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Abstract: Robustness and discriminability are the two most important features of perceptual image
hashing (PIH) schemes. In order to achieve a good balance between perceptual robustness and
discriminability, a novel PIH algorithm is proposed by combining latent low-rank representation
(LLRR) and rotation invariant uniform local binary patterns (RiuLBP). LLRR is first applied on
resized original images to the principal feature matrix and to the salient feature matrix, since it can
automatically extract salient features from corrupted images. Following this, Riulocal bin features
are extracted from each non-overlapping block of the principal feature matrix and of the salient
feature matrix, respectively. All features are concatenated and scrambled to generate final binary
hash code. Experimental results show that the proposed hashing algorithm is robust against many
types of distortions and attacks, such as noise addition, low-pass filtering, rotation, scaling, and JPEG
compression. It outperforms other local binary patterns (LBP) based image hashing schemes in terms
of perceptual robustness and discriminability.
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1. Introduction

With the rapid development of multimedia information processing technology and the growing
popularity of the Internet, the dissemination of digital contents such as digital images, audio and
video via internet has become more and more popular. At the same time, however, the contents of
digital data can easily be modified or forged without leaving any visible traces [1–3]. To verify the
authenticity of digital images and to protect their intellectual property, perceptual image hashing
(PIH) has emerged as an effective technology for image security and authentication and has attracted
extensive attention [4,5]. A PIH function maps an input image to a fixed size binary string called
image hash, based on an image’s appearance to human eyes [6,7]. The hash values can be used to
represent digital image contents, which should tolerate content preserving distortions but should reject
malicious attacks that change image contents. Consequently, images with the same visual appearance
should have similar hash values, while visually distinct images should have totally different hash
values [8–10].

General PIH schemes consist of three steps: pre-processing, feature extraction and hash
generation, which in the past decades have found extensive applications in many fields, such as
image authentication, image retrieval, image recognition and digital watermarking [11–17]. One of the
key steps in a PIH scheme is robust features extraction. A high performance PIH scheme is dependent
on suitable features. A local binary pattern (LBP) is originally proposed by Ojala et al. [18] and is
always an effective texture feature extraction method, due to its rotation and scale invariance [19–21].
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To achieve good robustness of image hashes, LBP has been exploited to extract suitable features in
PIH schemes in recent years, and many LBP based PIH schemes have been reported in the literature.
Bai and Hatzinakos [22] proposed a biometric hashing method based on LBP, and the biometric
hash code that is generated from the LBP based histogram sequence is robust to lighting changes;
however, the robustness against other content preserving operations has not been demonstrated.
Davarzani et al. [23] employed a center-symmetric local binary pattern (CSLBP) to extract image
features from non-overlapping image blocks and to obtain hash values. This PIH scheme can
distinguish non-malicious manipulations from malicious distortions, but it has a weak balance between
robustness and discriminability. To increase the robustness, they improved the scheme by combining
the singular value decomposition (SVD) before the feature extraction [24]. However, the improved PIH
algorithm is not robust against geometrical distortions. Chen et al. [25] used block truncation coding
and CSLBP to produce an image hash, but it does not have a high robustness against noise addition.
Qin et al. [26] first applied SVD to create a secondary image, and then employed block truncation
coding (BTC) and CSLBP to generate a compact binary hash. The results showed a satisfactory
robustness to common content preserving manipulations, as well as good uniqueness, but there is no
good robustness against large geometrical distortions. Patil and Sarode [27–30] designed some new
PIH schemes by using improved CSLBP methods. First, original images are divided into sub-blocks
in these algorithms, and some modified CSLBP approaches are used to extract 8-bin histograms as
image features. Finally, double bit quantization is employed to generate a hash code for original
images. Experimental results proved that the proposed schemes are robust against content preserving
manipulation and that they are sensitive to content changing and structural tampering. But these
PIH algorithms have low robustness against serious geometrical distortion. Considering the good
performance of Noise Resistant LBP (NRLBP) in a noisy environment, Abbas et al. [31] presented a
PIH scheme based on SVD and NRLBP, which uses SVD transformation and NRLBP to obtain suitable
features for the generation of perceptual image hash values. It has enhanced the robustness to content
preserving operations but does not obtain a good tradeoff between robustness and discriminability.

The above mentioned PIH schemes based on LBP directly extract features from the original
image and do not produce a robust secondary image with primary features. It is hard for them to
achieve a good balance between robustness and discriminability. To obtain different perceptual image
hash values for visually different images, a novel PIH scheme is proposed in this paper by using
latent low rank representation (LLRR) and rotation invariant uniform local binary patterns (RiuLBP);
LLRR is exploited to extract principal and salient features since it is able to effectively extract salient
features from corrupted data; following this, a RiuLBP features extraction from principal and salient
components is used to generate a final hash code.

This paper is organized as follows. In Section 2, the principle of low-rank representation and the
local binary pattern is introduced. Section 3 describes the proposed PIH scheme. The experiments and
analysis are given in Section 4. Section 5 concludes the paper.

2. Low-Rank Representation and Local Binary Pattern

2.1. Latent Low-Rank Representation

The low-rank representation (LRR) method aims at finding the lowest-rank representation among
all the candidates. When the observed data matrix is used as the dictionary A, recovering the low-rank
representation from the given observation Xo can be written as the following convex optimization
problem [32,33]:

min
Z,E
‖Z‖∗ + λ‖E‖1,

s.t.Xo = AZ + E(Xo = XoZ + E),
(1)

where ‖·‖∗ denotes the nuclear norm of a matrix, i.e., the sum of the singular values of the matrix. ‖·‖1
is the L1-norm characterizing the sparse noise E. λ > 0 is a regularization parameter for balancing the
influences of the sparsity error term. Wang et al. [33] applied LRR to multi-view spectral clustering by
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separately imposing a low-rank constraint on each view and achieved the multi-view agreement via
an iterative fashion.

While A = Xo, this assumption may be invalid, and the data sampling is insufficient. So, LRR
may not represent the subspaces effectively, and the recovery robustness may be weakened. LLRR can
be regarded as an enhanced version of LRR, which constructs the dictionary A using both observed
data Xo and unobserved hidden data XH ; it is more accurate and robust to noise than LRR for subspace
representation [34,35]. To resolve the problem of insufficient sampling and to improve the robustness
to noise corruption, LLRR is exploited to extract suitable image features during the PIH generation.
An approximate recovery can be achieved by analyzing the properties of the hidden effects as follows:

min
Z,E
‖Z‖∗ + λ‖E‖1

s.t.Xo = [Xo, XH ]Z + E .
(2)

The hidden effects recovery problem for corrupted data in Equation (2) can be solved by the
following convex optimization problem:

min ‖ZO|H‖∗ + ‖LH|O‖∗ + λ‖E‖1
s.t.Xo = XoZO|H + LH|OXO + E,

(3)

where ZO|H and LH|O correspond to the principal component and the salient component, respectively.
For the sake of simplicity, we replace Xo, ZO|H and LH|O with X, Z and L, respectively. Thus, the
convex optimization problem in Equation (3) can be rewritten as:

min ‖Z‖∗ + ‖L‖∗ + λ‖E‖1
s.t.X = XZ + LX + E,

(4)

where X ∈ Rd×n, Z ∈ Rn×n and L ∈ Rd×d. The parameters d and n are the feature vector size and the
number of features, respectively. This problem can be solved via the Augmented Lagrange Multiplier
(ALM) [36] method.

2.2. Local Binary Pattern

There are many LBP operators and LBP feature extraction methods are reported in image
recognition and image security fields, among which the RiuLBP operator is one of most popular
texture operators due to its rotation invariance and low dimension [37]. The basic LBP is a gray-scale
invariant which transforms the neighborhood pixels into a set of binary codes by taking the center
pixel as a threshold representing the center pixel, and it is defined as follows:

LBPP,R =
P−1

∑
p=0

s
(

gp − gc
)
2p, (5)

where R denotes the scale of the radius of neighborhoods, P denotes the number of sampling points,
gc is the gray value of the center pixel, gp is the circularly symmetric neighbor, and s(*) is the sign
function that returns the sign of the specified number.

When there are at most two bitwise 0/1 transitions, the pattern is called a uniform one.
The number of uniform patterns is P(P− 1) + 2, which is less than the number 2P of the basic LBP
feature. A function U(∆) is defined to return the number of spatial transitions (bitwise 0/1 transitions)
in the pattern ∆, and it can be written as:

U(LBPP,R) =
P−1

∑
p=0

∣∣∣s(gMod(p+1,P) − gc

)
− s
(

gp − gc
)∣∣∣, (6)
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where the function Mod(x, y) returns the remainder after a number x is divided by a divisor y.
In order to achieve good discriminability and robustness of the perceptual image hash, the RiuLBP

feature descriptor is utilized to extract stable image features. Instead of the ordered binary coding of
the basic LBP, the center pixel of RiuLBP is denoted by simply counting ones in the basic LBP coding
for uniform patterns [38], denoted by LBPriu

P,R, as shown below:

LBPriu
P,R =


P−1
∑

p=0
s
(

gp − gc
)

i f U(LBPP,R) ≤ 2,

P + 1 otherwise.
(7)

From Equation (7), we can see that the RiuLBP feature only has P + 2 distinct patterns.

3. Proposed Perceptual Image Hashing Algorithm

In order to achieve a good balance between discriminability and robustness, a new PIH scheme is
proposed in this paper by combining LLRR and LBP features (called LLRR-RiuLBP). In the proposed
scheme, LLRR is first employed in order to obtain the principal and salient components of the original
images, considering its robustness of salient feature extraction to corrupted data; following this,
the RiuLBP feature extraction is applied to the principal and salient components and generates the
perceptual hash. The proposed PIH scheme consists of three main stages: pre-processing, feature
extraction, and hash generation. The block diagram of the proposed image hashing scheme is shown
in Figure 1, and the whole hash generation process is depicted as follows.
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Figure 1. The perceptual image hashing (PIH) scheme, based on latent low rank representation (LLRR)
and rotation invariant uniform local binary patterns (RiuLBP).

Step 1: For color images, only the luminance component is considered because it contains significant
information on the input images. An original color image I is first converted to a grayscale
image Ig.

Step 2: In order to produce a fixed-length hash code, the image normalization of the bilinear
interpolation is applied to the grayscale image, and a resized image Ir is generated with
a M×M size.

Step 3: Following this, a pixel-wise adaptive Wiener filter is applied to the resized input image Ir in
order to reduce disturbances caused by the image operation, such as noise addition and lossy
compression; a filtered input image If is then generated.

Step 4: LLRR is applied to the resized input image Ir in order to obtain the principle feature matrix Z,
salient feature matrix L and error matrix E using Equation (4).

Step 5: The principle feature matrix Z and salient feature matrix L are divided respectively into
non-overlapping sub-blocks with a b × b size. For each image sub-block, the normalized
histogram of the CSLBP codes is computed as follows. Consequently, two histograms
Hr, r ∈ {Z, L}, are built according to the principle feature matrix Z and salient feature matrix
L, respectively.
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Hr(t) =
1
b2

b

∑
i=1

b

∑
j=1

f
(

LBPriu
P,R(i, j), t

)
, t = 0, 1, . . . , P + 1, r ∈ {Z, L}, (8)

where

f (x, y) =

{
1 i f x = y
0 else .

(9)

Step 6: To reduce feature redundancy, zero-mean normalization is applied to the histogram feature to
produce a normalized histogram feature Hr by using Equation (10):

Hr
=

Hr − µ

δ + ε
, r ∈ {Z, L}, (10)

where µ and δ are the mean and standard deviations of the feature set Hr, and where ε is a minimal
value in order to avoid division by zero.

Step 7: The normalized histogram Hr is a P + 2 bins histogram, and the features of all the blocks are
concatenated in order to generate a final LLRR-RiuLBP feature.

H =
[

HZ
1 , . . . , HZ

q , HL
1 , . . . , HL

q

]
, q = (P + 2)×

(
M
b

)2
. (11)

Step 8: The principal component analysis (PCA) is applied on the feature vector H in order to obtain
an effective perceptual feature; the process can be written as follows:

HPCA =
[
H′1, · · · , H′m

]
m < 2q, (12)

where m denotes the feature dimension after the dimension reduction, and where H′ i i = 1, · · · , m are
the principal components after the PCA feature reduction [39].

Step 9: A binary sequence of perceptual features V is generated by mapping HPCA onto the binary bits.

V(i) =

{
1 i f HPCA(i) ≥ 0.5
0 else

i = 1, . . . , m. (13)

Step 10: A secret key k is used in order to produce pseudorandom sequences W with the use of a
chaotic logistic map [40].

W = {w(i)|w(i) ∈ {0, 1}}, i = 1, . . . , m. (14)

In order to ensure the security of the PHI scheme, the sequence W is used to scramble the sequence
W via a pixel-wise exclusive-or (XOR) operation between the V and W sequences; the scramble feature
vector is the final image hash H f .

H f = XOR(V, W). (15)

4. Experiments and Analysis

To test the performances of the proposed PIH scheme, extensive experiments are conducted on
many standard images with a 256 × 256 size, which can be obtained from the CVG-UGR (Computer
Vision Group, University of Granada) image database [41]. The normalized Hamming distance was
adopted in our experiments in order to measure the similarity between two hashes.
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Dis
(

H f , H′f
)
=

1
m

m

∑
i=1

∣∣∣H f (i)− H′f (i)
∣∣∣, (16)

where H f and H′f are two hash sequences, and where m is the hash length.
In the experiments, the parameters of the resized image size M, sub-block size b, LBP radius R,

LBP pixel number P of the neighbor, and final perceptual hash length m are set to 256, 4, 1, 8 and
500, respectively.

All the experiments are tested on a laptop, the Intel Core i-3630QM 2.66 GHz CPU (Intel Corp.,
Santa Clara, CA, USA), with an 8 GB memory and running MATLAB 2016a (Mathworks Inc., Natick,
MA, USA). The average time cost is computed on test images with a 256 × 256 size, and the average
running times of the different PIH methods [13,24,26] are listed in Table 1. Our method and Qin et al.’s
method [13] need more time cost than the other two methods [24,26] because of the use of the
LRR operations.

Table 1. The average running times of different PIH methods.

Methods Average Running Time

Liu et al.’s scheme [13] 2.36
Davarzani et al.’s scheme [24] 1.49

Qin et al.’s scheme [26] 1.62
Proposed scheme 2.58

4.1. Perceptual Robustness

In order to evaluate the perceptual robustness of the proposed PIH scheme (LLRR-RiuLBP),
we conducted some robustness experiments under the common content-preserving attacks, such as
JPEG compression, Gaussian filtering, median filtering, noise addition, scaling and rotation (as listed
in Table 2), based on the CVG-UGR image database [41]. Four of the standard test images derived from
them are shown in Figure 2. The robustness comparison experiments with previous image hashing
schemes, such as Liu et al.’s [13], Davarzani et al.’s [24] and Qin et al.’s [26] schemes are illustrated
in Figure 3 in terms of the normalized Hamming distance. Note that each average normalized
Hamming distance in Figure 3 is calculated according to all the hash pairs of all the test images and
the corresponding attacked images.

It can be seen that the average normalized Hamming distance of the proposed scheme
(LLRR-RuiLBP) is less than Liu et al.’s and Qin et al.’s methods. That is to say, our PIH scheme
is more robust to content-preserving attacks than existing schemes [13,24,26]. This is partly because the
LLRR adopted in the proposed scheme can effectively extract principle features from corrupted data.

Table 2. The content-preserving attacks for robustness testing.

Attacks Parameters

JPEG compression Quality factor ∈ [10, 90]
Gaussian filtering Standard deviation 0.4, 0.6, . . . , 1.8
median filtering Filter size ∈ [3, 15]

Salt & pepper noise noise density ∈ [5%, 15%]
scaling Scaling ratio ∈ [0.2, 2.0]
rotation Rotation angle ∈ [0, 5.0]
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4.2. Discriminability

To evaluate the anti-collision performance of image hashing, 696 hash codes are generated via the
proposed PIH scheme, based on 696 test images from the CVG-UGR image database [41]; following
this, 378,400 normalized Hamming distances are calculated between the hash pairs of different images.
The histogram of the normalized Hamming distances is shown in Figure 4. One finds that the
distribution of the normalized Hamming distance proximately obeys a normal distribution with a
mean of µ = 0.4825 and with a standard variation of δ = 0.0451. Consequently, given the threshold
τ < µ, the collision probability Pc can be computed as follows:

Pc(τ) =
1√
2πδ

∫ τ

−∞
e(−

(x−µ)

2δ2 )dx =
1
2

er f c
(
−τ − µ√

2δ

)
, (17)

where er f c(•) is a Gauss error function. The collision probabilities of the proposed PIH scheme
for different thresholds τ are shown in Table 3. From this table, it can be concluded that the
collision probability decreases with a decreasing threshold τ. Additionally, the hashes generated
by the proposed PIH scheme have a better discriminability than some of the existing image hashing
schemes [13,24,26].
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Table 3. A comparison of collision probability of different schemes under various thresholds.

Threshold τ

Collision Probability

Liu et al.’s
Scheme [13]

Davarzani et al.’s
Scheme [24]

Qin et al.’s
Scheme [26]

Proposed
Scheme

0.26 0.3694 2.1125 × 10−6 1.5412 × 10−5 4.0388 × 10−6

0.24 0.1351 1.1043 × 10−6 2.2805 × 10−6 3.7881 × 10−8

0.22 0.0306 5.6748 × 10−7 2.2853 × 10−7 2.9354 × 10−9

0.20 0.0041 2.8665 × 10−7 3.0222 × 10−8 1.8778 × 10−10

0.18 3.2451 × 10−4 1.4233 × 10−7 2.7002 × 10−9 9.9118 × 10−12

0.16 1.4608 × 10−5 6.9462 × 10−8 2.0399 × 10−10 4.3144 × 10−13

0.14 3.7352 × 10−7 3.3320 × 10−8 1.2995 × 10−11 1.5481 × 10−14

0.12 5.3909 × 10−9 1.5710 × 10−8 6.9822 × 10−13 4.5771 × 10−16

0.10 4.3729 × 10−11 7.2801 × 10−8 3.1634 × 10−14 1.1149 × 10−17

4.3. Security

In our scheme, the image hash is dependent on the secret key, and different secret keys will
produce distinct hashes. Figure 5 tests the security of the proposed PIH scheme based on the average
normalized Hamming distance sequences (with a size of 1001), between the hash pairs generated by
one correct secret key and those generated by 1000 wrong secret keys. One can observe that only
the 500th normalized Hamming distance (with the correct secret key) is located in the vicinity of 0,
and it is very difficult for an unauthorized user to get the same hash without the correct secret key.
The proposed PIH scheme is therefore key-dependently secure.
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5. Conclusions

In this paper, we propose an effective PIH scheme based on LLRR and rotation invariant uniform
LBP. LLRR is first employed to obtain a principal feature matrix and a salient feature matrix. Following
this, rotation invariant uniform LBP is used to extract robust features for perceptual hash generation.
The ability of LLRR to extract salient features, along with the effective texture feature extraction
ability of LBP, are both helpful to robustness and discriminability. Experiments show that our
proposed perceptual hashing scheme is robust to content-preserving attacks such as JEPG compression,
low-pass filter, noise addition, slight rotation and scaling, and that it has better robustness and
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discriminability performance than existing hashing schemes. In addition, the hashing scheme has high
key-dependent security.
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