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Abstract: Depth image super-resolution (SR) is a technique which can reconstruct a high-resolution
(HR) depth image from a low-resolution (LR) depth image. Its purpose is to obtain HR details
to meet the needs of various applications in computer vision. In general, conventional depth
image SR methods often cause edges in the final HR image to be blurred or ragged. To solve this
problem, an edge-guided method for depth image SR is presented in this paper. To get high-quality
edge information, a pair of sparse dictionaries was applied to reconstruct edges of depth image.
Then, with the guidance of these high-quality edges, a depth image was interpolated by using
a modified joint bilateral filter. Edge-guided method can preserve the sharpness of edges and
effectively avoid generating blurry and ragged edges when SR is performed. Experiments showed
that the proposed method can get better results on both subjective and objective evaluation, and the
reconstructed performance was superior to conventional depth image SR methods.

Keywords: depth image; super-resolution; sparse coding; joint bilateral filter

1. Introduction and Related Works

In recent years, with the rapid development of computer vision technology, the depth information
of scenes becomes increasingly essential for many applications, such as 3D Reconstruction [1,2],
Augmented Reality [3], Robot Navigation [4] and so on. Some active sensors [5], such as Kinect and
PMD (Photonic Mixer Device), can easily acquire depth information of scenes. Then, this information
will be used to create a depth image. However, due to the theoretical and practical limitations,
the achievable resolution of any depth imaging device is usually too low to meet the needs of many
practical applications. How to improve depth image resolution is an urgent problem that needs to
be solved. One way to solve this problem is to apply some sophisticated vision sensors. However,
these sensors are usually very expensive. Another way is to use super-resolution (SR) algorithm.
Compared with expensive sensors, SR algorithm, not relying on hardware configuration, is evidently
a low-cost approach. Inspired by the idea of color image SR, researchers have proposed many
promising depth image SR methods [6—8] in recent years, which can improve the resolution of depth
image effectively.

According to the difference of referenced information, depth SR can be mainly divided into four
categories: (1) interpolation; (2) SR from LR depth image frames; (3) SR through fusing depth image
and HR color image; and (4) example-based SR.

(1) Interpolation: There are many analytic methods for image interpolation, including nearest
neighbor interpolation, bilinear and cubic interpolation [9]. However, when interpolation is done by a
large factor, these analytic methods can cause image edge to be ragged and blurred because of the big
value difference of pixels across edges. To solve the problem, Pang [10] presents an SR method based
on bilinear interpolation and adaptive sharpening filter. This method can suppress effectively the
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edge-blurred effect. Ning [11] proposes an improved cubic interpolation algorithm, which uses cubic
interpolation to compute the pixels in smooth areas and uses edge-vector interpolation to compute
the pixels near edges. Xie [8] presents an edge-guided approach. This method reconstructs sharp HR
edges through Markov random field at first, and then an SR depth image can be interpolated under
the guidance of these edges. With the help of edge-guided information, the sharpness of edges can be
well preserved in the final SR image. At the same time, some bilateral filtering methods [12,13] can
also preserve edge well.

(2) SR from LR depth image frames: The HR image can be reconstructed by fusing the
complementary information among a few LR depth images captured from the same scene. Schuon [14]
uses an optimization framework with a bilateral total-variation regularization term to solve such
a SR problem. Rjagopalan [15] constructs an energy function through the Markov Random Field,
and minimizes the energy function to get the HR image. Ismaeil [16] proposes a dynamic-scene SR
method for depth image to deal with the problem of non-rigid body motion between LR images.
Gevrekci [17] uses convex projection method to construct the imaging model of depth image sequence
for depth image SR.

(3) SR through fusing depth image and HR color image: Most commercial depth cameras can get a
depth image and a color image about the same scene simultaneously, and usually the resolution of the
color image is higher than that of the depth image. Thus, the HR depth image can be reconstructed with
the help of HR color image. Ferstl [18] calculates an anisotropic total variation diffusion tensor from
HR color image, and then the tensor is used to reconstruct the SR depth image. Yang [19] combines
bilateral filter with median filter to compute adaptively weights from the HR image, and then the
depth image is interpolated according to these weights. Lo [20] proposes a depth image SR method
based on joint trilateral filter. The method considers not only the weight of distance, but also the
weight of pixel value and gradient.

(4) Example-based SR: This method learns the transformation between LR and HR image
from example database, and then an HR depth image can be reconstructed through the learned
transformation when an LR depth image is inputted. Yang [21] uses a sparse coding method to grasp
the transformation. Therefore, HR image patches can be represented by a sparse linear combination of
HR dictionary atoms. Zeyde [6] modifies the above sparse coding method, and uses the K-SVD [22]
and the orthogonal matching pursuit (OMP) [23] to train an LR and HR dictionary pair. Xie [24]
proposes a pairwise dictionary training method with local coordinate constraints for depth image
SR. Timofte [7] clusters the dictionary atoms into sub-dictionaries using K-NN algorithm, and then
the HR patches can be represented by the most suited sub-dictionary. Kim [25] presents an accurate
color image SR method based on VGG-NET [26], which can also be applied to solve the depth image
SR problem.

Although the above methods can effectively reconstruct SR depth image from LR input,
some existing problems cannot be ignored as well. The methods of the first category can cause
discontinuous regions jagged and blurred. The methods of the second category need to be subject to
the rigorous assumption that adjacent images only have slight movements on the plane parallel to the
focal plane of camera. This assumption is usually difficult to satisfy in practical scenarios. Depth image
SR based on fusing depth image and HR color image needs first to obtain an HR color image which
register fully with the depth image. The example-based method has a strong dependence on training
databases. That is, the difference of training databases may have a great effect on experiment results.

To address these problems, in this study, an edge-guided method for depth image SR is presented.
We first train a pair of sparse dictionaries to recover high-quality edge information, and then an HR
depth image is interpolated with the guidance of these high-quality edges. This method is a mixture of
the example-based method and the interpolated method. We make full use of the advantage of the
two methods. In this way, the proposed method can achieve improved results that are comparable to
current state-of-the-art methods. Our approach needs neither strict assumptions nor the assistance of
HR color image, so it can be used to improve depth image resolution conveniently. At the same time,
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our approach not only can achieve the goal of preserving sharp edge in depth image SR, but also can
get a better color image SR.

The remainder of this paper is organized as follows. A detailed overview of the proposed method
is presented in Section 2. Section 3 reports and discusses the results of the experiments. Finally,
Section 4 concludes the paper.

2. Proposed Method

In this section, we first present the general steps of our work. Then, the way we have built the LR
and HR edge dictionaries is discussed. Afterward, we continue with the details of how to interpolate
HR image by joint bilateral filter.

To keep blurred and jagged edges away from the final SR result, we present a novel depth image
SR method, which employs joint bilateral filter based on edge guidance for LR-to-HR reconstruction.
The general steps of the proposed depth image SR method are summarized and shown in Figure 1.
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Figure 1. Pipeline of the edge-guided depth image SR.

To avoid computational complexity caused by the different size between LR image and the final
HR image, we first use simple interpolation algorithm (bicubic interpolation) to magnify the input
LR image I; to the same size as the final HR image. However, interpolation algorithm can cause
blurred and jagged effects near edges, so we use a Shock filter [27] to clear the magnified image for
further process.

Edges provide essential structural information to describe the objects in the scene. Thus, we first
focus to recover HR edges before reconstructing the whole image. As illustrated in Figure 1, LR edge
map E; is extracted from the preprocessed LR image. Edge map preserves only the primary structure
information and abandons widespread smooth area. This leads to it having very strong sparseness.
Thus, we choose sparse coding method to recover HR edge map E;, in our method.

After getting HR edge map E;, depth image Ij, will be interpolated by a modified joint bilateral
filter under the guidance of the high-quality edge map. The usage of bilateral filter can not only
preserve the edge sharpness but also suppress noise further.
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From the above introduction, the proposed method mainly includes two important parts: (1) edge
recovery using sparse coding method; and (2) edge-guided depth interpolation using bilateral filter.
The details on these two parts will be discussed in the following subsections.

2.1. Edge Recovery Using Sparse Coding

In this section, we first present some notation for our work. Then, the way we have built the LR
and HR dictionaries for edge map recovery is discussed.

2.1.1. Sparse Dictionary Training

The LR and HR images are represented as z; € RN, and y;, € RNi, where Nj, = s - Nj,and s > 1
is some integer scale-up factor. The blur operator is denoted by H : RNt — RN/, and the decimation
operator for a factor s is denoted by D : RN — RN, The acquisition model of how to generate an LR
image from an HR image can be described as:

z; = DHy;, +v @

where v is an additive noise in the acquisition process. Given z;, the problem is to find § € RN
such that § ~ yj. That s, ||§ — y||, tends to zero. To avoid the complexities caused by the different
resolutions between z; and yy, it is assumed that the image z; is scaled-up by a simple interpolation
operator Q : RN — RNi (e.g., bicubic interpolation) that fills out the missing pixels between the
original pixels in the input LR image. The scaled-up image shall be denoted by y; and it satisfies
the relation:

y1 = Qz; = Q(DHyj, +v) = QDHyj, + Qv = Uy;, +V )

The reconstruction problem now is cast to process y; € RNt and produce a result §, € RN,
which will get as close as possible to the original HR image, y;, € RM:.

The algorithm we propose operates on patches extracted from y;, aiming to estimate the
corresponding patch from yj;,. Let p* = Rfy be an image patch of size n x n centered at location
k and extracted from the image y by the linear operator R. The stride d is used for spatially shifting of
image patches. Hence, the LR and HR patches are extracted as:

pf = Rhy,, pf = Rly, ®)

It shall be further assumed that pé‘ and pﬁ can be represented sparsely by coefficients q* over the
dictionary pair A; and Ay, respectively, namely:

py = Aiq", pf = Anq" @)

To acquire such a dictionary pair A; and Ay, we choose to apply jointly dictionary training method
proposed in ref. [7].
The flow of training dictionary pair is summarized in Algorithm 1. The first step is to construct

the training set. A set of HR training images {y;l} _are collected, LR images {yf } _are constructed
] ]

using scale-down operator U and pairs of matching patches that form the training database {pﬁ, pf‘ }k'

are extracted. After finishing training database preparation, we can enter into dictionary learning stage.

For LR dictionary A;, the K-SVD dictionary training procedure [22] is applied to LR patches

{p;‘ }k’ resulting in the dictionary A;:

. 2
A1 {q"} = argmin}_ |Ipf — Aiq"||” st [qp <L ®)
A {d} k
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A side product of this training is the sparse representation coefficients vectors {qk}k that

correspond to the training patches { p¥} . is the zero norm, and ||q*||, is used to count the
P &P p; ‘ 0 9 llo

nonzero entries of vector q. L is a constant that controls sparsity.

The next step is the high-resolution dictionary construction. Recall that we assume that the HR
patch pﬁ can be approximated by p’fl = A;q~. The dictionary A, is therefore sought such that this
approximation is as exact as possible, i.e.,

. 2 .
Ay, = argimmz Ipk — Ahqk||2 = argAmmHP;Z - AhQH% (6)
h k h

where the matrix Py, is constructed with the HR training patches {p’,; }k as its columns, and similarly,

Q contains {qk}k as its columns (give that Q has full row rank). ||||; is the Frobenius norm [28].

The solution of the least-squares problem is given by the following expression:

A, =P'QT(QQ") " )

Algorithm 1.

Input: A set of HR training images {yL} )
]
Output: LR-HR dictionary pairwise {A;, A}

Step 1. Construct training set: use scale-down operator U to construct LR images {y{} _from HR training
]

images {YL} and extract pairs of matching patches that form the training database {p’;l,pfc }k from images
j j
{yh }j and {yl }j'
Step 2. LR dictionary training: apply K-SVD [22] dictionary training procedure to train LR patches {pf‘}k,
resulting with LR dictionary A; and the sparse representation coefficients vectors {qk }k.

Step 3. HR dictionary training: HR dictionary Ay, is trained using the sparse representation coefficients

vectors {qk}k to match corresponding LR one

2.1.2. Edge Map Recovery

Once we get LR-HR dictionary pair {A;, Aj,}, high-quality edge map E;, can be represented by
a sparse linear combination of HR dictionary atoms. Before starting reconstruction, we first process
the input LR image I; to obtain an LR edge map E,;. The process can be divided into the following
three steps:

(1) The input image I; is interpolated to the same size as the desired HR image using bicubic
interpolation algorithm, producing an LR image 1;.

(2) Shock filter [27] is applied to suppress zigzag effect produced by up-sampling interpolation.

(3) Canny operator is used to extract edge E; from I;.

Then, the HR edge map E;, can be reconstructed from E; using the LR-HR dictionary pair {A;, Aj,}.
The process is described in Algorithm 2.
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Algorithm 2.

Input: LR-HR dictionary pairwise {A;, A, } and edge map E;

Output: High-quality edge map Ej,

Step 1. Extract patches {b;‘ }k from edge map Ej;

Step 2. Patches {b;‘ }k can be represented by the atoms of LR dictionary A;, and the side product is the
corresponding sparse coefficients {ck } ;

Step 3. Multiply the obtained sparse coefficients {ck }k by HR dictionary Ay, to find HR patches {b’;l }k ;

Step 4. The high-quality edge map Ej, can be constructed by merging these HR patches {bﬁ }k' and the

overlap regions of image patches are processed by the method of Zeyde [6].

2.2. Edge-Guided Depth Interpolation

In this section, we first introduce some notation during interpolation. Then, the method of
discriminating pixels distribution is discussed.

2.2.1. Modified Joint Bilateral Filter

After obtaining HR edge image E;, HR depth image I, can be interpolated through a modified
joint bilateral filter with the guidance of Ej. For each pixel p in the target HR depth image I, its value
can be interpolated by a local neighborhood of LR image:

W) = ¥ Nla D) Slp g L) f(Bupg) ®

P 4eN(p)

where N(p) is an s x s neighborhood window centered at pixel p. p | and g | represent pixel
coordinate corresponding to pixel p and pixel 4 in the LR depth image I;, and only integer coordinate
is considered. f;(-) is a Gaussian kernel with standard deviation ¢ and mean value 0, which is used to
weight the correlation of different pixel in the neighborhood. k, is a normalizing factor. f,(-) is a binary
indicator, which determines whether or not two pixels are on the same side of the edge. The indicator
is defined as:

1 if pixel p and pixel q are at the same side of Ej,

fr(Ew p,q) = { 0  otherwise 8

The concrete form of f;(-) can be created by discriminating the distribution of pixels p and 4.

2.2.2. Discrimination of pixels distribution

Firstly, the set C, is used to store the pixels on the edge. The pixels on the line segment between
pixels p and q are stored in set L. Pixels p and pixel g are on the same side of the edge if the intersection
of sets C, and L is null, as shown Figure 2a. The distribution of pixels p and g may have two situations
when the intersection of sets C, and L is not null. Pixels p and q are not on the same side of the edge in
Figure 2b, but they are on the same side in Figure 2c. In this situation, we divide each neighborhood
window into some sets according to the edge. The process is summarized in Algorithm 3.

As shown in Figure 2, white lines represent the edge pixels, the whole black portion is a
to-be-divided area, and an image patch will be area-divided based on the connectivity of the black
area. In addition, there are some special edge curve formats that need to be stated clearly. As shown
in Figure 3, if the edge curve is not traversing the entire image patch, we think this is a special form
of connectivity, that is, a form where interior space which is enclosed within the edge pixels is zero.
Furthermore, the details of the algorithm are as follows.
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Figure 2. Distinguish of two pixels near edge.
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Figure 3. Some special forms of the edge curves.

Algorithm 3.

Input: An image patch A with edge pixels and the set C,

Output: Differentsets C; (i =1,2,3...... n), where i is the index of sets, and n is the total number of sets.

Step 1. The initial pixel 7 is chosen randomly from A. The following will be sequentially obtained based
on the coordinates;

Step 2. If v ¢ C,, we assume it belongs to C;. If ¥ € C, the algorithm returns to the Step 1;

Step 3. Adjacent pixels of the newly added pixels in set C; are judged. If the adjacent pixel does not
belong to C,, we add it into set Cy;

Step 4. Repeat Step 3 until set C; does not change;

Step 5. The remaining pixels are judged by the same method as Cy;

Step 6. Area A is divided into different pixel sets C; (i =1,2,3...... n).
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After determining the distribution of pixels, pixels p and g can be discriminated easily whether
on the same side of the edge. They are on the same side of the edge when they belong to the same
pixel set, otherwise they are not on the same side. Once the kernel functions of bilateral filter are
determined, the HR depth image can be interpolated using Equation (9). When interpolation is
performed, the Gaussian kernel f;(-) also suppresses some noise for the depth values. In addition,
with the guidance provided by the indicator f(-), only pixels at the same side of the edge will be
considered during interpolation so that edges can be well preserved.

3. Experiments and Analysis

In this section, we analyzed the performance of our proposed depth image SR method and
benchmarked it in quantitative and qualitative comparison with other state-of-the-art methods. All the
experiments are implemented in a same experimental environment.

3.1. Test Environment and Parameter Setting

In our experiments, the programming tool was MATALAB (v.2016a) [29], and the test environment
is the following. The processor was Intel(R) Xeon(R) CPU E5-2620 v3@ 2.40 Hz. Computer memory
size was 64.0 Gb. The multithreading technology was used in the experiment. The proposed
algorithm supports GPU computing, but it is not used. Test images were from the Middlebury
Stereo database [30,31].

Some parameters were selected based on the smallest Root Mean Square Error (RMSE).
We calculated average RMSE of 10 test images by varying the size of image patches fromn xn =3 x 3
ton x n = 13 x 13 per experiment. The results are depicted in Figure 4a. By comparison, we chose
n x n =9 x 9 as the size of image patch. Similarly, we also compared the stride d of patch selection
in Figure 3b. The stride is determined to be 2. The size of neighborhood window wass xs = 7 x 7
when joint bilateral filter was performed. The reliability of the value s has been confirmed in [8].
The standard deviation o = 0.5 for f;(-) in Equation (8). Dictionaries were trained using the database
from Yang [32] which consisted of 100,000 patches extracted from 30 training images.
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\ »
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Figure 4. The sensitivity of patch size n and stride d.

3.2. Experimental Results and Comparative Analysis

To compare the proposed method quantitatively, we chose RMSE, the Peak Signal Noise
Ratio (PSNR), Structural Similarity (SSIM) and Percent of Error (PE) [8] to evaluate experimental
results. Tables 1-4 show experimental results of 10 test images from Middlebury Stereo database
using different SR methods. These methods included: Neighbor Embedding with Locally Linear
Embedding (NE + LLE) [33], Neighbor Embedding with Least Squares (NE + LS) [34], Neighbor
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Embedding with Non-Negative Least Squares (NE + NNLS) [35], Global Regression (GR) and
Anchored Neighborhood Regression (ANR) [36], Adjusted Anchored Neighborhood Regression for
Fast Super-Resolution (AANR) [7], Accurate Image Super-Resolution Using Very Deep Convolutional
Networks (CNN) [25], the sparse coding method of Yang [21], the modified sparse coding method of
Zeyde [6], and edge-guided method based Markov random field of Xie [8].

Table 1. RMSE values on the Middlebury Stereo database with scaling factor of 4.

RMSE X4  Bowling Artl Aloe Cones Indian Venus Warrior Tsukuba Hand Dove

NE + LLE 1.841 2567 2370 1380 0820  0.654 3.645 2.861 1.828  1.004
NE + LS 1811 2512 2332 1357  0.802  0.634 3.630 2.860 1.839  1.000
NE+NNLS 1812 2523 2326 135 0803  0.637 3.627 2.867 1.820  1.012
GR 198  2.838 2585 1492 0906  0.726 3.864 3.142 2004  1.088
ANR 1.807 2634 2429 1393  0.836  0.662 3.723 2.946 1.885  1.022
AANR 1.855 2713 2478 1456  0.855  0.674 3.707 2,972 1925  1.043
CNN 2238 3798 3245 1778 0987  0.845 4.424 3.505 2174 1214
Yang 2112 3361 2865 1514 0908  0.733 4.360 3.186 2026  1.098
Zeyde 1.803 2494 2329 1338 0798  0.635 3.620 2.844 1832 0.989
Xie 1766 2935 2583 1240 0771  0.617 4.081 3.009 1926  1.010
Ours 1.662 2368 2242 1230 0705  0.541 3.325 2.768 1796  0.935

Table 2. SSIM values on the Middlebury Stereo database with scaling factor of 4.

SSIM x4 Bowling Artl Aloe Cones Indian Venus  Warrior Tsukuba Hand Dove

NE + LLE 0916 0712 0.875 0874 0987 0937 0.893 0.827 0983  0.988
NE + LS 0923 0735 0884 0890 0988  0.951 0.903 0.814 0984  0.989
NE+NNLS 0923 0728 0884 0.887 0989  0.948 0.902 0.829 0984  0.989
GR 0.899  0.656 0.847 0850 0984 0931 0.875 0.833 0978  0.985
ANR 0916 0711 0873 0879 0987 0944 0.892 0.782 0983  0.988
AANR 0924 0750 0.880 0.891 0987 0953 0.906 0.801 0985  0.990
CNN 0922 0745 0865 0880 0987  0.951 0.904 0.843 0983  0.988
Yang 0909 0677 0857 0861 0985  0.940 0.884 0.795 0980  0.986
Zeyde 0925 0740 0.885 0.893  0.988  0.950 0.905 0.839 0984  0.989
Xie 0946 0791 0908 0916 0992  0.971 0.931 0.855 0989  0.993
Ours 0953  0.804 0912 0917 0991  0.968 0.936 0.879 0.990  0.992

Table 3. PSNR values on the Middlebury Stereo database with scaling factor of 4.

PSNR x4  Bowling Artl Aloe Cones Indian Venus Warrior Tsukub  Hand Dove
NE + LLE 42827 39942 40.634 45328 49.852  51.818 36.896 38.999 42901  48.096

NE+LS 42.972 40.099 40.776 45475  50.045  52.084 36.932 39.001 42.850  48.126
NE + NNLS 42.966 40.091 40.798 45.480 50.034  52.038 36.938 38.980 42938  48.130
GR 42.171 39.069 39.878 44.653 48984  50.912 36.389 38.186 42.104  47.396
ANR 42.691 39.716 40.419 45250 49.678 51.713 36.712 38.759 42,632 47935
AANR 42.761 39.460 40.245 44.864 49485  51.553 36.748 38.669 42451  47.762
CNN 40.667 36.538 37.764 43.131  48.237  49.587 35.214 37.237 41396  46.444
Yang 41.016 37.600 38.655 44.526 48960  50.821 35.340 38.064 42.008 47314
Zeyde 43.008 40.193 40.784 45.599  50.085  52.071 36.954 39.049 42.882  48.219
Xie 42.124 38.778 39.332 46260 50.384  52.317 35.915 38.560 42447  48.044
Ours 44.255 41.015 41.110 46.332 51.163  53.459 37.694 39.605 43.552  48.707

To make the tables readable, we marked the top three reconstruction methods in the four tables.
The value in bold is the best. The value with single underline is the second best, and this is the value
that is closest to the best value in the optimal direction. Likewise, the value with double underlines
denote the third best, which is closest to the second best value in the optimal direction. From the tables,
we can conclude that the RMSE and PSNR values of our method both rank the first in the test results.
There were seven SSIM values ranked first and three SSIM values ranked third using our method in the
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test results. Three PE values of our result were first, and seven PE values were second. These objective
measurements showed that our method can get good performance compared with other methods.

Table 4. PE values on the Middlebury Stereo database with scaling factor of 4.

PE x4 Bowling Artl Aloe Cones Indian Venus Warrior Tsukuba Hand  Dove
NE + LLE 6.725 24.519 16.890  9.050 2403 2.690 9.427 15.243 4.293 2.730

NE + LS 6.216 22944 15948 8.155 2.230 2412 8.638 14.415 4.260 2.584
NE + NNLS 6.482 23725 16.246 8.478 2.303 2.583 8.918 14.730 4.332 2.782
GR 8.438 30.248 20.611 11.200 3.191 3.539 10.776 18.229 5137 3.719
ANR 7.017 25.183 17.360 9.052 2.506 2.781 9.912 15.182 4.534 2911
AANR 5.274 21.084 14.741 7.385 2.047 1.967 7.640 12.816 3.293 2.248
CNN 4232 19.169 13.454 6.993 1.795 1.696 8.077 11.340 2.624 1.690
Yang 8.208 30.547 19.799  9.955 2.867 2.996 12.692 17.170 5.341 3.430
Zeyde 6.040 22714 15751 7968 2.208 2.447 8.228 14.240 4.036 2.544
Xie 2.405 10.694 8.299 2.829 0.951 0.505 2.575 4.239 0.918 0.608
Ours 2.384 10.676 8.257  3.294 1.076 0.641 2.603 4.586 1.089 0.751

We also provided visual assessments on test image “cones” and “tsukuba”. The ground-truth
HR image and the final SR images using the top five methods in objective evaluation tables
(4% scaling factor) are shown in Figures 5 and 6, and note that except for Figures 5a and 6a, all the
remaining experimental images for comparison are all generated by ourselves after repeating the
original algorithms.

Figure 5. Visual comparisons of “cones”: (a) ground truth (reprinted with permission from [37]);
(b) Kim [25]; (¢)AANR [7]; (d) Zeyde [6]; (e) Xie [8]; and (f) our method.

(f)
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Figure 6. Visual comparisons of “tsukuba”: (a) ground truth (reprinted with permission from [38]);
(b) Kim[25]; (c)AANR [7]; (d) Zeyde[6]; (e) Xie[8]; and (f) our method.

From the above Figures, we can see that, in the SR result of Kim et al. [25], serious zigzag effect
exists. Zeyde [6] and Timofte [7] could relieve zigzags using sparse coding method, but still introduced
many artifacts around edges. The method of Xie [8] could get good results, but the detail information
of edges could not be reconstructed very well compared with our method. In Figures 5f and 6f, we can
see clearly that our reconstructed depth images not only avoided blurred edges, but also reduced
zigzags near edges and preserved sharpness of edges.

4. Conclusion and Future Works

Conventional SR methods can cause edges to be blurred and jagged. Aiming at solving this
problem, this paper proposes an edge-guided SR method. First, high-quality edge information is
reconstructed based on generating a dictionary from pairs of HR and their corresponding LR edge
patches. Then, with the guidance of these recovered edges, the SR depth image is interpolated by
a joint bilateral filter. The guidance of high-quality edge information can improve the performance
of SR algorithm resulting in sharper SR depth image. The quantitative and qualitative analyses of
the experimental results showed the superiority of the proposed technique over conventional and
state-of-the-art techniques.

There are still some shortages of the proposed method. The running time is higher than some
methods shown in Table 5. The process of dictionary pair requires acquiring a database from external
HR-LR images. In the future, we will further improve the proposed method in the following ways.
(1) Database Construction: We will construct an image pyramid by interpolating the inputted image
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across different scales, and then database can be extracted from image pyramid. (2) Dictionary Training:
We will use an optimal approach to train a sparse dictionary so that the running time can be reduced.

Table 5. Running time on the Middlebury Stereo database with scaling factor 4.

Time (s) Bowling Artl Aloe Cones Indian Venus Warrior Tsukuba Hand Dove
GR 2.7 0.7 1.6 1.3 5.2 1.3 39 0.8 5.3 5.5
ANR 3.2 0.8 1.8 1.5 5.8 1.4 4.8 1.0 6.1 6.4
NE + LS 9.1 2.5 49 4.2 17.0 4.1 13.1 24 17.3 18.5
NE + NNLS 56.3 151 296 27.0 104.8 26.0 66.6 10.4 104.3 110.4
NE + LLE 11.7 3.0 6.6 5.4 215 53 15.7 29 21.8 21.9
AANR 3.4 0.9 2.0 1.6 6.4 1.6 4.5 0.9 6.4 6.2
CNN 6.7 21 4.8 35 12.9 3.6 10.0 2.3 13.7 12.9
Zeyde 53 1.4 3.1 27 9.9 24 6.7 1.3 9.9 10.6
Yang 986.2 2604 7269 541.5 1937.3 485.1 864.7 177.5 1786.7  1419.8
Xie 594.9 5174 8646  608.9 913.7 141.3 759.9 373.8 469.5 417.7
Ours 92.1 747  105.0 101.3 177 .4 56.9 115.6 51.7 76.4 753
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