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Featured Application: predicting the development of structural elements failure and analysis of
the construction systems’ safety, the dynamic analysis of structures with damping.

Abstract: In this paper, an analysis method for the nonlinear behavior of reinforced concrete elements
subjected to short-term static loads is proposed. The range of inelastic properties for the structural
materials is considered, and the deformation processes of reinforced concrete bar elements are
modeled. The structural material properties are modeled using the assumptions from plastic flow
theory. The load capacity analysis method for the structural system is developed using the finite
difference method. The dynamic relaxation method with critical damping allows for describing the
static behavior of a structural element, which is used to solve the nonlinear equilibrium equations.
To increase the effectiveness of the method for post-critical analysis, the arc-length parameter on the
equilibrium path is included. Numerical experiments for a reinforced concrete beam and eccentrically
loaded column are run. Comparative analysis with previously published experimental, numerical,
and analytical results demonstrated that the proposed computational method is very effective.

Keywords: reinforced concrete elements; nonlinear behavior; dynamic relaxation method; arc-length method;
failure mechanism

1. Introduction

The effort analysis of structural elements made of concrete using different types of reinforcement
is the subject of various studies. These studies differ in scope, scale, and detail degree of analysis.
Detailed experimental, analytical or numerical analyses were generally made for single structural
elements. For example, the latest investigations on beams were presented in [1,2]. The analysis of
steel and concrete composite shear walls under static compression was presented in [3] and under
seismic action in [4]. The experimental and numerical analysis of the concrete circular plates with steel
fibers reinforcement under impact load was presented in [5]. The latest analytical and experimental
load capacities investigations regarding the new concept of composite steel-reinforced concrete floor
slab, was presented in [6]. A numerical analysis of reinforcement concrete frame corners under
an opening bending moment taking into account the assumed loading time was presented in [7].
In turn, analyses of complex building structures were conducted at a generalized level, which showed
a global effort of the construction. The numerical analyses of multistory buildings behavior under
exceptional loads were presented in [8,9].

In many studies, the nonlinear analysis of the reinforced concrete structural elements were
provided on the basis finite element method using existing software. The non-linear analysis of the
shear failure mechanism of reinforced concrete beams was presented in [10,11]. The nonlinear analysis
carried out a using numerical algorithm for the reinforced concrete shells under static and dynamic
loading were presented in [12]. The numerical analysis including material and geometrical nonlinearity
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with the influence of shear strength complementary mechanism for the reinforced concrete beams and
frame were presented in [13].

A load capacity analysis technique for a structural system was developed using the finite
difference method, and the dynamic relaxation method (DRM) was applied to solve the nonlinear
equilibrium equations. In this method, the problem can be reduced to analysis of a pseudo-dynamic
process by considering critical damping as an aperiodic motion that approaches the equilibrium state
under the acting load. The solution to this problem can be obtained using an iterative process with
pseudo-time steps. The DRM is used to analyze highly nonlinear problems [14–16]. Rezaiee-Pajand and
Alamatian [17] proposed further modifications in order to improve the convergence and accuracy of the
solutions. Several practical applications of the DRM for structures were presented by Rezaiee-Pajand
and Sarafrazi [18], Bel Hadj Ali et al. [19], and Barnes et al. [20].

The arc-length parameter on the equilibrium path was introduced to the proposed numerical
procedure to increase the efficiency of the method. This is referred to as the arc-length method, and
it simultaneously determines the displacements and load parameter by tracing the equilibrium path
that contains the local singular points. Subsequent developments and interpretations of the arc-length
method were presented by de Borst et al. [21], among others. A combination of the dynamic relaxation
and arc-length methods was presented by Pasqualino [22]. This was then applied to practical analysis
of structural members by Ramesh and Krishnamoorthy [23] as well as Pasqualino and Estefen [24].

The literature review leads to the following conclusions. Previous DRM studies mainly focused
on the elastic analysis of the structural elements. Wriggers noted that the DRM can describe non-linear
static problems but did not give any examples in Reference [25]. A combination of dynamic relaxation
and arc-length methods has also been proposed [23,26], and has been further combined with
the finite difference method in Reference [22]. These solutions allow for a post-critical analysis,
but previous research considered elastic behaviors of homogeneous bar elements for range of
geometrical nonlinearities [23] or elastic–plastic behaviors of shell type structures [24]. These previously
published papers did not investigate the inelastic range of deformations in reinforced concrete elements.
In particular, the studies did not provide solutions for reinforced concrete columns that include the
full range of deformations until failure.

In this paper, a general computational algorithm that is based on developed effort analysis
methods for reinforced concrete elements was proposed. The main purpose of this work was to
develop a computational model of reinforced concrete bar elements, which can be used to study the
behavior of an element going from purely elastic to elastic-plastic and then to stress the softening and
failure of the cross-section.

To obtain a solution, the modeling range of the inelastic material properties, the deformation
processes of the bar structural elements, and the numerical solutions must be considered.
The properties of the structural material were modeled by assuming a reduced plane in
a compressive/tensile stress state with shear. An elastic-plastic material model with hardening for the
reinforcing steel was used. The elastic-plastic material model was developed by considering the stress
softening and degradation of the deformation modulus for the concrete. Analysis of the structural
element includes a description of the behavior of an eccentrically compressed reinforced concrete
element, which was modeled as a bar system under static loading. The equations for moderately large
displacements of the bar include the influence of the longitudinal deformations, changes to the rotation
angle of the cross-section (curvature), and isochoric strains. These equations were used as the basis of
a theoretical model for the behavior of the structural element.

This technique was implemented into the own computer program to calculate strains, stresses,
internal forces, and displacements.

To verify the accuracy of the proposed method, numerical studies of bar structural elements were
carried out. The simulations considered a bent reinforced concrete beam that was tested experimentally
by Buckhouse [27,28] and an eccentrically compressed reinforced concrete column that was tested
experimentally and analytically by Lloyd and Rangan [29].



Appl. Sci. 2018, 8, 396 3 of 22

Obtained numerical results were compared with the results of experimental, analytical,
and theoretical works from the existing literature.

2. Modeling of Structural Materials

2.1. Reinforcing Steel

The elastic-plastic model with regard to material hardening was applied for the reinforcing steel,
which is shown in Figure 1. The reduced plane stress state (compression/tension with shear) was
considered, because of the nature of the reinforcing slender bars in the reinforced concrete element.
The stress state in subsequent load steps is described by the equations below.

σn
11 =

σn−1
11 + Es∆εn

11

1 + 2
3 Es∆Λn

and σn
12 =

σn−1
12 + 2µs∆εn

12
1 + 2µs∆Λn (1)

where Es is the deformation modulus of steel, µs = Es
2(1+νs)

is the shear modulus, νs is the initial

Poisson’s ratio εn
11, εn

12, ∆εn
11 = εn

11 − εn−1
11 , and ∆εn

12 = εn
12 − εn−1

12 are the known strains and strain
increments. ∆Λn is the scalar multiplier that defines the state of stress according to the associated
plastic flow rule for the Huber-Mises-Hencky yield criterion, n is the step number of the instantaneous
strain-stress state in a subsequent time instant, and tn = tn−1 + ∆t, and ∆t is the time step increment.
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To determine the scalar multiplier ∆Λn, the value of the plasticity function must be checked for
consistency with the Huber-Mises-Hencky yield criterion:

Fn =
σn

i

f (εpn
e f )
− 1 (2)

where σn
i =

√(
σn

11
)2

+ 3
(
σn

12
)2 is the stress intensity, and f (εpn

e f ) is the hardening function of the steel
yield limit.

The variation of the steel yield limit function describes the law of isotropic hardening:

f (εpt
e f ) = fy + Hsε

pn
e f (3)

where ε
pn
e f =

tn∫
ty

∆ε
p
e f dt is the effective plastic strain, ∆ε

p
e f =

√(
∆ε

p
11

)2
+ 4

3

(
∆ε

p
12

)2
is the increment of

the effective plastic strain, fy is the steel yield limit for tension/compression, HS is the steel plastic
hardening modulus, and ty is the time instant when the steel yield limit is achieved.



Appl. Sci. 2018, 8, 396 4 of 22

The uniaxial idealization for the tensile/compressive test is shown in Figure 1. After applying the
assumption of elastic and plastic strain increments ∆ε11 = ∆εe

11 +∆ε
p
11, where ∆ε11 = ∆σ11

ET
, ∆εe

11 = ∆σ11
Es

and ∆ε
p
11 = ∆σ11

Hs
, the steel plastic hardening modulus is shown in the equation below.

HS =
ESET

ES − ET
(4)

The tangent deformation modulus of steel is ET =
ft− fy
εt−εy

, where ft is the steel tensile/compressive

strength, εy =
fy
Es

is the maximum elastic strain, and εt is the strain that is related to the steel strength.
In the initial assumption ∆Λn = 0, if Fn < 0, or Fn = 0 and ∆Fn < 0, we have a purely elastic

stress state (or unloading). Fn > 0 represents an elastic–plastic state for which the multiplier value
∆Λn is determined from the conditions below.

Fn = 0 and ∆Fn = 0 (5)

These equations can be numerically solved using Newton’s method. The solution at the i-th iteration
is shown below.

∆Λn
(i) = ∆Λn

(i−1) −
[

∂F(∆Λn
(i−1))

∂∆Λn
(i−1)

]−1

F(∆Λn
(i−1)) (6)

for the assumed accuracy εΛ. That is: ∣∣∣∆Λn
(i) − ∆Λn

(i−1)

∣∣∣≤ εΛ (7)

The numerical solution of the nonlinear algebraic Equation (6) is well-conditioned. There is only
one root such that ∆Λn > 0, which describes the elastic-plastic stress state of Equation (1).

2.2. Concrete

An elastic–plastic material model for concrete that considers material softening and the
degradation of the deformation modulus was developed. A reduced plane stress state for the
compression/tension range with shear (σ11, σ22 = 0, σ12) was assumed.

Figure 2 shows an idealization of the concrete model for the plane σ11 − ε11, where fc0, ft0,
and fs0 are the initial compressive, tensile, and shear strengths, Ec0 is the initial modulus of deformation,
εc0 = fc0

Ec0
and εt0 = ft0

Ec0
are the elastic limit strains in compression and tension, ε f c and εuc are the

strain limits for the perfectly plastic flow and the material softening range in compression, and εut is
the strain limit for the material softening range in tension.
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The concrete model describes the incremental equations for stresses while considering the
limitations that result from the yield condition. The stress state in subsequent load steps is described
by the relations below.

σn
11 = σn−1

11 + Ec∆εn
11 σn

11 =


σn

11 f or − f n
t < σn

11 ≤ f n
c

− f n
t f or σn

11 < − f n
t

f n
c f or σn

11 > f n
c

σn
12 = σn−1

12 + 2µc∆εn
12 σn

12 =

{
σn

12 f or
∣∣σn

12

∣∣≤ f n
s

f n
s f or

∣∣σn
12

∣∣> f n
s

(8)

where n is the instantaneous step of the stress-strain state, εn
11, εn

12, ∆εn
11 = εn

11− εn−1
11 , and ∆εn

12 = εn
12− εn−1

12
are the known strains and strain increments, µc =

Ec
2(1+νc0)

is the shear deformation modulus, and νc0 is
the initial Poisson’s ratio. The variable parameters Ec = Ec(Ec0, Ehc, Eht) and f n

t , f n
c , f n

s are described
according to schemes presented in Figures 2 and 3, respectively.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 24 

 
Figure 2. Concrete model. 

The concrete model describes the incremental equations for stresses while considering the 
limitations that result from the yield condition. The stress state in subsequent load steps is described 
by the relations below.  

11 11
1

11 11 11 11 11

11

1 12 12
12 12 12 12

12

| |
2

| |

n n n n
t c

n n n n n n n
c t t

n n n
c c

n n n
n n n n s

c n n n
s s

for f f

E f for f

f for f

for f

f for f

σ σ
σ σ Δε σ σ

σ

σ σσ σ μ Δε σ
σ

−

−

  − < ≤
 = + = − < −
  > 
  ≤ = + =  >  

(8) 

where n  is the instantaneous step of the stress-strain state, n
11ε , n

12ε , 1
111111

−−= nnn εεεΔ , and 
1

121212
−−=Δ nnn εεε are the known strains and strain increments, 

)1(2 0c

c
c

E

ν
μ

+
=  is the shear 

deformation modulus, and 0cν  is the initial Poisson’s ratio. The variable parameters

),( ,0 hthcccc EEEEE =  and n
s

n
c

n
t fff ,,  are described according to schemes presented in Figure 2 

and Figure 3, respectively. 
The yield criterion that is used in the concrete model is consistent with experimental results for 

the reduced plane stress state. This is also confirmed by comparing the proposed model with the 
model described by Stolarski [30], which was calibrated using experimental results. 

 
Figure 3. Limit curve for the plane stress state. Figure 3. Limit curve for the plane stress state.

The yield criterion that is used in the concrete model is consistent with experimental results for
the reduced plane stress state. This is also confirmed by comparing the proposed model with the
model described by Stolarski [30], which was calibrated using experimental results.

An applied model of concrete was described in detail in the paper [31]. The main assumptions of
the proposed model considered the stress softening and degradation of the deformation modulus and
whether they are consistent with the model of concrete is presented in the paper [32].

3. Fundamental Equations

3.1. Equations of Motion

The analysis includes the behavior of bent and eccentrically compressed reinforced concrete
elements. The elements are modeled using a system of plane bars and takes into account the initial
curvature. The bar system is statically loaded with a short-term longitudinal force, bending moment,
uniformly distributed load, and concentrated forces acting on the plane perpendicular to the
longitudinal axis of the element.

This reinforced concrete element considers specific geometrical factors including the variable
cross-sectional distribution of concrete and reinforcing steel areas, the initial curvature, and the
boundary conditions that result from the support and external load.
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The equations of dynamic motion for a reinforced concrete bar element that is characterized by
the unit mass (µ), the unit mass of inertia j, and the unit damping coefficients for the displacements
c and rotations c f were derived. The problem of the damping coefficient estimation was detailed in the
paper [33].

The differential equilibrium equations were defined in the global Cartesian coordinate system
{x(u), z(w)}, as shown in Figure 4, where ds is the length of the deformed element, and θ is the slope
angle. They have the form shown below.

− ∂ (N cos θ)
∂ s + ∂ (Q sin θ)

∂ s + px(s)− µ
..
u− c

.
u = 0

− ∂ (N sin θ)
∂ s − ∂ (Q cos θ)

∂ s − pz(s) + µ
..
w + c

.
w = 0

∂M
∂ s −Q− j

..
φ− c f

.
φ = 0

(9)

where N is the internal longitudinal force, Q is the transversal force, M is the bending
moment,

{
px, py

}
are the external loads, and {µ ..

u, µ
..
w, j

..
φ} are the inertial longitudinal, transverse,

and rotational forces.
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The linear geometrical relationships that relate to the longitudinal deformation of the central
axis e(s), to the change of the average rotation angle in the cross-section κ(s), and to the average
non-dilatational strain angle γ(s) are defined below.

e(s) = ds0−ds
ds

κ(s) = dφ
ds

γ(s) = φ + Φ, Φ = θ0 − θ

(10)

where φ is the average rotation angle of the cross-section, and Φ is the rotation angle of the bar’s central
axis. In Equation (10), the index (0) indicates the initial position of the un-deformed bar structure.
We determine the value of e(s) according to Equation (10). We assumed that the positive longitudinal
force is compressive.

3.2. Equations of Internal Equilibrium in the Cross-Section

The bar’s cross-section was discretized to produce a computational model. The cross-section of
the concrete was divided into layers that were ∆h—thick and, within this, the areas of the two steel
layers were defined as As1 and As2, which is shown in Figure 5.
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Figure 5. Model of the reinforced concrete cross-section.

The functioning of the computational cross-section model is conditioned by models of deformation
of concrete and steel, as well as by kinematic hypothesis. The basis of this hypothesis is the
assumption of plane cross-section that is not perpendicular to the central axis of the deformed element.
Kinematic hypothesis determines the state of deformation of all the layers of the cross-section, as well
as the principle of active layers in joint action, such as steel layers and concrete layers being able to
carry the stresses.

Depending on the ability of concrete for compressive and tensile deformation, the concrete layers
carrying the stresses and layers not carrying the stresses, such as cracked layers (in tension) or crushed
layers (in compression), were distinguished. Cracked layers after the closing of cracks can again carry
the compressive stress, but the crushed layers become permanently passive layers and cannot carry
any stresses.

The strain states in the different cross-sectional layers, for a given time step, are defined in
Equation (11). {

εn
11r = en + zr·κn, zr = (zk, zs1, zs2), k = 1, 2, . . . , K

εn
12r =

1
2 γn (11)

If the longitudinal strain of the central axis (en), the change in the average rotation angle of
the cross-section (κn), and the average angle of the non-dilatational strain (γn) were known, then,
after using the material models, the longitudinal force (Nn), the bending moment (Mn), and the
transverse force (Qn) can be determined from the equilibrium equations of the cross-section.

Nn =
K
∑

k=1
σn

11,k·Ac,k + σn
11,s1·As1 + σn

11,s2·As2

Mn =
K
∑

k=1
σn

11k·Ac,k·zk + σn
11,s1·As1·zs1 + σn

11,s2·As2·zs2

Qn =
K
∑

k=1
σn

12,k·Ac,k + σn
12,s1·As1 + σn

12,s2·As2

(12)

where Ac,k is the cross-section area of the concrete layer and As1,2 is the cross-section area of the
tensile/compressive reinforcing steel.

3.3. Differential Discretization of the Bar Element

The equilibrium Equation (9), geometric relationships (10), material models for reinforcing steel
(1) and concrete (8), and the cross-sectional model defined by Equations (11) and (12) form the problem
within the technical theory of bar structures.

The basic system of equations is presented in differential form on the basis of the proposed
discretization of the computational model.

To discretize the model, we divided the central axis of the bar into nodes with coordinates (x, z)i,
for i = 1, 2, . . . , i− 1, i, i + 1, . . . , I, which is shown in Figure 6.
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Figure 6. Discretization of the bar’s structural element.

In the proposed model the element was divided into inner and boundary nodes. The internal
nodes contain the main nodes (odd), which correspond to the division points, and the intermediate
nodes (even), which correspond to the line segments that join the division points.

The main nodes are treated as cross-sections in which the curvatures and the bending moments are
accurately calculated. Then, the longitudinal and transverse forces are determined using the average
longitudinal strains on the central axis and the angles of the non-dilatational strains determined in
adjacent segments.

For the intermediate nodes, the longitudinal strains of the central axis, the angles of the
non-dilatational strains, and the longitudinal and transverse forces are accurately calculated.
Then, the bending moments are determined using the average curvatures of the adjacent main nodes.

After including differential discretization of the bar element, the equilibrium Equation (9) can be
rewritten for the nodes of the spatial division in the form below.

−Ni1 cos θi1 + Ni0 cos θi0 + Qi1 sin θi1 −Qi0 sin θi0 + Pxi −m(si)
..
ui − Ci

.
ui = 0

−Ni1 sin θi1 + Ni0 sin θi0 −Qi1 cos θi1 + Qi0 cos θi1 − Pzi + m(si)
..
wi + Ci

.
wi = 0

Mi+2 −Mi −Qi1∆si1 − Ji1
..
φi1 − C f i1

.
φi1 = 0

(13)

where i1 = i + 1 and i0 = i− 1 represent the segments of the internal spatial division, Ni1 and Qi1 are
the longitudinal and transverse forces in segment division i1 = i + 1, Mi is the bending moment on main
node i and Pxi, Pzi are the components of the load in node i. The lumped mass of main node i is below.

m(si) = µ(si)∆si (14)

where ∆si = ∆ si1+∆ si0
2 —average length of the segment division, µ(si) = ρcs Acs is the unitary mass of

the reinforced concrete element with cross-section Acs, and ρcs is the density of the reinforced concrete.
The unitary mass inertia moment of the reinforced concrete segment j(si1) = ρcs Jo

cs is characterized by
the central (main) moment of the rotary inertia Jo

cs.
The damping factor for displacements in the main node i determines the relationship.

Ci = c(si)∆si (15)
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The damping factor for the rotations of the segment division i = 2, I − 1, 2 is below.

C f i = c f (si)∆si (16)

in which c(si) = αµ(si) is the unitary damping factor for the displacement of the reinforced concrete
element characterized by a frequency and vibration period of α = 2ωo =

4π
T and c f (si1) = α f j(si1) is

a unitary damping factor for the rotation of the reinforced concrete element that is characterized by
a frequency and rotational vibration period of α f = 2ωo f =

4π
Tf

.
Let {

αkr = 2ωo,kr =
4π
Tkr

α f ,kr = 2ωo f ,kr =
4π

Tf ,kr

(17)

be the critical value of the frequency and vibration period, and the critical value of the frequency and
rotational vibration period of the undamped elastic vibrations of the reinforced concrete elements,
respectively. Then:

α < αcr and α f < α f ,cr represent damped vibrational motion, and

α ≥ αcr and α f ≥ α f ,cr represent monotonic damped motion

Discretizing the central axis allows for the rewrite of the differential formulation among the
geometrical compounds (10) as shown below.

ei =
ei1+ei0

2
κi =

φi1−φi0
∆si

γi = φi + Φi

(18)

for the main nodes i = 3, I − 2, 2, and: 
ei =

∆s0
i −∆si
∆si

κi =
κi0+κi1

2
γi = φi + Φi

(19)

for the segments i = 2, I − 1, 2. In which φi is the average of the rotation angles of the cross-section for
the segment (i, i + 1).

φi =
φi1 + φi0

2
(20)

and Φi is the average of the rotation angles of the central axis for the segment (i, i + 1).

Φi =
Φi1 + Φi0

2
(21)

The rotation angles Φi1 in Equation (21) for the segment (i, i + 1), taking into account (10)3, can
be calculated using Equation (22).

Φi1 = θ0
i1 − θi1

∼= sin
(

θ0
i1 − θi1

)
= sin θ0

i1· cos θi1 − cos θ0
i1· sin θi1 (22)

4. Solution of the System of Equilibrium Equations

The system of Equation (13) describes the dynamic inelastic behavior of a reinforced concrete
element. It was solved using critical damping for displacements c = max(ci,kr) and rotations
c f = max(c f i,kr), which describe the static problem in the limiting transition. This method is called
the dynamic relaxation method. To increase the effectiveness of this technique for the post-critical
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analysis, the method of solution path tracking for multiple variables [25] was applied to the solution
of the system of dynamic nonlinear equilibrium equations.

The general idea of this method is to incorporate the additional constraints equation that links
the load parameter and the vector of displacement increments with the arc length increment on the
solution path to the equations of motion (24).

4.1. Numerical Solution of Equations of Motion

The system of Equations (12) was solved using a numerical method and a discretization with
respect to time. For this purpose, the direct differential method with respect to time was applied.

In this method, acceleration
..
q = (

..
ui,

..
wi,

..
ϕi1)

T and displacement velocity
.
q = (

.
ui,

.
wi,

.
ϕi1)

T

were approximated in the system of Equations (13) at time instants tn−1 = tn − ∆t, tn = n∆t,
and tn+1 = tn + ∆t, using Equation (23).

..
qn

=

.
qn − .

qn−1

∆t
and

.
qn

=
∆qn

∆t
(23)

Using these approximations, the system of Equation (13) becomes the following.

G(q, λ) = ∆qn − ∆qn
G − ∆λn∆qn

P = 0 (24)

where ∆qn =
(
∆un

i , ∆wn
i , ∆ϕn

i1
)T is a vector of searched displacement increments, ∆λn = λn − λn−1

and is increment of the load parameter in the current time step.
The vector of components of the displacement increments for the total load has the following form.

∆qn
P =


aiPx(si)

aiPz(si)

a f i[Mib1
k(xi − xib1

) + MibI k(xi − xibI )]

(25)

where k( f ) =

{
1 i f f = 0
0 i f f 6= 0

is a selection operator and i is the node number.

The vector of components of the displacement increments for the load parameter λn−1 from the
previous time step has a form.

∆qn
G =


bi∆un−1

i + ai[−Ni1 cos θi1 + Ni0 cos θi0 + Qi1 sin θi1 −Qi0 sin θi0]

bi∆wn−1
i + ai[Ni1 sin θi1 − Ni0 sin θi0 + Qi1 cos θi1 −Qi0 cos θi0]

b f i∆ϕn
i1 + a f i(Mi+2 −Mi −Qi1∆si1)

+ λn−1∆qn
P (26)

where bi =
mi

mi+Ci∆t is a coefficient for linear displacements, ai =
∆t2

mi+Ci∆t is a coefficient for internal

forces, b f i =
ji

ji+C f i∆t is a coefficient for rotations, and a f i =
∆t2

ji+C f i∆t is a coefficient for bending moments.
The initial conditions for time step tn=0 = 0 have the following form.

∆qn=−1 = 0 (27)

The iterative procedure terminates when the solutions of displacements in subsequent time
instants have converged, according to the condition below.

‖∆qn‖ ≤ ε∆q (28)

The time step ∆t is determined so that the numerical integration is stable and has the
following form.

∆t = αrmin
{

∆t(l), ∆t(b), ∆t( f )

}
(29)
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where ∆t(l) = ∆si min

√
ρcs

Ec0+ρs maxEs
is the critical time step for the longitudinal elastic vibration problem,

∆t(b) =
1
2 ∆s2

i min

√
µ(si)
Bcs

is the critical time step for the elastic bending problem, ∆t( f ) = ∆si min

√
ρcs
µc

is
the critical time step for the elastic isochoric wave propagation, αr =< 0.2, 0.9 > is a safety factor
for the time step, Bcs = Ec0 Jcs is the bending rigidity of the reinforced concrete cross-section in the
elastic range, Jcs is the moment of inertia of the un-cracked (elastic) reinforced concrete cross-section,
and ρs max is the largest total reinforcement ratio for the entire reinforced concrete element.

4.2. Conceptual Algorithm for Solving the Extended System of Equations

The extended system of equations was formed by combining the system of equations of motion
(24) with the constraints equation f (q, λ), and can be expressed as Equation (30).{

G(q, λ) = 0
f (q, λ) = 0

(30)

This system for any time instant tn = n∆t can be iteratively solved and can be used to determine
the searched displacement vector q and the load parameter λ for the nonlinear equilibrium path
containing the local limit points.

The constraints equation has the following form [25].

f (q, λ) = ∆qT
m∆qm + ∆λ2

m − ∆l2 = 0 (31)

where ∆l is the increment (parameter) of the arc length on the solution path, q = (u, w, ϕ)T is a vector
of the searched displacements, ∆λm = λn − λm is the increment of the current load parameter λn,
∆qm = qn − qm is the increment of the current vector of unknown displacements qn in relation to the
last convergent values of the load parameter λm and displacement vector qm, which were obtained
with the assumed accuracy in the previous load step m.

Directly solving the constraints Equation (31) allows for us to determine the load parameter
λn. The solution requires checking the differentiator g(q) = ∆l2 − qT

mqm sing and was determined
according to the following two equations.

λn
1,2 = λm ±

√
∆l2 − ∆qT

m∆qm, if g(q) ≥ 0

and
λn

1,2 = λm ±
√

∆qT
m∆qm − ∆l2, if g(q) < 0

Then, the solution is selected as the smallest “distance” away from the solution that was obtained
in a previous load step m− 1. The smallest “distance” responds to the smallest angle (or the largest
cosine of the angle) between the solutions in actual load step m and the previous one m− 1:

ϑ = min(ϑ1, ϑ2) = min
(

arccos
∆qm,1∆qm−1

∆l2 , arccos
∆qm,2∆qm−1

∆l2

)
(32)

Analyzing the conditions of the solution to the constraints Equation (31), indicates that this
criterion can be described by the following equation.

λn = λm + sign(∆l2 − ∆qT
m∆qm)

√
abs(∆l2 − ∆qT

m∆qm) (33)

This extended system can be solved using a two-stage procedure described below.
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1. Prediction stage n = 0—for known initial values established in the previous load step
m (i.e., λm, ∆λ0 = ∆λm, qm), the load parameter λ0 is determined using the constraints Equation (31):

λ0 = λm + ∆λ0 (34)

2. Correction stage n = 1, 2, . . . , N—is realized in four iterative steps.

(a) New displacement increments ∆qn are determined using the system of motion Equations (7).
(b) The load parameter λn is determined using Equation (13).
(c) The updated displacements vector is calculated, according to: qn = qn−1 + ∆qn.
(d) The iterations are terminated after reaching a predefined accuracy ‖G(qn, λn)‖ ≤ εG and

then the load and displacement parameters are updated λm+1 = λn, qm+1 = qn and
the next load step starts from a new prediction stage. If the predefined accuracy is not
achieved, then the next correction stage is required.

On the basis of carried out numerical experiments, it was determined that the accuracy should
satisfy εG ∈

(
0.1−3, 0.1−6).

Figure 7 shows the iterative scheme for solving the extended system of Equations (30).
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5. Numerical Results

5.1. Reinforced Concrete Beam

To analyze the beam, the computational methods must be adapted to the specific behavior of
a reinforced concrete bent element, with regard to the shear effect on its load-carrying capacity. To this
end, the general system of Equations in (9) was reduced by omitting the influence of longitudinal
forces on displacements of the beam, so that it can be used to describe moderately large displacements
of the bar systems.
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5.1.1. Experiment Details

A C1 type beam was investigated and experimentally tested by Buckhouse [27,28]. A single-span,
simply supported beam with a rectangular cross-section was analyzed. The load on the beam formed
two concentrated forces. The static scheme of the beam is shown in Figure 8a. The beam is reinforced
by three ϕ16-mm bars, and the transverse reinforcement is from stirrups made with ϕ3-mm bars.Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 24 
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The following material properties were used for concrete. The compressive strength was
fc0 = 32.9 MPa determined from experiments in [28]. Other material properties were determined in
accordance with [34], as shown below. The tensile strength was ft0 = 3.6 MPa, determined according to
ft0 = 0.3 f 2/3

c0 , where fc0 is expressed in MPa. The shear strength was fs0 = 4.68 MPa. The deformation
modulus was Ec0 = 27.23 GPa determined according to Ec0 = 22(0.1 fc0)

0.3 where fc0 is expressed in
MPa. The limit strains were ε f c = 0.002 and εuc = 0.012 and Poisson’s ratio was νc = 0.2.

The following material properties were used for the reinforcing steel. These material properties
were taken from Reference [28]. The yield stress for compression and tension was fy = 473.26 MPa,
the deformation modulus was Es = 236.61 GPa, the limit strains were εt = 0.15, and Poisson’s ratio
was νs = 0, 3.

The density of the reinforced concrete was set to ρ = 2500 kg/m3, the critical value of the damping

factor for bending vibrations to ci,cr =
√

648
23

Ec Jcsmi
l3 , and the critical value of the damping factor for

rotational vibrations to c f i,cr =
√

27Ec Jcsmi
l3 .

Discretization of the central axis of the C1 beam consisted of introducing 29 nodes, which is
shown in Figure 8b. Among the 23 internal nodes, there were 11 main nodes (odd) and 12 intermediate
nodes or segments (even). There were two main nodes on each edge (real and fictitious) and one
intermediate node (fictitious).

An external load was applied to the beam in the form of two concentrated forces at the
designated main nodes {Pz11, Pz19}. The self-weight of the individual segments was represented by the
concentrated forces, applied at the main nodes excluding the boundary nodes. That is Gzi = m(si)·g,
i = 5, I − 5, 2.
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5.1.2. Analysis of the Load-Carrying Capacity and Displacement

Figure 9 presents the numerical results for the C1 beam using the dynamic relaxation method with
the arc-length parameter (DRM + AL). These results were compared with experimental, theoretical, and
numerical finite element method results that were taken from the literature. The diagram illustrates the
transversal displacements in the mid-span of the C1 beam in node 15 as the load function. The solid
line represents the results using the DRM + AL with limit the load value P0

DRM+AL = 72.48 kN and
displacement value ω0

DRM+AL = 4.0 cm. These results were compared to Buckhouse’s experimental
results (double thin solid line), and the numerical results of Smarzewski [35] (dense dashed line),
and Wolanski [36] (dotted line). The numerical results presented in Reference [35] by Smarzewski
were made by combining the procedures of the finite elements method with the arc-length method
using ANSYS. The basis of the numerical results that are presented in Equation [36] by Wolanski was
developed using the calibration of the finite element model in ANSYS. The sparse, dashed line is the
theoretical limit load-carrying capacity that is determined according to principles of the plasticity
theory for bar elements.

P0 =
M0

l1
(35)

where M0 is the limit bending moment for the reinforced concrete cross-section, and l1 is the distance
from the support axis to the application point of force P. The theoretical limit load-carrying capacity of
the beam calculated in this way is P0 = 74.32 kN.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 24 
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Figure 9. The numerical results using the proposed method for node 15 of the C1 beam compared with
experimental and theoretical results from Buckhouse [27], Foley and Buckhouse [28], Smarzewski [35],
and Wolanski [36].

These numerical results agree with Buckhouse’s experimental results. Buckhouse experimentally
determined the limit displacement value ω0

B = 9.27 cm. This displacement was achieved by the
DRM + AL for load value PMRM+DL = 75.48 kN, which agrees with the experimental results by more
than 98%.

The arc-length method allowed for observing the limit points for the displacement load function.
There is a local softening area in Figure 9, which characterizes a decrease in the load that is related to
an increase in the displacement. This phenomenon has been observed in experiments when the first
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crack appears and when the cracking zone increases in size. After the reinforcing steel achieved a full
plastic state, subsequent softening areas were also observed.

The observed nature of the changes in transverse displacements and rotations over time indicates
that the proposed numerical method is stable for the pseudo-time step ∆t = 4.74× 10−5, which was
determined using Equation (29).

The stress state in subsequent effort steps of the C1 beam is presented in Figure 10. The load steps
are marked by numbers |1|–|6| and correspond with the load steps that are indicated on the graph
in Figure 9. The development of the element’s effort is observed from the elastic states |1| through the
appearance of the first crack |2| to the plasticizing of the reinforcing steel |4| and the propagation of
concrete softening processes |5| and |6|, in particular, areas of the structural element. The tracking of
the stress state allows for a detailed description of the degradation in the critical cross-section leading
to the destruction of the structural element.Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 24 
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5.2. Reinforced Concrete Column

A column was analyzed, taking into account the behavioral specifics of eccentrically compressed
reinforced concrete elements. The general system of Equation (9) was reduced by omitting the influence
of rotational inertial forces on displacements of the column. Consequently, the transverse force is
treated as a passive force Q = ∂M

∂x and the average non-dilatational strain angle is γ = 0.

5.2.1. Experiment Details

A numerical method was applied to the column that was investigated in experimental studies by
Lloyd and Rangan [29], which they denoted as IB. The column was simply-sliding and supported in
the longitudinal direction on both ends. Longitudinal forces were applied at the ends with a constant
eccentricity e = 50 mm, which is shown in Figure 11a. Analysis of columns loaded by longitudinal
forces with other eccentricity values, such as e = 15 mm and e = 65 mm, were presented in the
paper [37].Appl. Sci. 2018, 8, x FOR PEER REVIEW  18 of 24 
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the column.

A column with constant dimensions and a square cross-section was analyzed. The column was
doubly reinforced with three φ12 mm bars in each layer.

The discretization of the central axis produced 25 nodes, which is shown in Figure 11b.
The internal division of the central axis of the column consists of 9 main nodes and 10 intermediate
nodes (segments). There are two main nodes at the edges (one real and one fictitious) and one
intermediate node (fictitious). The external load is interpreted as a longitudinal force P and a bending
moment M = Pe, which was applied to the edge nodes i = 3 and i = 23, as shown in Figure 11b.
The column was analyzed under the assumption that the force varies at constant eccentricity value e.
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The column was made of concrete with a compressive strength of f ′c = 58.0 MPa. The concrete
strength was determined on the basis of research that was conducted by Lloyd and Rangan [29].
They tested the cylindrical specimens and the results showed strengths of f ′c = 58.0 ± 2.7 MPa.
Because f ′c > 50 MPa, the specificity of high-strength concrete was considered according to the
relationships developed by Collins et al. [38], when modeling the material behavior.

The following material properties were used for concrete. The compressive strength was
fc0 = 44.78 MPa, which was determined according to the strength-reducing criterion for the
high-strength concrete proposed by Collins et al. [38]. The tensile strength was ft0 = 3.78 MPa,

which was determined by the relationship ft0 = 0.3( fc0)
2
3 according to Reference [34], where fc0 is

expressed in MPa. The deformation modulus was Ec0 = 32.18 GPa determined on the basis of
Reference [38]. The strain limits values ε f c = 0.002 and εuc = 0.00665 were taken from Reference [31]
and Poisson’s ratio νc = 0.2 was taken from Reference [34].

The following material properties were used for the reinforcing steel. These material properties
were taken from Reference [29]. The yield stress in compression and tension was fy = 430.0 MPa,
the compressive and tensile strength (perfect plasticity) was ft = 430.0 MPa, the deformation modulus
was Es = 200.0 GPa, the strain limit was εt = 0.15, and Poisson’s ratio was νs = 0.3.

5.2.2. Analysis of the Load-Carrying Capacity and Displacement

During the load-carrying capacity and displacement analysis, the results of numerical study for
the IB column were compared with the experimental and theoretical results of Lloyd and Rangan [29],
and the theoretical results of Godycki-Ćwirko and Korzeniowski [39]. The results for the load-carrying
capacity were compared in terms of the cross-section displacement in the mid-span of the column,
which can be seen in node 13.

Figure 12 shows the results for column IB. The results using the proposed DRM + AL are marked
by the solid line.
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Figure 12. Numerical results for node 13 of the IB column, compared with experimental and theoretical
results from Lloyd and Rangan [29] and Godycki-Ćwirko and Korzeniowski [39].

The load-displacement diagram at node 13 using DRM + AL indicates the largest element stiffness
among all of the cases that were considered. In this graph, small jumps in the displacements are
observed for a load of PDRM+AL

IB = 551 kN. This represents the first crack in the tensile concrete
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layer for the middle cross-section of the column. Further developments in the cracking zone of the
middle cross-section (and subsequent small jumps in the displacements) were observed at a load
of PDRM+AL

IB = 716.3 kN. The load-carrying capacity, as determined by the numerical method,
was PDRM+AL

IB = 797.1 kN, and the corresponding value for the transverse displacement was
wDRM+AL

IA = 0.71 cm. The softening process in these three cases has similar characteristics. In the
experimental analysis, the critical state was indicated at the highest load value of PEXP,LR

IB = 830 kN.
The DRM + AL results are the most similar to the experimental results, when compared with

other methods. The load-carrying capacity of the column was 4% lower than the experimentally
determined load and the displacement corresponding to the load-carrying capacity was 50% lower.
The numerically determined load-carrying capacity of the column was 12% higher than the theoretical
results of Godycki-Ćwirko and Korzeniowski [39]. The load-carrying capacity from the DRM + AL
was 17% larger than Lloyd and Rangan’s results [29], while the displacement was 6% larger.

Moreover, the initial stiffens observed in numerical results obtained using DRM + AL differ from
the experimental results. This effect is a consequence of the concrete modeling method and it is caused
by adopting the idealized properties of structural material, especially the initial deformation modulus.
The reduction of displacement values obtained by using DRM + AL is also related to the application of
the overcritical damping value in the inelastic effort range of the structure.

Figure 13 shows the stress state in subsequent effort steps of the IB column. The load steps are
marked by numbers |1|–|8|and correspond with the load steps indicated in the graph of Figure 12.
The first cracks in the tensile concrete layer occur in the cross-sections located near the edges of the
column |2|. Further development of cracks propagates towards the center of the column |3–5|.
Together with the increase of the load, it is observed that the plasticizing of the more compressed
concrete external layer, which develops in an analogous manner to the development of the cracking
process, i.e., progresses from the edge’s cross-sections towards the mid-span of the column. At the load
value PDRM+AL

IB = 765.8 kN, the process of the concrete softening begins in the cross-sections that are
located near the edges. The plasticizing area of the compressed concrete propagates into the internal
layers of the cross-section, which is similar to the cracked area |5|. Reaching the limit value of the
load capacity PDRM+AL

IB = 797.1 kN causes the development of the softening zones in the compressed
concrete. Both the plasticizing zone in the compressed concrete and the cracked area in tensile concrete
remains unchanged |6|. The development of the softening process among the cross-section causes the
rearrangement of stresses and changes the direction of the degradation processes, which now develop
in the center of the column and progress toward the support edges. In the post-critical range |7|,
the advanced softening of the compressed concrete is observed together with the gradual development
of plasticization zone in the mid-span sections of the column. The cracking area increases uniformly
over the entire length of the column. The failure of the column occurs abruptly when the load is equal
PDRM+AL

IB = 394.6 kN. The crushing concrete area concentrates in the mid-span of column and it
covers half of the cross section height |8|. Previously cracked layers of cross-sections transfer the
compressive stresses as a result of the cracks closing. Between crushed and cracked areas, there is still
undamaged concrete, which is qualitatively compatible with the experimental results.
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6. Conclusions

The paper presents a behavior analysis method for the bending and compression of reinforced
concrete elements that are subjected to short-term static loads. The structural system analysis technique
was developed using assumptions from the finite difference method. The central axis of the structural
element was discretized, and the equilibrium equations and geometrical relationships in differential
form were written. A joint-action rule was determined for the active concrete and steel layers of the
discretized cross-sectional model.

A dynamic process that can describe the static problem by introducing critical damping,
was analyzed. When this procedure is used to solve a system of nonlinear equilibrium equations
it is referred to as the DRM. Using the DRM, the equations of motion can be recursively solved in
subsequent pseudo-time instants for each node of the spatial division. There was no need to solve
the system of algebraic equilibrium equations. The DRM was improved by introducing an additional
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constraint equation to the system of equilibrium equations based on the assumptions of the arc length
method. This method is called the DRM + AL, and can be used to solve the nonlinear equilibrium
equations in the post-critical range.

When modeling the behavior of structural materials, the reduced plane compressive/tensile
states with shear stress was considered. Equations that were derived from the theory of moderately
large displacements in a bar system form the basis of structural behavior description by assuming
infinitesimal deformations. This assumption is appropriate when describing strain and stress states in
the concrete and steel layers of commonly used reinforced concrete elements.

To verify the effectiveness of the developed method, numerical tests on a reinforced concrete
beam and eccentrically loaded column, were carried out.

The reinforced concrete beam was analyzed in terms of its load-carrying capacity and
displacement. The influences of isochoric deformations, and the shear and tensile strengths of concrete
were considered. Numerical results described displacement changes with regard to the structural
member in subsequent phases.

The comparative analysis, which was performed for reinforced concrete structural elements
indicates that obtained numerical results agree with the experimental results. In case of a beam,
numerically determined load carrying capacity is 3% lower than those that were determined in
experiment. The load-carrying capacity of the column is 4% lower than the experimentally determined
load, and the displacement corresponding to the load-carrying capacity was 50% lower. The results
obtained using the dynamic relaxation method with the arc-length method are the most similar to
the experimental results, when compared with the other analysis methods. For both of the structural
elements, the proposed method enabled extensive analysis of the post critical effort.

The conclusions are summarized as follows.

• Comparative analysis of the results obtained for the bent and eccentrically compressed
reinforced concrete elements indicate that the proposed method accurately estimated the
load-carrying capacity.

• The considerations carried out and the obtained results of numerical analysis confirm the high
efficiency of the developed computational method.

• The proposed method of dynamic relaxation taking into account the constraints equation for the
non-linear equilibrium path enables the simulation of inelastic behavior of reinforced concrete
elements in the range of continual formation for the failure mechanism.

• The numerical method is useful for tracking the global softening process of the structural
element, in such that the range that cannot always be observed in the experiment because
of the measurement limitations.

• A greater stiffness was observed in the computational model when compared with previously
published experiments. This effect is a consequence of the concrete modeling method.

• In the inelastic range, there was a reduction in the displacement associated with the critical
damping factor, which was determined using the longitudinal and flexural stiffness of the column
in the elastic range.

• The computational method could be improved by further modifying the concrete model and by
introducing a damping factor dependent on the inelastic state of the element. This would result
in more precise estimates of the displacement.

• The proposed computational method is suitable for a post-critical analysis of the bending and
eccentric compression of inelastic reinforced concrete elements.

• The proposed method is very useful for predicting the development of structural elements failure
and for allowing a better analysis of the construction systems’ safety.
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34. EN 1992-1-1. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings;
Europea Commitiee for Standardization: Brussels, Belgium, 2004.

35. Smarzewski, P. Numerical solution of reinforced concrete beam using arc-length method. Bull. Mil.
Univ. Technol. 2016, 65, 33–46. [CrossRef]

36. Wolanski, A.J. Flexural Behavior of Reinforced and Prestressed Concrete Beams Using Finite Element Analysis;
Marquette University: Milwaukee, WI, USA, 2004.
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