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Abstract: An experiment on reinforced concrete beams using four-point bending test during an
ultrasonic test was conducted. Three beam specimens were considered for each water/cement ratio
(WC) of 40% and 60%, with three reinforcement schedules named design A (comprising two top
bars and two bottom bars), design B (with two bottom bars), and design C (with one bottom bar).
The concrete beam had a size of 100 mm × 100 mm × 400 mm in length with a plain reinforcement
bar of 9 mm in diameter. An ultrasonic test with pitch–catch configuration was conducted at each
loading with the transducers oriented in direct transmission across the beams' length with recordings
of 68 datasets per beam specimen. Recordings of ultrasonic test results and strains at the top and
bottom surfaces subjected to multiple step loads in the experiment were done. After the collection of
the data, feed-forward backpropagation artificial neural network (ANN) was used to investigate the
sensitivity of the ultrasonic parameters to the mechanical load applied. Five input parameters were
examined, as follows: neutral axis (NA), fundamental harmonic amplitude (A1), second harmonic
amplitude (A2), third harmonic amplitude (A3), and peak-to-peak amplitude (PPA), while the
output parameter was the percentage of ultimate load. Optimum models were chosen after training,
validating, and testing 60 ANN models. The optimum model was chosen on the basis of the highest
Pearson’s Correlation Coefficient (R) and soundness, confirming that it exhibited good behavior
in agreement with theories. A classification of sensitivity was performed using simulations based
on the developed optimum models. It was found that A2 and NA were sensitive to all WC and
reinforcements used in the ANN simulation. In addition, the range of sensitivity of A2 and NA was
inversely and directly proportional to the reinforcing bars, respectively. This study can be used as
a guide in the selection of ultrasonic parameters to assess damage in concrete with low or high WC
and varying reinforcement content.

Keywords: non-destructive test; concrete; ultrasonic; bending; neural network

1. Introduction

In modern infrastructures, structural health monitoring is essential to assess and diagnose the
current situation before retrofit and repair commences. The common building material used is
reinforced concrete. Reinforced concrete can be assessed on the basis of factors such as time, cost,
and idle period. For practical reasons, researchers focus on developing non-destructive tests for the
fast and economical assessment of a structure with better sensitivity to internal damage against load.

Reinforced concrete comprises two main materials that, when combined together, perform well
against aging and mechanical damage. The first material is concrete, which is very good in compression
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and consists of water, cement, sand, aggregates, and sometimes admixtures. This material is very complex
in itself because different mixtures, curing methods, sizes of aggregates, and methods of placements
can cause inconsistent voids, segregation of aggregates, variable interfacial transition zones, and varying
compressive strengths. The sensitivity to internal damage using a nondestructive test such as acoustic
emission was explored in plain concrete materials [1,2]. Sensitivity to damage of a nondestructive test
parameter is present when the parameter's values are widely spread during low to high application of
load. On the other hand, an insensitive parameter is characterized by an abrupt change, showing sudden
failure of the materials. This situation is not ideal for structural health monitoring since there is no sign
before failure occurs. The second material in reinforced concrete is the addition of reinforced steel bars to
increase the tensile capacity of the structure, especially when bending occurs. There are still limited studies
on the sensitivity of nondestructive tests in reinforced concrete structures [3,4].

In this paper, an ultrasonic test was done on beams with varying reinforcements. The analysis of
the ultrasonic test results against load is very complicated since there is a nonlinear relationship of
parameters that influence the damage resulting from the applied load. In addition, the neutral axis
was recorded using strain gauges in the midpoint of both faces at the top and bottom. Furthermore,
feed-forward backpropagation artificial neural network (ANN) was used as a tool to establish a model
using available datasets for the prediction of the damage represented by the load applied. These ANN
models were used to simulate and investigate the sensitivity of each parameter, classified as short- and
long-range sensitivity. A similar study was done in plain concrete cubes, and it was found that the
second harmonic amplitude and strain greatly influences the stress level of plain concrete cubes [5].
Limited research explored the ultrasonic test, and especially the nonlinear ultrasonic test, applied to
reinforced concrete beams. This paper illustrates the ability of ANN to obtain a good simulation in
order to define a guide to select ultrasonic parameters based on sensitivity, useful when assessing
damage for concrete with low or high water/cement ratio (WC) and varying reinforcement content.

1.1. Ultrasonic Test

In linear ultrasonic test, the received waveform is not significantly different from the transmitted
waveform. One application of this is ultrasonic pulse velocity test wherein distance of transmitter to
receiver and time of the wave traveling that distance are the parameters as shown in Equation (1).

Ultrasonic pulse velocity (UPV) = distance of transmitter to receiver/time to travel (1)

The time to travel of the longitudinal wave from transmitter to receiver is shown in Figure 1 and
is used to compute the ultrasonic pulse velocity. It is observed that sizes of cracks greater than 100 mm
are the only ones detected by longitudinal ultrasonic pulses [6]. Additional study claims that cracks
are not detected with accuracy especially if it is filled up with fluids. Another parameter used in linear
ultrasonic test in time-domain wave form is peak to peak amplitude (PPA) of the received waveform.
It is used as a measurement in damage detection. It is the vertical distance from the highest point to
the lowest point of the time-domain waveform. It shows that PPA has also been one of the significant
parameters in estimating the residual strength of concrete where reduction of PPA is experienced when
the load is increased [7,8].

On the other hand, nonlinear ultrasonic test method focuses on spectral frequency analysis.
This is a phenomenon resulting from interaction between ultrasonic wave and concrete [9]. During the
interaction of the load and material, a part of the fundamental frequency is converted to higher
harmonics shown in Figure 2 where A1 is the fundamental harmonic amplitude, A2 is the second
harmonic amplitude and A3 is the third harmonic amplitude. Harmonic generation will not
occur without attenuation. Attenuation is the reduction in intensity during the wave's travel
through a material. Moreover, internal friction between surfaces contributes to the attenuation.
Occurrence of higher harmonic generation is due to contact of crack interfaces called Contact Acoustic
Nonlinearity [10–13]. The concrete, when loaded, experiences opening and closing of cracks and/or
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frictional forces acting on the interfaces between cement paste and the aggregates. The higher
harmonics generated depend on the cracks forming inside when compressive load is applied [14]
and interact with the defects, causing the opening/closing of the cracks formed when loading and
unloading occurs [15,16].
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Figure 1. Linear ultrasonic test using ultrasonic pulse velocity (UPV) and peak to peak amplitude
(PPA) in time-domain recorded from the transmitter and receiver.

On the material aspect, unreinforced concrete is sensitive to micro-cracking in the interfacial
transition zone [17]. Variation of water-cement ratio proves to be a significant factor. It is found
out that third harmonic ratio is sensitive compared to the second harmonic ratio [18]. In addition,
second higher harmonic amplitude becomes large when crack opening displacement is small [19].
The sensitivity of the A2 and A3 depends on the type of loading introduced. For single loading pattern,
A3 is sensitive compared to A2. On the other hand, in multiple step loading pattern A2 is sensitive
to all water-cement ratio introduced [20]. It is also suggested that the amplifier is at high power
level during experiments to produce better sensitivity in the generation of higher harmonics [21].
The amplitudes A1, A2, and A3 behaved similarly with PPA, where it is decreasing with respect to
increasing load. A previous study shows that in concrete cubes, different loading patterns greatly
influence the higher harmonics generation [20]. Complexity in its damage level is recognized when
different sizes of aggregates inside the concrete are present [22].
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There are limited papers investigating sensitivity of ultrasonic parameters in reinforced concrete
beams. In this paper, time domain and frequency domain wave form were considered in a reinforced
concrete beam under four-point bending test. The parameters for the sensitivity analysis were:
fundamental harmonic amplitude (A1), second harmonic amplitude (A2), third harmonic amplitude
(A3), and PPA. In addition, to investigate the strain developed in beams, neutral axis (NA) was
considered to show the compression zone and tension zone of concrete during loading and unloading.
These aforementioned parameters were used as input parameters to train, validate, and test the ANN
models in coming up with an acceptable model using the highest Pearson’s Correlation Coefficient (R)
and the soundness of the model when simulations were considered. The soundness of the model was
an important factor since it will assure that the model was not overfitting despite of the high value of
R that may be present in models. Soundness of the model was verified using theories and findings
from literatures (i.e., A2 should decrease when load is increasing).

1.2. Artificial Neural Network in Structural Engineering and Materials

ANN is a tool that is available in MATLAB 8.6 R2015b, the MathWorks, Inc., Natick, MA, USA. It is
capable of modelling nonlinear systems that connect the input parameters with the output parameter.
It is a tool for data mining that is based on the neural structure of the brain which can learn from
experience or with training datasets. It consists of nodes having input layer, hidden layer and output
layer. The nodes have initial weights and biases which when trained, will keep on updating as a part
of training. The higher the weights, the higher the impact of the input node. It is used for modeling on
prediction or estimation of strength of capacity of structures [23–36].

There are researches which focus on algorithm development like the study of decomposition
techniques for multilayer perceptron training and surrogate models [37–39]. A fast and efficient
method for training categorical radial basis function network is also studied [40]. From previous
researches, it shows that ANN is desirable in attaining good models for the analysis of the experimental
database available to explore the sensitivity of each parameters with load.

1.3. Damage Assessment in Reinforced Concrete

The damage detection becomes simple in some structures where system of homogenous materials
is considered. As examples from literature, a model using ANN is used in structural health monitoring
of curtain-wall system where mode of failure is clearly defined as total or partial destruction of its
connections with the bearing structure [41]. In addition, a successful model identifying damages in
sandwich composites by using Bayesian probabilistic neural network gave good agreement with the
actual damage detection [42].

In contrast to homogenous materials, concrete is a very complex material. In modeling
concrete, scale is introduced to limit the content of the defects. Three scales were introduced by
Wittmann [43]: microscale, mesoscale, and macroscale. Microscale focuses on cement paste and
aggregates where defects are crystal defects or atomic voids that are analyzed in material science
models. Mesoscale considers unit cell with defects as microcracks and large pores that are studied
using micromechanical models. Lastly, macroscale represents macrocrack defects where continuum
and fracture mechanics theories can be applied. A previous study using mesoscale micromechanical
damage model for concrete proposes kinetics of microcrack evolution [44]. The geometry of the
model is characterized by the volume, random shape and disposition of aggregates. Another model
using microplane for concrete focuses on the cracking localization [45]. This gives a good response
on the quasi-brittle materials with a certain stress-strain boundary. A property of concrete that is
significant to investigate is the vertex effect. This is when inelastic behavior of concrete for highly
non-proportional loading paths leads to rotating principal stresses [46]. Some researches consider
multiscale, i.e., a micro-to-macro damage scale, to initially investigate the natural behavior of materials
when the test is applied.
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To further investigate reinforced concrete (RC), multiscale studies focused first on plain concrete.
As an example, development of prediction models to investigate plain concrete using cylinder test
results as training patterns in ANN gave good results. Two major techniques were applied to increase
accuracy, these are parameter condensation and weighing technique [47]. In addition, data from
laboratory tests using masonry clay bricks and cement mortar was also modeled using ANN and
fuzzy logic to determine its compressive strength [48]. However, the addition of reinforcing bar greatly
influenced the reinforced material behavior hence more research should be done.

Beam is an example of structural members in reinforced concrete. From study, artificial intelligence
using ANN applied to reinforced concrete beams gave good agreement with the measurements to
quantify and localize the damage or determine the damage patterns [49–53].

Reinforced concrete structures have different mode of failure. It can be classified as compression,
flexure and shear where crack formations form depending on its failure mode. To investigate different
structural members and its mode of failure, ANN were used in studies that showed good agreement
with experimental tests [54–63].

In this paper, the mode of failure for the beam specimens was designed to be in flexure. No shear
cracks were observed near support. The damage metrics used was the load percentage applied to the
four-point bending test. Using the experimental database with five input parameters: A1, A2, A3, PPA,
and NA, selection of optimum ANN model was done. The selection process had two criteria: highest R
and soundness of the ANN model. Soundness of the ANN model was validated using simulations
where A1, A2, A3, and PPA was decreasing with load, on the other hand, NA was increasing with load.

1.4. Experimental Procedures

Different types of reinforced concrete beam were introduced to relate the quantity of steel against
the damage progression in terms of the load applied. A total of eighteen reinforced concrete beam
specimens was produced. The size is 100 mm × 100 mm × 400 mm length with three reinforcement
configurations. There were three beam specimens representing each type of design. The variations
of design were as follows: three specimens for Design A with WC40, three specimens for Design
A with WC60, three specimens for Design B with WC40, three specimens for Design B with WC60,
three specimens for Design C with WC40, and three specimens for Design C with WC60. The sand-total
aggregate ratio was 45% and shown in Table 1 was the design mix of the concrete. The reinforcing
bar used for the stirrups and longitudinal bars were 9 mm diameter plain rounded steel bar with
yield strength of 400 MPa. The reinforcement was designed into three types as shown in Figure 3.
Beam design A has two longitudinal bars placed at the top and bottom with stirrups, beam design
B has two longitudinal bars placed at the bottom with stirrups, and beam design C has only one
longitudinal bar at the bottom without stirrups. Beams were designed where shear near the support
would be insignificant, with an ultimate load of 22 kN, 22 kN, and 12 kN for designs A, B, and C,
respectively. A pilot test was conducted to verify that the estimated ultimate load was experienced by
the RC beams prior to the testing of 18 RC beams. It was designed that shear near the support will be
insignificant and will not be the cause of failure.

Table 1. Design mix of concrete.

Max. Aggregate Size (mm) Unit Quantity (kg/m3)

WC (%) Cement Sand Gravel Water-Reducing Agent

20 mm 40 344 761 1038 0.69
20 mm 60 344 761 1038 0.69

WC: water/cement ratio.

All the specimens were cured at 28th day with a universal testing machine to subject each
specimen in a four-point bending test. Load diagram for the test is shown in Figure 4. Each loading
and unloading pattern was classified into three repeated loading paths as Cycle 1 (0–20% load),
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Cycle 2 (0–40% load), Cycle 3 (0–60% load), Cycle 4 (60–100% load). This cyclic load was designed to
explore the occurrence of repeated load similar to real structures. The influence of load history greatly
affects ultrasonic parameters. As an example, A3 is sensitive to single loading path for pure concrete
cubes [17], while A2 is more sensitive to a multiple loading paths [20].Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 17 
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Ultrasonic testing was done in each step load with 68 data sets recorded for each beam.
The transducers were oriented in direct transmission across the length of the beam. The experiment
consisted of pulser with voltage equivalent to 1800 Volts aimed at single frequency which drove the
nonlinear range response of the specimen. High gain broadband receiver was tuned to a desired
frequency. This effectively eliminated the noise frequencies on the recorded datasets. It used low pass
filter at 3 MHz and high pass filter 50 kHz, and input impedance of 50 Ω. Transducers were carefully
aligned and bonded to the concrete specimen using a gel-couplant on each end along the longitudinal
direction with direct transmission. A transducer with 100 kHz frequency was used to transmit the
10 cycles of sine wave tone burst signal through the beam with a receiver of 200 kHz on the opposite
end as shown in Figure 5.
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The reinforced concrete beam experiences both tension, resisted by the reinforcing bar,
and compression, resisted by concrete. Another parameter is introduced to explore the behavior
of the compression/tension zone. This parameter is NA which is considered to be promising in
structural health monitoring as a sensitive universal parameter [64]. Two strain gauges are placed on
horizontal surfaces along top and bottom of the concrete beam to measure its contraction or expansion
against bending to determine the neutral axis.

The ANN modeling was done for each reinforcement design in each water-cement ratio. Each beam
specimen has 68 data sets comprising of 5 input parameters (NA, A1, A2, A3, PPA) and one output (Load).
The total number of data sets used for each ANN model derived was 3 specimen × 68 data sets which is
equal to 204 data sets.

Using the experimental results in the test, linear normalization of data was done for all the 18 RC
beam specimens. It converted all datasets to a minimum value of 0.0 and maximum value of 1.0 to
eliminate the scaling of original data with small and large values. Shown in Figure 6 is a sample
ANN model with 5 IN-3 HN-1 ON, where IN is the number of input parameters, HN is the number
of hidden nodes, and ON is the number of output parameter. The ANN network architecture in this
paper was defined as IN-HN-ON. The transfer function for each layer was varied, being L1 the first
layer transfer function and L2 the second layer transfer function. In particular, LOGSIG and TANSIG
were varied in L1 to obtain a model.

In the neural network, the 204 data sets per design were divided into 60% for training, 20% for
validating and another 20% for testing. The training set was used in updating the weights and biases.
The validation set was used to make sure that the network was generalizing and was used to stop the
training of the network before overfitting occur. The testing set was used to measure on how good
the model can generalize. The network training function used in this paper was Levenberg-Marquardt
optimization where the target performance goal measured used mean square error. This function is one
of the fastest backpropagation algorithms available. This algorithm was proven to give good results in
the quality control for the resistance spot welding [65], prediction of the strength of mineral admixture
concrete [66] and predicting residual strength of non-linear ultrasonic evaluated damaged concrete [8].
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The ANN network when trained, validated, and tested to attain a performance goal produced stochastic
results. Each run of the model produced unique weights and biases that were saved for further analysis.

The number of hidden nodes were varied from 3, 4, 5, 6 and 11 to come up with sixty distinct ANN
models. The transfer function was varied for the first layer using hyperbolic tangent sigmoid function
(TANSIG) and log-sigmoid transfer function (LOGSIG), while the second layer transfer function was
linear transfer function (PURELIN). Single inner layer was used throughout the modeling to arrive at
the simplest model in predicting the damage in terms of load. A previous study gave good estimate of
the number of hidden nodes needed [67].Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 17 
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Figure 6. Artificial neural network (ANN) model with 5 IN–3 HN–1 ON with layer 1 (L1) and layer
2 (L2) as transfer functions.

2. Results and Discussion

Pilot testing for plain concrete cubes of 150 mm size [5,20,22] and reinforced concrete beams were
done in the laboratory to ensure that the nonlinearities or the presence of higher harmonics resulted from
the material nonlinear response due to mechanical damage and not from the instrumentation used in
the test.

Shown in Figure 7 is the experimental result of WC60C specimen one where A3 and load is
investigated. In addition, shown in Figure 8 is the result from WC60C specimen three. It showed that
A2 and the applied load shows good agreement with each other. Experimental results show that the
analysis of data using statistical method to model the behavior is very complex and ANN modeling is
advantageous to classify sensitivity of parameters with load.
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The last parameter used for ANN modelling is NA. In determining the neutral axis location
with respect to load, the recorded tensile and compressive strain is considered at the mid span of the
beam. Cross-section of the sample strain diagram at a particular step load and its corresponding stress
diagram is shown in Figure 9. The stress at the top fiber of the concrete is assumed to have a maximum
value of 0.85 of ultimate confined compressive strength (fc’) in MegaPascal for SI units. This location
of neutral axis is dynamic due to the changes in elongation or contraction at the top and bottom of the
beam during the step loads in the experiment. It is computed using Equation (2). Location of neutral
axis y is based on the theory on elastic on elastic design of reinforced concrete. The distance NA is
shown in Figure 9 based from the mid height of the cross section of the beam to the neutral axis for a
particular load. Seen in Figure 10 is the behaviour of the neutral axis for WC40C Specimen three with
load. It shows that the relationship of NA with load is complex.

y = εc (h)/(εt − εc) (2)

where: εc—average strain at midpoint of the top surface in compression, εt—average strain at midpoint
bottom surface in tension, h—height of the beam.
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Figure 9. Neutral axis across (A) cross section of the beam; (B) strain diagram; (C) stress diagram. NA:
neutral axis.

From the 60 ANN models trained, validated, and tested, a model was chosen for each WC
corresponding to each reinforcement design having the highest Pearson correlation coefficient (R) in
testing, and the soundness of the behavior for the input parameters in relation to the damage in concrete
in terms of load. Some of the models had its R = 0.98, but models may tend to overfit. The soundness
of models was checked by having simulations attuned to theory to avoid overfitting. As an example,
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decreasing PPA led to increasing compressive stress or increasing load. In this way, it prevented the
trained ANN models to overfit even if it had the most desirable R. Shown in Tables 2 and 3 are the
ANN models R, for the training, validating, and testing data.
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Table 2. Trained, validated, and tested ANN models for WC40 concrete.

Design X (Varying HN) L1 L2
Pearson Correlation Coefficient (R)

Training
Data

Validating
Data

Testing
Data

A

3

LOGSIG PURELIN

0.89 0.88 0.91
4 0.90 0.81 0.88
5 0.92 0.91 0.88
6

LOGSIG PURELIN
0.90 0.90 0.93

11 0.90 0.92 0.88

3

TANSIG PURELIN

0.89 0.83 0.93
4 0.89 0.79 0.89
5 0.89 0.84 0.91
6 0.92 0.84 0.88

11 0.91 0.90 0.91

B

3

LOGSIG PURELIN

0.82 0.83 0.76
4 0.88 0.73 0.90
5 0.84 0.89 0.90
6 0.87 0.81 0.89

11

LOGSIG PURELIN

0.87 0.93 0.92

3

TANSIG PURELIN

0.80 0.84 0.84
4 0.86 0.85 0.83
5 0.82 0.89 0.87
6 0.85 0.73 0.83

11 0.87 0.95 0.80

C

3

LOGSIG PURELIN

0.61 0.67 0.68
4 0.70 0.71 0.59
5 LOGSIG PURELIN 0.63 0.74 0.77
6 0.70 0.84 0.55

11 0.70 0.87 0.87

3

TANSIG PURELIN

0.64 0.71 0.46
4 0.63 0.82 0.73
5 0.73 0.72 0.64
6 0.72 0.75 0.72

11 0.75 0.87 0.92

There were six optimum ANN models highlighted and taken from Tables 2 and 3. Selection of
the optimum models were considered with two criteria, highest R in testing data and model that
gave a sound simulation according to theories and literature. For WC40A, B and C, the ANN models
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were 5IN–6HN–1ON, 5IN–11HN–1ON, and 5IN–5HN–1ON, respectively. On the other hand, WC60A,
B and C had optimum ANN models as 5IN–11HN–1ON, 5IN–11HN–1ON, and 5IN–11HN–1ON,
respectively. It was noted that some of the trained and tested models gave R values less than 0.50 which
was considered very low and poor in performance. These were attributed by complex relationships of
input and output parameters with the use of simple ANN structures comprising of one hidden layer
only. It was recommended to further investigate and explore the use of ANN structures with deep
learning or with large number of hidden layers to prevent low or poor performing models from the
selection list of available models.

After selection of optimum model, amplitude sensitivity analysis was introduced as shown in
Equation (3) for PPA, A1, A2, and A3 [3]. This was used to analyze the behavior of the amplitude
when it decreased with an increasing load. On the other hand, the NA sensitivity analysis showed
opposite behavior compared to the behaviors of the four parameters mentioned. Equation (4) was
used for NA which increased when also the load increased.

Da = 1 − f (x)/fmax (3)

Da = f (x)/fmax (4)

where: Da: Sensitivity of parameter to load; f (x): Value of the parameter; fmax: Maximum value of the
same parameter f (x).

Sensitivity is difficult to measure. In this paper, simulation of optimum ANN models is carried
out and classification of sensitivity to four groups is made as shown in Table 4. These groups are:
Long range sensitivity (LRS), Short range sensitivity (SRS), Insensitive to load (IL), and Insensitive to
parameter (IP). Shown in Figure 11 is the simulation of the three optimum models for WC60A, B and
C where A3 is varied while the four parameters are constant at 0.5. Sensitivity classification of WC60A,
B and C in Figure 11 shows that WC60A is classified as LRS, WC60B as SRS, WC60C as IL.

Table 3. Trained, validated, and tested ANN models for WC60 concrete.

Design X (Varying HN) L1 L2
Pearson Correlation Coefficient (R)

Training
Data

Validating
Data

Testing
Data

A

3

LOGSIG PURELIN

0.67 0.70 0.70
4 0.71 0.77 0.67
5 0.64 0.65 0.82
6 0.71 0.53 0.74
11 0.62 0.61 0.50

3

TANSIG PURELIN

0.66 0.67 0.56
4 0.65 0.65 0.68
5 0.70 0.75 0.70
6 0.48 0.79 0.64
11

TANSIG PURELIN

0.70 0.72 0.82

B

3

LOGSIG PURELIN

0.73 0.52 0.86
4 0.77 0.79 0.74
5 0.72 0.91 0.86
6 0.76 0.69 0.74
11

LOGSIG PURELIN

0.77 0.66 0.89

3

TANSIG PURELIN

0.70 0.65 0.50
4 0.78 0.76 0.77
5 0.73 0.83 0.81
6 0.75 0.70 0.86
11 0.74 0.83 0.85



Appl. Sci. 2018, 8, 405 12 of 17

Table 3. Cont.

Design X (Varying HN) L1 L2
Pearson Correlation Coefficient (R)

Training
Data

Validating
Data

Testing
Data

C

3

LOGSIG PURELIN

0.49 0.45 0.38
4 0.50 0.44 0.57
5 0.58 0.50 0.62
6 0.52 0.67 0.69
11

LOGSIG PURELIN

0.59 0.32 0.72

3

TANSIG PURELIN

0.49 0.40 0.53
4 0.42 0.59 0.44
5 0.55 0.48 0.42
6 0.56 0.59 0.57
11 0.48 0.55 0.59

Table 4. Classification of sensitivity during simulation of optimum ANN models.

Classification of Sensitivity Average Angle of Tangent Line (β) Range (L)

Long range sensitive (LRS) 10◦ ≤ β ≤ 80◦ ≥20% load
Short range sensitive (SRS) 10◦ ≤ β ≤ 80◦ <20% load

Insensitive to load (IL) β > 80◦ <20% load
Insensitive to parameter (IP) β < 10◦ <20% load

To further investigate the sensitivity of all parameters with increasing load, simulations are done
for all five variable parameters having the other four input parameters as constant (0.5 in value).
Shown in Figure 12 is the behavior of the sensitivity of each parameter with load. Some graphs
did not start at the origin since the simulation of the optimum ANN models are trained, validated
and tested with datasets known to the optimum ANN model. The ANN model cannot extrapolate
from its datasets, hence there is a boundary limit on the simulation results. Seen in Table 5 is the
summary of sensitivity classifications after investigating Figure 12. It shows A2 and NA have good
sensitivity for any WC content and any reinforcing bar content. However, this sensitivity may be of
short or long range. For WC40A and B, parameters insensitive to load were A1 and PPA, respectively.
The parameter A3 is not sensitive to load for WC60C where concrete without reinforcing bars are
experienced. This is also experienced by WC60 with repeated load where A3 became insensitive while
A2 is sensitive [18–20].
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Table 5. Classification of sensitivity for all parameters simulated from optimum ANN models.

Parameters WC40A WC40B WC40C WC60A WC60B WC60C

PPA SRS IL LRS LRS SRS SRS
A1 IL LRS LRS LRS LRS LRS
A2 SRS LRS LRS SRS SRS LRS
A3 SRS LRS LRS LRS SRS IL
NA LRS LRS SRS LRS LRS SRS

Yellow—indicates good sensitivity and can detect damage more than 20%. White—indicates good sensitivity and
can only detect damage for less than 20%. Red—indicates poor sensitivity and cannot detect damage.
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3. Conclusions

This paper used experimental results from ultrasonic test with varying WC and reinforcing bars
tested under four-point bending test. ANN was used to train, validate, and test models using five
input parameters fundamental harmonic amplitude A1, second harmonic amplitude A2, third harmonic
amplitude A3, PPA, and NA in predicting the percentage of ultimate load it experienced. Specifically,
classification of sensitivity as short range (less than 20% of damage) and long range (more than 20% of
damage) was done from ANN simulation derived from optimum ANN models. It was found out that
A2 and NA proved to be sensitive for all WC and reinforcing bar content. It showed that the range of
sensitivity of A2 increased when reinforcing bar decreased, while the range of sensitivity of NA decreased
when reinforcing bar decreased. These two parameters showed good agreement with the load applied to
the reinforced concrete beam.

This study can be used as a guide in the selection of ultrasonic parameters to assess damage for
concrete with low or high WC and with varying reinforcement.
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Nomenclature

Acronym/Symbol Description
ANN Artificial Neural Network
WC Water-Cement Ratio
design A Two longitudinal top bars and two longitudinal bottom bars
design B Two longitudinal bottom bars
design C One longitudinal bottom bar
NA Neutral Axis
A1 Fundamental Harmonic Amplitude
A2 second Harmonic Amplitude
A3 Third Harmonic Amplitude
PPA Peak to Peak Amplitude in Time Domain
R Pearson’s Correlation Coefficient
Cycle 1 Cyclic load from 0 to 20% of ultimate load
Cycle 2 Cyclic load from 0 to 40% of ultimate load
Cycle 3 Cyclic load from 0 to 60% of ultimate load
Cycle 4 Load from 60 to 100% of ultimate load
IN Input parameters of ANN
X = HN Hidden nodes of ANN
ON Output parameter of ANN
SRS Short range sensitivity (less than 20% load)
LRS Long range sensitivity (more than 20% load)
IP Insensitive to parameter
IL Insensitive to load
L1 1st layer transfer function
L2 second layer transfer function
Da Sensitivity of parameter to load
f(x) Value of the parameter
Fmax Maximum value of the parameter
y Neutral axis distance from top fiber
εc Average strain at midpoint top surface in compression
εt Average strain at midpoint bottom surface in tension
h Height of the beam
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