membership degree of each vector element f to the three cluster centers is calculated
in Formula (6).

Ro← f =
cardF/d2

HD( f , o)
∑

o∈O
∑

f∈F

(
1/d2

HD( f , o)
) (6)

Step 5: The vector elements of the time, economy, and comfort cluster centers are updated
according to the membership degree, as shown in Formula (7).

o′ =
∑

f∈F
f •R2

o← f

∑
f∈F

R2
o← f

(7)

Step 6: If the conditions shown in Formula (8) are satisfied, the iteration stops. Otherwise,
the process returns to Step 2, where O′ and O represent the cluster center variables of the current time
and the previous moment, respectively.

max
o∈O

{
‖o′ − o‖

}
< ε (8)

Step 7: Normalization is conducted according to Formula (9), where j = t, m, c represent
the arbitrary sample time, economy, and comfort dimensions, respectively. si·j, smin·j, and smax·j
represent the performance value, and the minimum and maximum performance values of sample
i underdimension j, respectively. s∗i·j is the new performance value of sample i under dimension j.
after the normalization process.

s∗i·j =
si·j − smin·j

smax·j − smin·j
(9)

The clustering results of the log road vector element features relative to the time (red), economic
(green), and comfort (blue) cluster centers are shown in Figure 3.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 24 

 

Step 4: The membership degree of each vector element  to the three cluster centers is calculated 
in Formula (6). 

( )
( )( )

2
HD
2
HD

O

card
 

1o f

o f F

F d f,o
R

d f,o←

∈ ∈

=
  (6)

Step 5: The vector elements of the time, economy, and comfort cluster centers are updated 
according to the membership degree, as shown in Formula (7). 

2

2 
o f

f F

o f
f F

f R
o

R

←
∈

←
∈

•
′ =




 (7)

Step 6: If the conditions shown in Formula (8) are satisfied, the iteration stops. Otherwise, the 
process returns to Step 2, where  and  represent the cluster center variables of the current time 
and the previous moment, respectively. 

}{
O

max - <
o

o o ε
∈

′  (8)

Step 7: Normalization is conducted according to Formula (9), where = t, m, c represent the 
arbitrary sample time, economy, and comfort dimensions, respectively. s ⋅ , smin⋅ , and smax⋅  represent 
the performance value, and the minimum and maximum performance values of sample  
underdimension , respectively. ⋅∗  is the new performance value of sample  under dimension . 
after the normalization process. 

min*

max min

s s
s  

s s
i j j

i j
j j

−
=

−
 


 

 (9)

The clustering results of the log road vector element features relative to the time (red), economic 
(green), and comfort (blue) cluster centers are shown in Figure 3. 

 
Figure 3. The result of LFCM. 

• Sample screening and class-weighted combination 

In the LFCM clustering, the validity of the statistics of the number of vectors in each cluster 
center directly affects the accuracy of driving style judgement. The effectiveness of each cluster center 
sample is as follows. 

Step 1: The small effective ball radius  is selected randomly (Figure 4a) to initialize the valid 
range of the sample. The corresponding plane projection of the valid ball is shown in Figure 4b. 

Step 2: Taking the sample local density [33] and the Euclidean distance of the high-density point 
samples as the standard, the effective radius is adjusted positively according to Formula (10). The 
effective radius of clustering is finally determined as . As shown in Figure 4c, the corresponding 

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

time

economy

co
m

fo
rt

Figure 3. The result of LFCM.

• Sample screening and class-weighted combination

In the LFCM clustering, the validity of the statistics of the number of vectors in each cluster center
directly affects the accuracy of driving style judgement. The effectiveness of each cluster center sample
is as follows.
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Step 1: The small effective ball radius r0 is selected randomly (Figure 4a) to initialize the valid
range of the sample. The corresponding plane projection of the valid ball is shown in Figure 4b.

Step 2: Taking the sample local density [33] and the Euclidean distance of the high-density
point samples as the standard, the effective radius is adjusted positively according to Formula (10).
The effective radius of clustering is finally determined as r. As shown in Figure 4c, the corresponding
plane projection is shown in Figure 4d, where dio and dij represent the Euclidean distance of sample i
to the cluster center O and the high-density point sample j, respectively; dc is the truncated distance,
which is related to the average percentage of the total sample size and number of neighbor sample
points; ρi and ρi denote the local sample density of i and j, respectively; δi is the shortest Euclidean
distance between i and the high-density point sample j; and τ and ε are both related boundary
parameters which are often substitution of empirical value. ρi =

n
∑

j=1
exp

(
− dij

d2
c

)
≥ τ

δi = minj:ρi>ρi (dij) ≤ ε

(10)

Step 3: The invalid samples of time, economic, and comfort cluster centers are deleted, as shown
in Figure 4e. The corresponding plane projection is shown in Figure 4f. The number of samples within
the effective radius r of each cluster center is counted as nt, nm, nc.

Step 4: The distribution weight of time, economy, and comfort indexes is obtained through the
normalization process shown in Formula (11).

ωT = nt
nt+ne+nc

ωM = ne
nt+ne+nc

ωC = nc
nt+ne+nc

(11)

The user’s driving style feature vector is expressed as W = [ωT, ωM, ωC].
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Figure 4. (a) Initialize the valid range of the sample; (b) The corresponding plane projection of
the initialization process; (c) Determining the effective radius of clustering; (d) The corresponding
plane projection of the effective radius of clustering; (e) Effective sample screening results; (f) The
corresponding plane projection of the result of Effective sample screening process.

2.2. Individualized Quantitative Evaluation of Road Performance

2.2.1. Analysis of Influencing Factors of Roads

Road and its subsidiary factors [25,37,38], including peripheral environment, traffic laws and
regulations, driver factors and other dynamic factors, whose varied details are listed in Table 2,
can reflect road performance in different extents, and then affect user path selection results.

Table 2. Influencing factors of roads.

Factor Types Influence Factor

Road factors

road self-factors

1. road alignment, road length, road intersection number, road level,
road width, number of continuous turns, road evenness, isolation of
green belts, and scribing isolation.

2. the ratio of green to credit, road traffic density, road evenness,
number of crossings, average speed of main roads, blocking rate of
intersections, average traffic delays and illegal occupancy Lane rates.

Peripheral environmental factors

1. road greening and landscape organization
2. gas station, parking lot, traffic indicator, trunk road lighting rate,

parking guidance and traffic guidance system setting
3. garbage field and operation station, pedestrian crossing facilities,

to sign and rate of population density circulation area

Subsidiary factors

law and regulation factors

1. internship high speed limit
2. speed limit, limit height, weight limit, restriction entry
3. single line setting, single and double number limit line
4. influence, restriction, or prohibition of area and type of vehicle on the

time of road separation

Driver factors 1. restrictions on driving ability
2. drive-age limit

Other dynamic factors

1. the fluctuation of the driver’s mood
2. emergency (large-scale mass activities, major traffic accidents,

temporary traffic control) occupation rate
3. weather, natural calamities, urban construction

2.2.2. Synchronous Standard Quantitative Evaluation of Multi-Index Road Performance

In this section, an accurate synchronous multi-index quantitative evaluation of road performance
modeling system is established by maximizing the advantages of solving dimensions based on a T–S
fuzzy neural network [39,40], whose architecture is shown in Figure 5.

The evaluation model using the “IF–THEN” form Rτ : IF fo1 is µi1
o1, fo2 is µi2

o2, · · · fok is µ
ik
ok

THEN yoτ = pi1
o0 + pi2

o1 fo1 + pi3
o2 fo2 + · · · + pik

ok fok, where o ∈ {T, M, C} , k ∈ { |FT|, |FM|, |FC|} are
the set of significant factors of time, economy, and comfort; foj ∈ {FT, FM, FC}, j = 1, 2, · · · k, µi

oj is
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the fuzzy set of index o; and pi
oj, yoj denote the corresponding parameter and output of the fuzzy

rule, respectively.
The former network is used to calculate the applicability of fuzzy rules. For any foj, the membership

degree of the fuzzy layer is first based on the Gaussian membership function shown in Formula (12),
where ai

j and bi
j represent the function centers and widths, respectively; i = 1, 2, . . . , n where n is the

fuzzy division number of foj. To satisfy the actual factors that affect the situation, n is assumed to be
seven levels that represent the seven effects of - - -, - -, -, 0, +, + +, and +++, respectively.

µi
oj = exp

(
−
(

foj − ai
j

)2
/bi

j

)
(12)

Then, we calculate the fitness of each rule by using a multiplicative operator in the fuzzy reasoning
layer, as shown in Formula (13).

αoτ = µi1
o1·µ

i2
o2·µ

i3
o3· · · · µ

ik
ok

(
τ = 1, 2, · · · , nk

)
(13)

Finally, to avoid model turbulence caused by the order of magnitude of significant road influencing
factors, we perform normalization in the anti-fuzzification layer, as shown in Formula (14).

αoτ =
αoτ

nk

∑
i=1

αoi

(14)

The post-part network consists of three sub-networks of the same structure for outputting fuzzy
rules of time, economy, and comfort indexes. The input layer needs to be supplemented with a constant
term, that is, input parameter 1 of the 0th node, which is used to generate the constant term in the road
performance level calculation result. The fuzzy inference layer calculates the consequent of each fuzzy
rule, as shown in Formula (15).

yoτ = pi1
o0 + pi2

o1 fo1 + pi3
o2 fo2 + · · ·+ pik

ok fok (15)

The output of the network is the weighted sum of the fuzzy rules, as shown in Formula (16).
The weighting coefficient is the applicability of the rules and the result of the road performance level
after the output-clarified process.

λo = αo ⊗ yo =
nk

∑
τ=1

αoτyoτ (16)

According to the equilibrium characteristics of the weight distribution of a user’s driving style,
the overall characteristics of different path tendencies based on user choice is divided into three
categories, as shown in the first four columns of Table 3, where c1

3, c2
3, c3

3, respectively, represent the
number of effective features in user eigenvectors.

Table 3. Driving style classification.

Style Type ωt ωm ωc Personal-Value ω

c1
3

valid — — ωTλT
— valid — ωMλM
— — valid ωcλc

c2
3

valid valid — ωTλT + ωMλM
valid — valid ωTλT + ωcλc

— valid valid ωMλM + ωcλc

c3
3 valid valid valid ωTλT + ωMλM + ωcλc
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In addition, to avoid excessive neutralization of the decision-making power of the high weight
feature, and ensure the good consistency and universality of the quantitative and the actual evaluation
results, an effective definition of the features is presented in Theorem 1.

Theorem 1. For any vector element of the driving characteristics, if any of the following arbitrary conditions
are satisfied, the element can be called an invalid feature; otherwise, it is an effective feature.

(a) ω0 > 0.35×max W
(b) ωo > 0.35max W and ωo ≥ 0.5* ωo, where ωo = W −maxW −minW

The personalized quantitative evaluation of roads is a weighted summation of the effective
characteristics and the corresponding road standard quantification values. The calculation process for
the personalized road performance from a user perspective is shown in the last column of Table 3.

To facilitate the dynamic optimization of the follow-up path, we standardize the deviation of the
personalized road performance ω, adjust the original performance values linearly, and adjust the road
area range of the traffic network to [0, 1], as shown in Formula (17).

ω∗ =
ω−ωmin

ωmax −ωmin
(17)

2.3. Dynamic Selection of Path

2.3.1. Description of the Problem of Individualized Optimal Path

To avoid the redundant consumption of roads and the interference of irrelevant paths, we introduce
a linear transformation between road performance and road consumption. The use of road performance
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as an index is also avoided, as shown in Formula (18). For any two points in the road network,
the optimal path [41] is solved based on the consumption value ω(ω ∈ [0, 1]).

ω =
1

ω∗
(18)

The optimal path problem is described as follows. Let G =
{

V, L, W
}

be a road network digraph,
where V = {1, 2, · · · n} is a set of branch points of the road network, L ⊆ V ×V is a set of roads of
G, and W =

(
ωij
)
|L|×|L| is the set of consumption of roads. The path consumption of directed roads

(i, j) ∈ L between any connected branch points i and j is recorded as ωij, in which i, j ∈ V; ωij ∈ [0, 1].
For ∀A, B ∈ V, the optimal path is the path of minimum cumulative consumption from point A to
point B in the road network digraph.

2.3.2. Global Dynamic Selection of Path

The adaptive ant colony algorithm proposed in the literature [42–44] adaptively controls the
proportion of pheromone concentration in the current optimal solution and updates the global
pheromone concentration of the optimal path in real time by introducing a hyperbolic sine function as
an adaptive dynamic factor σ(σ ∈ (0, 1)). In this way, the path exploration results can be effectively
implemented when the performance of each path is known. In view of the real-time changes in the
characteristics of road traffic network status, we apply the adaptive ant colony algorithm to solve
the personalized optimal path. We add dynamic updating links of road performance to simulate the
road environment realistically. The flowchart of the improved adaptive ant colony algorithm and its
contribution in this study are shown in Figure 6a,b (shadow), respectively.
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3. Results

3.1. Emulation

To verify the proposed theory and the effectiveness of the algorithm, we use a road network
environment with a 5 × 5 grid simulated according to ideal settings from top to bottom and from left
to right in the order of the road traffic environment simulation. The grid performance simulation of
traffic assignment, the network structure, and the performance simulation of road vector are shown in
Figure 7 and Table 4.
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Table 4. The road performance of the analog road network.

Road Number Standard Road Performance (λt, λm, λc)

1–12
[0.77,0.50,0.45],[0.34,0.74,0.38],[0.56,0.69,0.72],[0.49,0.59,0.21]
[0.73,0.69,0.66],[0.66,0.60,0.78],[0.47,0.41,0.79],[0.21,0.37,0.67]
[0.69,0.40,0.46],[0.47,0.52,0.50],[0.57,0.64,0.33],[0.68,0.39,0.59]

13–24
[0.75,0.70,0.39],[0.64,0.54,0.78],[0.31,0.42,0.64],[0.44,0.62,0.45]
[0.76,0.53,0.65],[0.75,0.47,0.36],[0.45,0.62,0.46],[0.74,0.57,0.76]
[0.23,0.68,0.61],[0.41,0.77,0.33],[0.69,0.51,0.70],[0.21,0.73,0.58]

25–36
[0.28,0.30,0.28],[0.32,0.79,0.32],[0.32,0.36,0.56],[0.56,0.35,0.58]
[0.36,0.73,0.42],[0.32,0.64,0.55],[0.21,0.28,0.47],[0.65,0.21,0.23]
[0.47,0.74,0.22],[0.76,0.32,0.39],[0.48,0.38,0.21],[0.45,0.60,0.43]

37–48
[0.71,0.37,0.61],[0.52,0.48,0.26],[0.32,0.24,0.22],[0.60,0.79,0.57]
[0.70,0.55,0.57],[0.21,0.45,0.21],[0.61,0.51,0.21],[0.43,0.40,0.31]
[0.70,0.46,0.55],[0.50,0.34,0.23],[0.63,0.55,0.42],[0.46,0.66,0.58]

49–60
[0.38,0.52,0.63],[0.31,0.58,0.62],[0.32,0.33,0.25],[0.61,0.43,0.47]
[0.38,0.67,0.47],[0.53,0.61,0.41],[0.29,0.48,0.29],[0.62,0.54,0.61]
[0.43,0.68,0.62],[0.72,0.24,0.64],[0.71,0.56,0.49],[0.56,0.23,0.53]

We verify the reliability of the LFCM algorithm in driving style clustering under different conditions.
Without loss of generality, the time-based, time–economic-based, and time–economic–comfort-based
users are randomly selected as examples from category c1

3, c2
3, c3

3, respectively (Table 4).
The clustering results are shown in Table 5, where “

√
” and “—“ represent valid and invalid

features, respectively. For ease of description, we present the type of time-based driving style as
an example.

Step 1: Suppose a certain time-based driving style user A. Following his habits and the road
performance vector shown in Table 4, 20 groups of different starting points and destination path
combinations are selected as log samples.

Step 2: The smallest road vector elements containing users’ driving information from the 20 log
samples are obtained by the sampling operation. The fuzzy C-means algorithm is used on the tuple
cluster of the log sample vector.

Step 3: The validity of the eigenvectors of the 20 groups of clustering results is determined.
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Step 4: The 20 log samples are compared and counted to obtain the driving style and the presumed
driving style.

The coincidence rate of the driving style clustering results with actual statistics is above 90%
(Table 5), which can meet practical requirements.

Based on the clustering results, the performance of each road can be quantified in a personalized
way according to the evaluation method in Table 3. Without loss of generality, the latest 20 sample
log trajectories of a random time–economic-based user are selected as an example of personalized
user quantification.

Step 1: The 20 groups of clustering data acquired from the user log samples are screened to
eliminate false clustering data.

Step 2: The corresponding terms of the filtered clustering data are weighted and averaged to
obtain the statistical driving feature vector: W = [0.56,0.37,0.07].

Step 3: In accordance with Formula (19), the quantitative results are shown in Table 6.

ω = ωTλT + ωMλM (19)

According to the personalized path performance shown in Table 6, we reassign the road network
performance and use the ant colony algorithm to achieve personalized dynamic route selection based
on user driving habits, as shown in Figure 8, in which the blue route is a random track in the user log
samples, the green line segment is the personalized path of the proposed algorithm, and the red part is
the coincidence of the two paths.

Table 5. Driving style clustering verification.

Given-Style Clustering Result (ωt, ωm, ωt) Validity Determination Correct Rate

T

[0.90,0.05,0.05],[0.75,0.20,0.05] [
√

,—,—],[
√

,—,—]

100%

[0.85,0.10,0.05],[0.70,0.10,0.20] [
√

,—,—],[
√

,—,—]
[0.75,0.15,0.10],[0.75,0.10,0.15] [

√
,—,—],[

√
,—,—]

[0.80,0.15,0.05],[0.70,0.15,0.15] [
√

,—,—],[
√

,—,—]
[0.80,0.05,0.15],[0.80,0.10,0.10] [

√
,—,—],[

√
,—,—]

[0.85,0.05,0.10],[0.65,0.25,0.10] [
√

,—,—],[
√

,—,—]
[0.75,0.05,0.20],[0.70,0.20,0.10] [

√
,—,—],[

√
,—,—]

[0.85,0.10,0.05],[0.90,0.05,0.05] [
√

,—,—],[
√

,—,—]
[0.70,0.15,0.15],[0.85,0.05,0.10] [

√
,—,—],[

√
,—,—]

[0.75,0.15,0.10],[0.80,0.05,0.15] [
√

,—,—],[
√

,—,—]

T+M

[0.50,0.45,0.05],[0.70,0.25,0.05] [
√

,
√

,—],[
√

,
√

,—]

95%

[0.60,0.35,0.05],[0.35,0.60,0.05] [
√

,
√

,—],[
√

,
√

,—]
[0.55,0.40,0.05],[0.65,0.30,0.05] [

√
,
√

,—],[
√

,
√

,—]
[0.40,0.55,0.05],[0.50,0.40,0.10] [

√
,
√

,—],[
√

,
√

,—]
[0.55,0.35,0.10],[0.45,0.45,0.10] [

√
,
√

,—],[
√

,
√

,—]
[0.70,0.25,0.05],[0.65,0.25,0.10] [

√
,
√

,—],[
√

,
√

,—]
[0.50,0.40,0.10],[0.55,0.40,0.05] [

√
,
√

,—],[
√

,
√

,—]
[0.55,0.30,0.15],[0.50,0.40,0.10] [

√
,
√

,
√

],[
√

,
√

,—]
[0.65,0.30,0.05],[0.70,0.25,0.05] [

√
,
√

,—],[
√

,
√

,—]
[0.50,0.40,0.10],[0.55,0.35,0.10] [

√
,
√

,—],[
√

,
√

,—]

T+M+C

[0.45,0.30,0.25],[0.55,0.20,0.25] [
√

,
√

,
√

],[
√

,
√

,
√

]

90%

[0.55,0.20,0.25],[0.45,0.25,0.30] [
√

,
√

,
√

],[
√

,
√

,
√

]
[0.40,0.35,0.25],[0.55,0.35,0.10] [

√
,
√

,
√

],[
√

,
√

,—]
[0.40,0.35,0.25],[0.45,0.35,0.20] [

√
,
√

,
√

],[
√

,
√

,
√

]
[0.55,0.20,0.25],[0.50,0.25,0.25] [

√
,
√

,
√

],[
√

,
√

,
√

]
[0.30,0.25,0.45],[0.50,0.20,0.30] [

√
,
√

,
√

],[
√

,
√

,
√

]
[0.35,0.35,0.30],[0.35,0.35,0.30] [

√
,
√

,
√

],[
√

,
√

,
√

]
[0.50,0.25,0.25],[0.50,0.30,0.20] [

√
,
√

,
√

],[
√

,
√

,
√

]
[0.40,0.45,0.15],[0.40,0.40,0.20] [

√
,
√

,—],[
√

,
√

,
√

]
[0.35,0.30,0.35],[0.55,0.25,0.20] [

√
,
√

,
√

],[
√

,
√

,
√

]

Figure 8 shows that the log sample trajectory from the starting point to the end point is
6-17-23-29-40-46-47-53-59-60 while the integrated user habits in the personalized planning path are
presented as 6-17-23-29-40-46-52-58-59-60. The number of anastomosed sections is 9, the number of
different sections is 2, and the absolute anastomosis rate is 82%. According to the depth analysis,
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the sample trajectory sections reach 47 and 53, which correspond to the road consumption values
of 1.8 and 2.2, respectively. The different personalized path sections 52 and 58, which correspond to
the road consumption values are both 2.0. Thus, the cumulative values of the road consumption of
the two tracks match at a rate of 100%. Similarly, the remaining valid log samples for the user are
verified one by one, and the results are weighted to all (the invalid sample weight is 0; otherwise, it is
1). The statistical results show that the absolute anastomosis rate is 89.5%, and the relative anastomosis
rate is 98%.
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Table 6. Personalized performance quantification.

Road Number Standard Road Performance Vector (λt, λm, λc) Personal-Value ω

1–12

[0.77,0.50,0.45],[0.34,0.74,0.38],[0.56,0.69,0.72] 0.62,0.46,0.57
[0.49,0.59,0.21],[0.73,0.69,0.66],[0.66,0.60,0.78] 0.49,0.67,0.59
[0.47,0.41,0.79],[0.21,0.37,0.67],[0.69,0.40,0.46] 0.42,0.26,0.54
[0.47,0.52,0.50],[0.57,0.64,0.33],[0.68,0.39,0.59] 0.45,0.55,0.502,

13–24

[0.75,0.70,0.39],[0.64,0.54,0.78],[0.31,0.42,0.64] 0.68,0.56,0.33
[0.44,0.62,0.45],[0.76,0.53,0.65],[0.75,0.47,0.36] 0.48,0.62,0.59
[0.45,0.62,0.46],[0.74,0.57,0.76],[0.23,0.68,0.61] 0.48,0.62,0.38
[0.41,0.77,0.33],[0.69,0.51,0.70],[0.21,0.73,0.58] 0.52,0.58,0.38

25–36

[0.28,0.30,0.28],[0.32,0.79,0.32],[0.32,0.36,0.56] 0.27,0.47,0.31
[0.56,0.35,0.58],[0.36,0.73,0.42],[0.32,0.64,0.55] 0.44,0.47,0.42
[0.21,0.28,0.47],[0.65,0.21,0.23],[0.47,0.74,0.22] 0.22,0.44,0.53
[0.76,0.32,0.39],[0.48,0.38,0.21],[0.45,0.60,0.43] 0.54,0.41,0.47

37–48

[0.71,0.37,0.61],[0.52,0.48,0.26],[0.32,0.24,0.22] 0.53,0.47,0.27
[0.60,0.79,0.57],[0.70,0.55,0.57],[0.21,0.45,0.21] 0.63,0.60,0.29
[0.61,0.51,0.21],[0.43,0.40,0.31],[0.70,0.46,0.55] 0.53,0.39,0.56
[0.50,0.34,0.23],[0.63,0.55,0.42],[0.46,0.66,0.58] 0.41,0.55,0.50

49–60

[0.38,0.52,0.63],[0.31,0.58,0.62],[0.32,0.33,0.25] 0.41,0.39,0.30
[0.61,0.43,0.47],[0.38,0.67,0.47],[0.53,0.61,0.41] 0.50,0.46,0.52
[0.29,0.48,0.29],[0.62,0.54,0.61],[0.43,0.68,0.62] 0.34,0.55,0.49
[0.72,0.24,0.64],[0.71,0.56,0.49],[0.56,0.23,0.53] 0.49,0.61,0.40

3.2. Real Routine Verification

We verify the practical performance of the proposed algorithm from two levels of the
effectiveness of the index performance synchronization evaluation model and the effectiveness of the
personalized planning.

3.2.1. Validation of Multi-Index Synchronization Performance Evaluation Model

(1) Establishment of road performance standards

To test the accuracy of the road performance quantification system, we first refer to prior examples
and existing city road engineering design standards, city road network planning index systems, Changsha
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city traffic planning, Green Plan, and other Changsha cases. Then, we integrate the examples and
the actual characteristics of road networks, as well as the results of the Baidu map app and field
survey. Subsequently, we develop quantitative descriptions of the selected road network density,
road saturation, road quality, environmental quality, speed and economic consumption of six
representative variables of road performance to establish road performance standards. In view of the
actual complexity of traffic networks, we refer to the path in the city planning classification results and
the grade of expansion according to the requirement of this research. The actual performance of road
networks that is classified and described is shown in Table 7, along with the actual performance of
each road grade.

Table 7. The performance of road network.

Road Classification Road Density
km/km2

Road
Saturation a.u.

Road
Quality a.u.

Environmental
Quality a.u.

Drive Speed
km/h

Economic Consumption
yuan/km

G-Expressway 0.42 0.40 0.97 >0.40 60–100 0.72
Elevated express 0.06 0.48 0.97 >0.35 60–80 0.35

Central main road 1.52 0.82 0.97 0.25–0.30 40–50 0.58
Peripheral main road 1.31 0.76 0.97 0.25–0.40 40–60 0.51

Central sub Road 1.75 1.05 0.64 0.25–0.35 30–40 0.63
Peripheral sub road 1.60 0.80 0.64 0.30–0.40 30–50 0.52

Access Road 3.00 0.60 0.49 >0.20 20–40 0.55
landscape road 0.15 0.55 0.64 >0.60 30–50 0.50

To compare path performances easily, we perform the normalization operation after the data
association process to unify the quantitative standard. In view of the high correlation between road
time performance and user driving speed, we describe the time performance of the road in interval
form. The performance standards of time, economy, and comfort obtained by normalization are shown
in Table 8, where T, M, and C represent the time, economic, and comfort values, respectively.

Table 8. Performance standard of road time, economy and comfort of each road level.

Road Level Road Classification T M C

1 G-Expressway 0.6–1.0 0.12 0.77
2 Elevated Express 0.6–0.8 0.71 0.57
3 Central main road 0.4–0.5 0.26 0.48
4 Peripheral main road 0.4–0.6 0.35 0.52
5 Central sub Road 0.3–0.4 0.20 0.40
6 Peripheral sub road 0.3–0.5 0.34 0.44
7 Access Road 0.2–0.4 0.29 0.29
8 landscape road 0.3–0.5 0.37 0.61

(2) Evaluation model verification

To facilitate the classification, marking and quantification of roads, we establish a simplified
road network model based on path guidance in Changsha. We also conduct the process of road
quantification and path planning based on the model. In view of the complexity and generality of road
networks, we randomly select 10 road samples from the Changsha road network to demonstrate the
time, economy, and comfort performance and verify its effectiveness. The results of sorting according
to type are shown in Table 9.

Table 9 shows the standard errors σ of the samples in the road landscape of Binjiang road and
Third Ring Road, with the minimum errors being 0.014 and 0.062, respectively. The corresponding error
vectors for time, economy, and comfort are [−0.05,0.03,−0.09]. The errors are within the acceptable
value of 0.10. The average standard error of the sample road is 0.036, which meets the quantitative
requirement of actual road performance.
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Table 9. The time, economy, and comfort performance of iconic road.

Road Name Level T M C Error Vector σ

third ring road 1 0.75 0.15 0.68 [−0.05,0.03,−0.09] 0.062
Wan Jiali viaduct 2 0.67 0.65 0.59 [−0.03,−0.07,0.01] 0.044

Shaoshan South Road 3 0.42 0.25 0.43 [−0.03,−0.01,−0.05] 0.034
West Second Ring 3 0.46 0.31 0.45 [0.01,0.05,−0.03] 0.034

ThreeFenglin Road 4 0.53 0.33 0.54 [0.03,−0.02,0.02] 0.024
The middle of the people Road 5 0.30 0.19 0.41 [−0.05,−0.01,0.01] 0.030

Binhu West Road 6 0.43 0.32 0.40 [0.03,−0.02,−0.04] 0.031
The road of literature and art 7 0.34 0.27 0.32 [0.04,−0.02,0.03] 0.031

Binjiang landscape road 8 0.42 0.38 0.60 [0.02,0.01,−0.01] 0.014
Xiangjiang Middle Road 8 0.48 0.33 0.63 [0.08,−0.04,0.02] 0.053

3.2.2. Validation of the Effectiveness of Personalized Planning

Based on the basic evaluation model for the reliable evaluation of the results of the synchronization
performance index, three drives (A, B and C) in two categories, who own their own log trajectory
records, are randomly selected from the seven kinds of small classifications of driving users (Table 3) to
the performance of the path planning algorithm. Specifically, inter-class experiments based on different
type users A and B are designed to verify the universality of the algorithm. Meanwhile, intra-class
validation experiment based on different type users B and C, who are in same type but possess
different driving feature vectors are added to further verify the personalization level of algorithm.
The validation verification framework is design as in Table 10. To facilitate the comparison of path
planning results, this paper is based on the background of route guidance in Changsha City which is
same as that of Reference [25], as well as the user types.

Table 10. Example validation framework.

Validation Category Driver Style Feature Vector

Inter class validation
A Economy-comfort [0.05,0.32,0.63]
B Time-economic [0.35,0.57,0.08]

Intra class validation
B

Time-economic
[0.35,0.57,0.08]

C [0.56,0.37,0.07]

• Inter-class validation

(1) Example 1

The class design verification in Table 10 shows that the economy + comfort user A ([0.05,0.32,0.63])
travels with only economy and comfort in mind and thus ignores the time factor. For this user,
the economic attention level is 2, the influence coefficient is small at 0.32, the level of the concern for
comfort is 1, and the influence coefficient is up to 0.63. The individual values of road performance
depend only on the economy and comfort factors.

Based on the driving characteristics of user A, the case is weight coupled with the time, economy,
and comfort performance values obtained by the evaluation model. Moreover, the individual road
performance values in field A are obtained. Then, the best path is searched according to the road’s
personalized cost. In view of the large complexity of road networks, this example only enumerates the
personalized performance and effective length of the road related to the path search results, as shown
in Table 11, where the effective length of the road is the length of the path through the planning path.
In Table 11, the personalized performance of each road in the personalized path that integrates user A’s
habits is higher than the personalized performance of the roads in the reference path, which lays the
foundation for the integration of personalized path performance advantages of user A driving habits.
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Table 11. Personalized performance of road based on A.

Path Name Related Road Level T M C Personal-Value Effective Length/km

Individualization
Route based on A

Yun Qi Road 4 0.49 0.35 0.53 0.45 3.77
South Second Ring 4 0.49 0.35 0.53 0.45 1.89

Xiaoxiang Middle Road 8 0.48 0.33 0.63 0.50 6.40
Orange Chau Bridge 8 0.58 0.50 0.77 0.65 1.20

Xiangjiang Middle Road 8 0.48 0.33 0.63 0.50 3.57
31 Avenue 3 0.48 0.28 0.43 0.36 6.71

Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 2.49
WanjialiNorth Road 6 0.37 0.32 0.47 0.40 2.54
Xianghu West Road 7 0.28 0.30 0.34 0.31 1.13

literature
Reference

resources Route

Yun Qi Road 4 0.49 0.35 0.53 0.45 3.77
South Second Ring 4 0.49 0.35 0.53 0.45 1.89

Xiaoxiang Middle Road 8 0.48 0.33 0.63 0.50 7.87
Yingpan Road Tunnel 3 0.50 0.35 0.48 0.41 1.35

Xiangjiang Middle Road 8 0.48 0.33 0.63 0.50 2.43
Xiangjiang North Road 8 0.48 0.40 0.63 0.50 2.45

Fucheng Road 7 0.37 0.36 0.33 0.32 0.72
Hibiscus North Road 5 0.30 0.25 0.40 0.33 0.17

Fuyuan West Road 6 0.44 0.37 0.44 0.41 2.83
The Fuyuanmiddle road 6 0.44 0.37 0.44 0.41 3.01

Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 0.43
WanjialiNorth Road 6 0.37 0.32 0.47 0.40 2.54
Xianghu West Road 7 0.28 0.30 0.34 0.31 1.13

log trajectory

Yun Qi Road 4 0.49 0.35 0.53 0.45 3.77
South Second Ring 4 0.49 0.35 0.53 0.45 1.89

Xiaoxiang Middle Road 8 0.48 0.33 0.63 0.50 6.40
Orange Chau Bridge 8 0.58 0.50 0.77 0.65 1.20

Xiangjiang Middle Road 8 0.48 0.33 0.63 0.50 3.57
31 Avenue 3 0.48 0.28 0.43 0.36 6.71

Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 2.49
WanJialiNorth Road 6 0.37 0.32 0.47 0.40 0.74

Special road 6 0.43 0.32 0.41 0.36 1.71
Xi Xia Road 6 0.49 0.36 0.47 0.41 1.53

The optimal path model and actual planning path for user A are shown in Figure 9a,b, respectively.
In these figures, blue denotes the optimal planning path for users of the same type [20], red denotes
the optimal path to merge user A’s driving habits, and green denotes the log track of user A.
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Where, the green represents log trajectory, the blue represents literature Reference resources Route,
and the red represents the Individualization Route based on A. Detailed performance of the relevant
roads refer to Table 11.
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Figure 9 shows that in the landscape area, the blue and red paths are dominated by the
surrounding landscape of Juzizhou Road, which showcases fresh air, beautiful scenery and low
noise. The blue line represents the Yingpan road tunnel, and the red path shows the Orange Island
Bridge across the area, overlooking the Orange Island scenery. The latter is in line with user A’s
comfort requirements. In addition, the red route chooses the path from the perspective of user A,
considering the comfort factors, and at the same time, it also focuses on the economic factors. In the
non-sightseeing section, a small number of branches are allowed to reduce the detour distance to
make up for the additional economic losses caused by the bypass of the two ends of the Orange Island
Bridge. According to Table 11, the economic and comfort performance of the road and the effective
length calculation indicate that the cumulative comfort consumption rates of the red planning path and
blue reference path are 56.62 and 59.06, respectively, and the total economic losses are 88.28 and 88.19,
respectively. In comparison with the reference path, the user personalization path that integrates user
A’s habits increases comfort performance while decreasing economic performance slightly. The comfort
performance increment of user A is contrary to the economic performance increment, and comparing
the performance of the red and blue paths is difficult.

Hence, in this work, the increase in comfort loss is ∆Cc = −2.44, economic loss increment is
∆Cm = 0.09 and is dimensionless, as shown in Formula (20). Between ctotal and mtotal, t represents the
time consumption of the red path and the total amount of economic consumption.{

∆C′c =
|∆Cc|
ctotal

∆C′m = |∆Cm|
mtotal

(20)

The calculation shows that ∆C′c and ∆C′m are satisfied in Formula (21).

∆C′m
0.32

<
∆C′c
0.63

(21)

Therefore, for user A, the increased comfort performance of the red path is greater than the
economic performance reduction, the red path is more consistent with user A’s driving habits.

(2) Example 2

Time + economic user B ([0.35,0.57,0.08]) and user A ([0.05,0.32,0.63]) show significant differences
in driving characteristics. Specifically, the former places high importance in time and economic factors
while ignoring the influence of comfort; that is, for time level 2, the influence coefficient is 0.35, and for
time level 1, the influence coefficient is 0.57.

Reference example A makes personalized path planning from user B’s perspective, and the path
planning process is no longer duplicated. The individual performance and effective length of the
related roads are shown in Table 12. Table 11 shows that the Yun Qi Road, South Second Ring, Wan Jiali
viaduct, Wanjiali North Road, and Xianghu West Road appear in the path planning of users A and B;
however, the road presents a considerable difference in terms of the personalized performance value
and its effective length. Hence, verifying the performance of the proposed personalized path varies
from person to person.

Table 12. Personalized performance of road based on B.

Path Name Related Road Level T M C Personal-Value Effective Length/km

Individualization
Route based on B

Yun Qi Road 4 0.49 0.35 0.53 0.37 3.77
South Second Ring 4 0.49 0.35 0.53 0.37 8.77

Labor East Road 5 0.35 0.30 0.39 0.29 1.37
Wan Jiali viaduct 2 0.67 0.65 0.59 0.61 11.36

Wanjiali North Road 6 0.37 0.32 0.47 0.31 2.54
Xianghu West Road 7 0.28 0.30 0.34 0.27 1.13
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Table 12. Cont.

Path Name Related Road Level T M C Personal-Value Effective Length/km

Literature
Reference Route

Yun Qi Road 4 0.49 0.35 0.53 0.45 3.77
South Second Ring 4 0.49 0.35 0.53 0.40 8.77

East Second Ring Road 3 0.37 0.22 0.38 0.25 8.78
31 Avenue 3 0.48 0.28 0.43 0.33 1.95

Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 2.50
Wan JialiNorth Road 6 0.37 0.32 0.47 0.31 2.54
Xianghu West Road 7 0.28 0.30 0.34 0.27 1.13

Log trajectory just as same as the personalized path that combines B’s habits

The optimal path model based on user B and the actual path, as shown in Figure 10a,b, respectively,
remain unchanged in terms of the descriptions of the colors corresponding to the planning paths.

Figure 10 shows that the blue and red paths are driven mainly by the main road or viaduct,
and they shorten the detour distance as much as possible. In comparison with the blue reference
path, the red path representing the personalized path of user A can effectively avoid the East Second
Ring Road, Bayi Road, South Road, Furong Road, Wuyi Road, and the bottleneck of a congested road.
The road is relatively unimpeded. Moreover, by replacing Wan Jiali viaduct with going around the city
at high speed, guaranteeing the time performance, it avoids the extra cost of passing through the road
and the distance from the bypass, and improves the economic performance of the path.

According to the calculation results related to the time and economic performance and the
effective road length in Table 12, the time consumption rates of the red planning path and blue
reference path are 57.362 and 68.016, respectively, and the economic losses are 69.576 and 98.252,
respectively. In comparison with the reference path, the personalized path that integrates user A’s
habits shows improved comfort and economic performance. This result is consistent with the driving
characteristics of user A, focusing on time and economic performance.
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Where, the green represents log trajectory, the blue represents literature Reference resources Route,
and the red represents the Individualization Route based on B. Detailed performance of the relevant
roads refer to Table 12.
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• Intra-class validation

(3) Example 3

This example is the personalized path planning for time + economic user C ([0.56,0.37,0.07]),
and user B’s planning path constitutes the intra-class verification of personalized path performance.
Users C and B ([0.35,0.57,0.08]) share similar features, belong to the same time + economic type,
pay attention to time and economic factors, while ignore the factors of comfort effect. However,
there are two different levels of attention in time and economy. C users are more inclined to time,
with a level of 1, a coefficient of 0.56, a second economic factor, a level of 2, and a coefficient of 0.37.

Reference example A makes personalized path planning from user C’s perspective. The personalized
performance and effective length of the related roads are shown in Table 13.

Table 12 shows that the Yun Qi Road, South Second Ring, Wan Jiali viaduct, Wanjiali North
Road, and Xianghu West Road also appear in the same type of path planning of users B and C. Path
planning is of different types for users A and B. The same type of road users has different personalized
performance, particularly for users B and C. With large effective length differences, the amplitude
becomes increasingly small. The similarity obviously improves path planning. Path planning at a
similar degree increases with the increase of similarity between user feature vectors.

The optimal path model based on user C’s driving habits and the actual planning path, as shown
in Figure 11a,b, remain unchanged in terms of the descriptions of the colors corresponding to the
planning paths.Appl. Sci. 2018, 8, x FOR PEER REVIEW 20 of 24 
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Where, the green represents log trajectory, the blue represents literature Reference resources Route,
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Table 13. Personalized performance of road based on C.

Route Type Related Road Level T M C Personal-Value Effective Length/km

Individualization
Route based on C

Yun-Qi Road 4 0.49 0.35 0.53 0.40 3.77
South Second Ring 4 0.49 0.35 0.53 0.40 8.77

Labor East Road 5 0.35 0.20 0.39 0.27 1.37
Wan Jiali 2 0.67 0.65 0.59 0.62 8.82

31 Avenue 3 0.48 0.28 0.43 0.37 2.17
Xi Xia Road 6 0.49 0.36 0.47 0.41 4.93
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Table 13. Cont.

Route Type Related Road Level T M C Personal-Value Effective Length/km

literature
Reference Route

Yun Qi Road 4 0.49 0.35 0.53 0.45 3.77
South Second Ring 4 0.49 0.35 0.53 0.40 8.77

East Second Ring Road 3 0.37 0.22 0.38 0.29 8.78
31 Avenue 3 0.48 0.28 0.43 0.37 1.95

Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 2.50
Wan jiali North 6 0.37 0.32 0.47 0.33 2.54

Xianghu West Road 7 0.28 0.30 0.34 0.27 1.13

log trajectory

Yun Qi Road 4 0.49 0.35 0.53 0.40 3.77
South Second Ring 4 0.49 0.35 0.53 0.40 8.77

Labor East Road 3 0.35 0.20 0.39 0.27 1.37
Wan Jiali viaduct 2 0.67 0.65 0.59 0.58 10.94

Fuyuan East Road 6 0.45 0.35 0.41 0.38 1.22
Kaiyuan West Road 6 0.45 0.35 0.41 0.38 1.29

Xi Xia Road 6 0.49 0.36 0.47 0.41 2.60

By comparing Figures 10 and 11, we can completely see that the blue reference path for user C
in Figure 11 is consistent with that of user B in Figure 10, while the red planning path for user C in
Figure 11 is only consistent with that of user B in Figure 10 at the beginning of the path planning,
which avoids the East Second Ring Road and other regional centers and makes full use of time and
economic advantages of Wanjiali viaduct; moreover, the inconsistent section steers clear of the Xianghu
Road in densely populated areas, replacing it with Xi Xia Road that exhibits pedestrian sparsity,
small confluence vehicles, and less traffic. According to the calculation results of time and economic
performance and the effective road length shown in Table 13, the cumulative time consumption rates of
the red planning path and blue reference path are 57.25 and 68.02, respectively, and the total economic
losses are 77.69 and 98.25, respectively. In comparison with the reference path, the personalized path
of user A shows significantly improved time and economic performance, as shown in Table 14.

Table 14. Inter class contrast experiment.

Comparison Object ∆Ct ∆Cm ∆C
′
t ∆C

′
m Result

Bibliographic reference path −10.76 −20.56 — — Time performance ↑
Econommic performance ↑

Personalization path of fusion
Based on B’s habits −0.11 8.11 −0.002 0.104 ∆C′t

0.56 < ∆C′m
0.37

To embody the private custom advantage of the personalized planning path proposed in this
paper, the user C is used as the specific service object in this verification link, except for the example of
the reference path (blue in Figure 11b) experiments, adding the same type of personalized path (red in
Figure 10b) contrast link.

Obviously, the contrast experiment on the personalized planning path that integrates user B’s
habits does not meet the increment in time and economic consumption. Therefore, for the performance
qualitative comparison link of Example 1, the dimensionless and performance comparison results are
shown in Table 14.

Table 14 shows that in comparison with the reference path, the personalized planning path of user
C shows greatly improved time and economic performance. This result is in line with the characteristics
of the user related to time + economic performance. In comparison with the individual path planning
of user B, the personalized path of user C shows improved time and economic performance; however,
the benefits outweigh the lack of economic performance. This result is in line with user C’s greater
attention time than economic performance levels.

• Calculation of degree of anastomosis

To establish the evaluation criteria for different planning paths and evaluate the performance of
planning paths under different algorithms quantitatively, we introduce the path coincidence rate to
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characterize the matching degree between personalized paths. User driving habits Λ are satisfied in
Formula (22).

Λ =
lsame

ltotal
(22)

Type lsame is the path length for the coincidence of planning path and log trajectory, ltotal is the
planning path length, and lsame ≤ ltotal. The results of the above example are listed as follows: comfort
+ economic user A, time + economic user B, time + economic user C personalized path/literature
reference path and user log trajectory matching the result shown in Table 15.

Table 15. Verification of path anastomosis.

Customer Type Path Type lsame/km ltotal/km Λ/a.u.

A
Bibliographic reference path 15.69 30.01 52.3%

Personalization path based on A’s habits 26.77 30.01 89.2%

B
Bibliographic reference path 18.71 28.94 64.7%

Personalization path based on B’s habits 28.94 28.94 100%

C
Bibliographic reference path 14.59 29.96 48.7%

Personalization path based on C’s habits 25.33 29.96 84.5%

From Table 15, the coincidence degree levels of the personalized planning paths that integrates
users A, B, and C are 89.2%, 100%, and 84.5%, respectively, which are different from the corresponding
user log paths. The coincidence degrees of the planning paths are 52.3%, 64.7%, and 48.7%.
In comparison with the reference path in the literature, the coincidence rate of the personalized
path that integrates user habits and users’ log trajectory significantly increases by 36.9%, 35.3%,
and 35.8%.

4. Conclusions

We propose a personalized path decision algorithm that is based on user habits, implementing
the navigation service from a previous similar trip group to a specific individual, which can essentially
improve the personalization of the existing path planning algorithms. the results and shortcomings of
the existing optimization algorithms based on a single optimization target or a single or a few special
traffic factors are analyzed. We use the log road track that integrates user’s habits to mine driving
characteristics, and use LFCM to achieve user’s driving style clustering, and get users’ driving habits.
Then, we use T-S based road multi index performance synchronous evaluation model to quantify
the road’s time, economy and comfort performance. At the same time, we combine user’s driving
style and feature to get the user’s road performance. Finally, ant colony algorithm is used to search
the shortest path consumption path. The algorithm is based on the user’s own log trajectory and
uses feature mining and clustering techniques to get the user’s habits and implements the navigated
service objects from the previous travel groups to the travel individual and customizes personalized
path navigation system for users to meet their own driving habits. The experimental results show
that the absolute anastomosis rate and the relative anastomosis rate of the method in the simulated
traffic network are 82% and 100%, respectively. In the actual traffic environment, three comparative
examples (i.e., A, B, and C) of user’s personalized path and the corresponding user log path show
consistent rates, reaching 89.2%, 100%, and 84.5%, respectively; in comparison with the individual
path in the literature [20], the path coincidence rate significantly increases by 36.9%, 35.3%, and 35.8%,
respectively. By improving the personalization level of existing path planning, the travel experience of
self-driving users is greatly improved.
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