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Abstract: With the rapid increase of private vehicles, traffic congestion has become a worldwide 

problem. Various models have been proposed to undertake traffic prediction. Among them, 

autoregressive integrated moving average (ARIMA) models are quite popular for their good 

performance (simple, low complexity, etc.) in traffic prediction. Localized Space-Time ARIMA 

(LSTARIMA) improves ARIMA’s prediction accuracy by extending the widely used STARIMA with 

a dynamic weight matrix. In this paper, a localized space-time autoregressive (LSTAR) model was 

proposed and a new parameters estimation method was formulated based on the LSTARIMA 

model to reduce computational complexity for real-time prediction purposes. Moreover, two 

theorems are given and verified for parameter estimation of our proposed LSTAR model. The 

simulation results showed that LSTAR provided better prediction accuracy when compared to other 

time series models such as Shift, autoregressive (AR), seasonal moving average (Seasonal MA), and 

Space-Time AR (STAR). We found that the prediction accuracy of LSTAR was a bit lower than the 

LSTARIMA model in the simulation results. However, the computational complexity of the LSTAR 

model was also lower than the LSTARIMA model. Therefore, there exists a tradeoff between the 

prediction accuracy and the computational complexity for the two models. 
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1. Introduction 

In recent decades, the number of vehicles in urban areas has increased rapidly and the urban 

road network is becoming larger and more complex. Due to this, traffic congestion has become a 

major problem in big cities, which has led to more fuel consumption and environment pollution. 

Statistics show that the average annual traffic congestion cost in the US in 2014 was 1433 dollars per 

auto commuter, or over 5 billion dollars per city for very large urban areas [1]. In order to improve 

the efficiency of the urban road network and reduce traffic congestion, intelligent transportation 

systems (ITS) [2] have been developed by integrating information technology, automatic control 

technology, and geographic information systems (GIS). With the introduction of ITS, real-time traffic 

information is available to the vehicles in the road network for trip planning through vehicular 

navigation systems or dynamic route guidance systems. Unlike the computer network, which can 

transmit data package from source to destination in a very short time, vehicles in urban road 

networks need much longer times to travel to their destinations. Thus, trip planning should consider 

not only current traffic information, but also future traffic conditions. Therefore, short-term traffic 
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flow prediction with real-time traffic information as prior knowledge is quite essential and has 

attracted increasing attention [3]. 

The earliest traffic prediction method was based on the macroscopic traffic simulation model 

proposed by Lighthill and Whitham [4] and Richards [5], known as the Lighthill-Whitham-Richards 

(LWR) model. In this model, vehicles in the highway are treated as “traffic flow” and their dynamics 

can be analyzed with the continuous fluid conservation equation in fluid mechanics. The microscopic 

traffic modeling method of cellular automaton (CA) [6] simulates the traffic flow dynamics by 

analysis of the interaction of individual vehicles. Traffic simulation models focus on traffic flow 

dynamics using only current traffic information; no historic information is needed. The weakness of 

the traffic simulation model is that it needs the origination-destination (OD) matrix of all vehicles to 

simulate the traffic dynamics, which is normally hard to collect. 

The autoregressive moving average (ARMA) model or autoregressive integrated moving 

average (ARIMA) model [7], also called the Box-Jenkins model, is an important prediction model in 

economics and other areas. Furthermore, it is considered as the standard of time series prediction. 

ARIMA and its variations as seasonal ARIMA (SARIMA) [8], vector ARMA (VARMA) models [9], 

and so on have been widely used for traffic prediction. The space-time ARIMA (STARIMA) [10] 

model has a long historical background which is based on the ARMA with exogenous inputs 

(ARMAX) model. Since the 1980s, STARIMA has been applied to different areas such as river flow, 

spread of disease, spatial econometrics, and so on. In 2005 [11], the STARIMA methodology was first 

proposed for the spatiotemporal behavior of traffic flow. In the STARIMA model, traffic flow data is 

in the form of a spatial time series which is collected at specific locations at constant intervals of time 

to be used for the short-term forecasting of space-time stationary traffic-flow processes. Furthermore, 

the model can be used for assessing the impact of traffic-flow changes on other parts of the network 

through the use of weight matrices estimated on the basis of the distances among the various locations. 

Unlike the VARMA model, which is a generic model without any known information, the number of 

parameters to be estimated for STARIMA is much less, as the road network topology is considered. 

However, in the proposed STARIMA model [11], the weight matrices are assigned equally without 

considering the traffic condition differences between the directly connected first order spatial neighbors 

and the not directly connected higher order neighbors in the whole road network. 

In the past 10 years, there have been many research studies on STARIMA. Min et al. [12] 

presented a dynamic form of the STARIMA that accounted for temporal dynamics. They replaced 

the traditional distance-weighted spatial weight matrix with a temporally dynamic matrix that 

reflected the current traffic turn ratios observed at each road intersection. The weight matrix can be 

updated in real time based on current conditions, but the method was limited to intersection-based 

flow data and was fixed spatially. 

Tao Cheng et al. [13] extended the standard STARIMA model to a Localized STARIMA 

(LSTARIMA) model, which described the modeling of dynamic and heterogeneous autocorrelation 

in network data with improved traditional models. The constructed model provided an improvement 

over the traditional space-time series models. Their paper showed that the performance of prediction 

was improved when compared to standard STARIMA models. The LSTARIMA model captured the 

autocorrelation of traffic data locally and dynamically in the road network with a dynamic spatial 

weight matrix. The LSTARIMA model has also shown good performance in traffic prediction without 

the need for data pre-processing (e.g., a logarithmic transformation and differencing). Compared 

with other ARIMA variations, the LSTARIMA model has a simpler structure (because the 

LSTARIMA has smaller AR, and MA order values p and q). As the future traffic state of the current 

road depends not only on its prior states, but also on its neighbor roads, the weight matrix of roads 

is key to traffic flow prediction. 

In this paper, our contributions are as follows: 

1. An LSTAR model with lower computational complexity based on the LSTARIMA was 

proposed. In the LSTARIMA model of Cheng et al. [13], the same weight matrix W was used for 

AR and MA components of the whole road network. We used different matrices, W and U, for 

AR and MA components. And individual observation 𝑧𝑖(𝑡)  was used instead of the N-
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dimension column vector 𝑍(𝑡) to allow each road to have its own weight matrix W, U. Since the 

ARMA model can be properly approximated by a high-order AR model, we further developed 

the reconstructed LSTARIMA model into our proposed LSTAR model. 

2. A more reasonable weight matrix and new traffic information collection with the Vehicular Ad 

hoc Networks (VANET) approach was proposed. As the number of vehicles output from 

upstream roads has more impact on the future traffic condition compared to speed difference, it 

was used to determine the dynamic spatial weights instead of the speed difference. To obtain 

the traffic information needed for weight matrix determination, the vehicles stopped at red lights 

were used to collect traffic information via VANET. 

3. Two theorems were given and verified for parameter estimation of our proposed LSTAR model. 

When the distribution of traffic flow is stable, the weight matrix can be treated as time invariant. 

When the traffic flow distribution is not stable, the weight matrix is time variant. For these two 

different cases, we provided two theorems to determine the parameters. 

4. Related simulations were performed. Through the simulation results, we observed that the 

prediction accuracy of LSTAR was a bit lower than the LSTARIMA model. However, the 

computational complexity of the LSTAR model was also lower than the LSTARIMA model. 

Therefore, there existed a tradeoff between the prediction accuracy and the computational 

complexity for the two models. 

The rest of this paper is organized as follows. In Section 2, state-of-the-art traffic information 

collection, traffic prediction, and traffic applications are reviewed. In Section 3, we introduce the 

LSTAR model, the construction of the weight matrix of the LSTAR model, and a new traffic 

information collection method. In Section 4, parameters estimation methods of the LSTAR model are 

given and proven. In Section 5, the experimental evaluation is presented. Finally, Section 6 provides 

the conclusions and identifies future research directions. 

2. State-of-the-Art and Related Topics 

Traffic information collection provides the data input for traffic prediction, and there are many 

applications that use traffic prediction results to improve traffic conditions. In this section, the state-

of-the-art traffic information collection, traffic prediction, and urban traffic applications are reviewed. 

2.1. Traffic Information Collection 

As traffic information is the base data of ITS, how to collect traffic information efficiently is an 

important area of research. Loop detectors are pressure, magnetic, and other sensors buried 

underground to detect if there are vehicles passing over them. They are widely deployed in urban 

areas to count the number of vehicles passing through fixed points of roads. Compared to loop 

detector technology, machine-vision-based traffic monitoring is a state-of-the-art approach with the 

advantages of easy maintenance, real-time visualization, and high flexibility [14]. With properly 

installed cameras, traffic information such as speed, volume, and even traffic accidents can be 

detected. However, it is expensive to establish these systems as well as to maintain a huge number of 

fixed devices on the road side, and they can only gather the traffic information of fixed points. 

With the equipment of global position system (GPS) receivers on vehicles or mobile phones, 

vehicles can detect their own real-time location and speed. An alternative traffic information 

collection approach has been proposed to estimate the traffic state by checking the location and speed 

of some vehicles running on the road [15,16]. These probe vehicles are known as floating vehicles, 

and are normally buses and taxis. Due to the low cost of GPS receivers, the overall cost of the floating 

vehicles system is low. The shortcoming of floating vehicles is that their distribution in the urban 

traffic network is not even in space and time, which means that they may not be able to provide 

complete traffic states of the whole road network. 

Vehicular Ad hoc Networks (VANET) [17–19] are an emerging technology developed for traffic 

security and data transformation [20]. In recent years, many research studies have used VANET to 

collect traffic information. The first type of system uses VANET to only estimate the traffic density of 
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the road by detecting the number of vehicles in the VANET communication range [21]. The other 

type of system assumes that each vehicle is also equipped with a GPS receiver so more detailed traffic 

information can be collected [22,23]. As GPS receivers are more commonly equipped when compared 

with VANET and GPS can provide more information, more research has focused on the approach 

with GPS. With the communication capability of VANET, the collected traffic information can be 

easily shared and used by other ITS applications such as traffic prediction, route planning, and so on. 

After traffic information is collected, it can be used as an input to other ITS applications as base 

data. Since VANET can obtain the traffic information of the whole network without infrastructure 

and can be easily integrated with other ITS systems, it was used to collect traffic information in our 

paper. Section 3.3 discussed our traffic information collection method via VANET in detail. 

2.2. Traffic Prediction 

Short-term traffic prediction is one of the most important topics in ITS research and practice. 

Aside from the ARIMA series prediction method, there have also been many other methodologies 

engaged for this purpose. 

The Kalman filtering method [24,25], which is based on historical data and present data to 

predict a future state, has been widely used in the forecasting of traffic flow. However, its 

computational complexity is too high for complex urban traffic flow prediction. Neural Networks 

(NNs) models [26,27] have also been utilized to predict traffic flow for their high prediction accuracy. 

The weak point of NNs is the long model training time. Other research studies have referred to 

Support Vector Machines (SVM) [28]. However, the error of SVM is high under the circumstance of 

peak periods and blocking traffic accidents compared with the Bayesian network [29]. 

The K-NN method (K-nearest neighborhood) [30] performs well in short-term forecasting even 

when accidents have occurred. However, this algorithm has high complexity and needs a large 

amount of calculation when searching for class neighbors. Markov-based models [31] have also 

shown good performance on traffic flow prediction since the traffic condition at the next interval is 

closely related to the recent states. However, in these models, there are many states to consider. New 

technologies such as big data [32] and particle filtering [33,34] have also been used in traffic 

predication and other urban mobility applications. 

Although these traffic prediction approaches have provided good prediction results in some 

scenarios, most of them are too complex or require a long training time. Thus, there have been 

respectable efforts put towards improving various ARIMA prediction models. 

2.3. Urban Traffic Applications 

Current traffic information and predicted traffic information are the base data of ITS, but they 

are meaningless without practical applications. Route planning and vehicle navigation systems are 

some of the most popular applications that use real-time and predicted traffic information [35]. The 

first-generation route planning system only considers the static features of the road network to obtain 

the shortest path. With the development of real-time traffic information collection technology, 

dynamic route planning has been proposed to re-calculate the new shortest path with the updated 

real-time data at each intersection. Such a system provides better travel planning when compared 

with the static route. However, using only current data may lead to frequent route changes in 

complex traffic conditions. The newest route planning systems use the predicted traffic information 

to arrive at the best and most stable route to the destination. 

The other main applications using current and predicted traffic information are traffic 

management applications. The most common usage is to display current traffic states, the predicted 

traveling time to land mark locations, and traveling proposals on the traffic information board. With 

this information, drivers can re-plan their travel accordingly. Adaptive traffic signal control is the key 

technology of traffic management. The reactive traffic signaling control system adjusts the signal 

phase and cycle lengths according to current traffic data. The predictive traffic signal systems retime 

the traffic sign according to the predicted traffic information. With the predictive approach, the total 

waiting time of vehicles is reduced and the efficiency of the traffic network is improved [36]. 
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Predicted traffic information is not only used by navigation systems and traffic management 

systems, but also by other urban applications such as parking management and so on. For the wide 

usage of traffic prediction, there are continuous research interests in this field. 

3. Model and Preliminaries 

3.1. LSTAR Model Construction 

According to the STARIMA model defined in Reference [11], both space and time are 

considered. 

𝑍𝑡 = ∑ ∑ 𝜙𝑘𝑙𝑊𝑙𝑧𝑡−𝑘
𝜆𝑘
𝑙=0

𝑝
𝑘=1 − ∑ ∑ 𝜃𝑘𝑙𝑊𝑙휀𝑡−𝑘

𝑚𝑘
𝑙=0

𝑞
𝑘=1 + 휀𝑡. (1) 

𝑍𝑡 is an N-dimensional column vector of road i, while i = 1, 2,…, N, and 𝑊𝑙 is an 𝑁 × 𝑁 matrix 

with element 𝑤𝑖𝑗
𝑙 . 휀𝑡 is the residual vector. 𝜙𝑘𝑙, 𝜃𝑘𝑙 are the AR and MA parameters, respectively. 

Then, the observation of road 𝑖, 𝑧𝑖(𝑡) can be described as: 

𝑧𝑖(𝑡) = ∑∑∑𝜙𝑘𝑙𝑤𝑖𝑗
(𝑙)𝑧𝑗(𝑡 − 𝑘)

𝑁

𝑗=1

𝜆𝑘

𝑙=0

𝑝

𝑘=1

−∑∑∑𝜃𝑘𝑙

𝑁

𝑗=1

𝑤𝑖𝑗
(𝑙)휀𝑗(𝑡 − 𝑘)

𝑚𝑘

𝑙=0

𝑞

𝑘=1

+ 휀𝑖(𝑡). (2) 

In 2014, a new space-time model, the localized STARIMA (LSTARIMA) model, was proposed 

by Cheng et al. [13] to consider spatial heterogeneity and temporal non-stationarity. The model is 

described by the following form: 

𝑍𝑖(𝑡) = ∑ ∑ 𝜙𝑖,𝑘ℎ𝑊
(ℎ,𝑡−𝑘,𝑖)𝑍𝑖(𝑡 − 𝑘)

𝜆𝑘(𝑡−𝑘,𝑖)

ℎ=0

𝑝𝑖

𝑘=1

−∑ ∑ 𝜃𝑖,𝑙ℎ𝑊
(ℎ,𝑡−𝑙,𝑖)휀𝑖(𝑡 − 𝑙)

𝑛𝑙(𝑡−𝑙,𝑖)

ℎ=0

𝑞𝑖

𝑙=1

+ 휀𝑖(𝑡). (3) 

𝑍𝑖(𝑡) is an N-dimensional column vector of the observation value on link 1, …, N with tag 𝑖 at 

time 𝑡, which can be any prediction variable of roads such as speed, traffic flow, density, and so on. 

The term 휀𝑖(𝑡) is a residual on link 1, ..., N at time 𝑡 . The first term in Equation (3) is the AR 

component, whereas the second term is the MA. The parameters 𝑝𝑖  and 𝑞𝑖  are the AR and MA 

orders, respectively. ℎ is the spatial order that represents the order of spatial separation between two 

locations. The parameters 𝜆𝑘(𝑡 − 𝑘, 𝑖) and 𝑛𝑙(𝑡 − 𝑙, 𝑖)  are the dynamic spatial orders associated with 

the 𝑘th and  𝑙th temporally lagged terms in the AR and MA components, respectively. They specify 

the size of the spatial neighborhood that could influence the link of interest 𝑖 within temporal lags 

𝑘  and  𝑙 . The parameters 𝑊(ℎ,𝑡–𝑘,𝑖)  and 𝑊(ℎ,𝑡–𝑙,𝑖)  are the dynamic spatial weight matrices 𝑊(ℎ,𝑡,𝑖) 

pertaining to link 𝑖  at temporal lags 𝑘 and 𝑙. 𝜙𝑖,𝑘ℎ  and 𝜃𝑖,𝑙ℎ are the AR and MA parameters for 

each link 𝑖 (𝑖 =  1, 2, . . . , 𝑁). 

Although spatial tag 𝑖 was added to 𝑍𝑖(𝑡) in the LSTARIMA model construction, the spatial 

heterogeneity was not fully considered. As the 𝑍𝑖(𝑡) here is an N-dimension column vector which 

covers all of the roads (road 1, 2, …, N) in the network, all of the roads will share the same 𝜙𝑖,𝑘ℎ and 

𝜃𝑖,𝑙ℎ. In this LSTARIMA model, the same matrix W is used for both AR and MA components. As the 

weight matrix of AR and MA components is not always the same, using only one weight matrix 𝑊 

is not proper. 

In this paper, different weight matrices  𝑊 , 𝑈 were used for AR and MA components and 

individual road traffic flow observation 𝑧𝑖(𝑡), according to Equation (2), was defined to allow every 

road to have its own weight matrix 𝑊𝑖, 𝑈𝑖 according to spatial location, but not sharing the same 

weight matrix among all roads, as in Equation (3). 

Then, the LSTARIMA can be rewritten as follows: 

𝑧𝑖(𝑡) = ∑∑∑𝜙𝑖,𝑘ℎ𝑤𝑖𝑗
(ℎ)
(𝑡 − 𝑘)𝑧𝑗(𝑡 − 𝑘)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

−∑∑∑𝜃𝑖,𝑘ℎ

𝑁𝑖

𝑗=1

𝑢𝑖𝑗
(ℎ)
(𝑡 − 𝑘)휀𝑗(𝑡 − 𝑘)

𝑚𝑖,𝑘

ℎ=0

𝑞𝑖

𝑘=1

+ 휀𝑖(𝑡). (4) 

The parameters 𝑤𝑖𝑗
(ℎ)(𝑡 − 𝑘)  and 𝑢𝑖𝑗

(ℎ)(𝑡 − 𝑙)  are the elements of dynamic spatial weight 

matrices 𝑊𝑖
(ℎ)(𝑡 − 𝑘)  and 𝑈𝑖

(ℎ)(𝑡 − 𝑙)  pertaining to link 𝑖 at temporal lags 𝑘  and  𝑙 . Like the 
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traditional STARIMA model, LSTARIMA makes use of spatial weight matrices 𝑊 and 𝑈 to model 

the influence of the spatiotemporal neighborhoods. However, it relaxes the globally fixed temporal 

dependence for all locations by using different AR and MA parameters according to location. 

Furthermore, it accounts for the temporal non-stationarity by allowing the matrix elements value and 

size of the spatial neighborhoods to vary with time. 

According to Bo [37], the ARMA model can be properly approximated by the high-order AR 

model. As AR only has one type of parameter to be estimated, ARMA and ARIMA have two or three 

types of parameters to be estimated, and the parameters estimation of AR is easy even when the order 

is a little bit higher. There exist plenty of studies that have used a high-order AR model to 

approximate many processes of interest [37]. Furthermore, traffic flow has complex dynamics and 

may not exactly match an ARIMA model. In addition, many studies have removed MA and used 

only different AR models to conduct traffic prediction and obtain good results with limited AR order 

[38]. For reducing computational complexity and real-time prediction purpose, in this paper, we 

proposed the LSTAR model for traffic flow prediction. 

With the MA component removed, the LSTARIMA prediction model (Equation (4)) is changed 

into the following LSTAR model: 

𝑧𝑖(𝑡) = ∑∑∑𝜙𝑖,𝑘ℎ𝑤𝑖𝑗
(ℎ)(𝑡 − 𝑘)𝑧𝑗(𝑡 − 𝑘)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

+ 휀𝑖(𝑡) (5) 

where ε𝑖(𝑡) is white noise, 𝜙𝑖,ℎ𝑘 is the parameter for each link 𝑖 (𝑖 =  1, 2, . . . , 𝑁), and 𝑤𝑖𝑗
(ℎ)(𝑡 − 𝑘) are 

the elements of the dynamic spatial weight matrix 𝑊𝑖
(ℎ)(𝑡 − 𝑘) pertaining to link 𝑖 at temporal lag 𝑘. 

3.2. Weight Matrix Construction 

Weight matrix construction is an essential topic in STARIMA models. In the STARIMA model, 

the weight matrix is time invariant and equal for the same neighbor order. In the LSTARIMA model, 

a time variant weight matrix was introduced to improve traffic prediction accuracy with lower AR 

and MA orders. Furthermore, the speed difference was used to construct the weight matrix in the 

LSTARIMA model [13]. The speed of a road is an important character of traffic flow, but is not the 

essential one in terms of impact to surrounding roads. It is obvious that a road that outputs only one 

vehicle will not impact neighbor roads at the same level as saturated roads with the same speed. The 

traffic output amount to the neighbor roads in a time slot has more impact on the future traffic state 

of neighbor roads. Thus, the output vehicle number during a time slot was used in the weight matrix 

construction instead of speed in this paper. 

For all pairwise road sections (𝑖, 𝑗) with spatial lag ℎ, the corresponding 𝑤𝑖𝑗
(ℎ)(𝑡) is defined as 

follows: 

𝑤𝑖𝑗
(ℎ)(𝑡) =

{
 
 
 

 
 
 

    1                   ℎ = 0, 𝑖 = 𝑗                       

𝑄𝑖𝑗(𝑡)

∑𝑄 (𝑡)
                ℎ = 1,∑𝑄(𝑡) ≠ 0             

 
𝑄(ℎ)𝑖𝑗(𝑡)

∑𝑄(ℎ)(𝑡)
             ℎ ≠ 1,∑𝑄(ℎ)(𝑡) ≠ 0         

0                      ∑𝑄(ℎ)(𝑡) = 0               

 (6) 

where 𝑄𝑖𝑗(𝑡) is the number of vehicles running from road 𝑗 towards road 𝑖 at time slot 𝑡 and ∑𝑄 (𝑡) 

is the sum of vehicle numbers from directly connected roads to road 𝑖 at time slot 𝑡. 𝑄(ℎ)𝑖𝑗(𝑡) is the 

number of vehicles on the ℎ order neighbor road 𝑗 towards ℎ − 1 order neighbor of road 𝑖 at time 

slot 𝑡, and 𝑄(ℎ)𝑖𝑗(𝑡) = 0 if 𝑗 is not the ℎ order neighbor of 𝑖. ∑𝑄(ℎ)(𝑡) is the sum of 𝑄(ℎ)𝑖𝑗(𝑡). 

3.3. Traffic Information Collection 

In this paper, we proposed a traffic information collection system via VANET for urban areas. 

In this system, each vehicle was assumed to have a GPS receiver and VANET equipped to report its 
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location. This assumption is reasonable as currently more and more vehicles are equipped with such 

devices. Considering that there are always traffic lights at the intersection of urban roads, we used 

vehicles stopped at red lights to collect traffic information by checking the location of all vehicles 

inside their VANET communication range periodically. 

As shown in Figure 1, when the traffic light turned red for the east-west direction, the first vehicle 

stopped at the west side was selected as the traffic information collector (TIC). If there were no vehicle 

stops at the west side, the first vehicle stopped at the east side would be the TIC. In the example of 

Figure 1, vehicle V11 is the TIC and collects the traffic information during the red light period. 

Step 1. When the traffic light turns to red at T0, V11 broadcasts traffic information collection request. 

Step 2. All of the vehicles in the communication range 𝑅 of V11 will report their locations to V11 

after receiving the request from V11. 

Step 3. V11 catalogs the vehicles to four vehicle sets according to the location. They are marked as 

𝑉𝑠𝑒𝑡(𝐸, 𝑇0), 𝑉𝑠𝑒𝑡(𝑆, 𝑇0), 𝑉𝑠𝑒𝑡(𝑊, 𝑇0), and 𝑉𝑠𝑒𝑡(𝑁, 𝑇0). 

Step 4. After time 𝜏 < 𝑅/𝑉𝑚𝑎𝑥, V11 collects the traffic information again according to Steps 1–3 and 

obtains 𝑉𝑠𝑒𝑡(𝐸, 𝑇0 + 𝜏) , 𝑉𝑠𝑒𝑡(𝑆, 𝑇0 + 𝜏) , 𝑉𝑠𝑒𝑡(𝑊, 𝑇0 + 𝜏) , 𝑉𝑠𝑒𝑡(𝑁, 𝑇0 + 𝜏) . 𝑉𝑚𝑎𝑥  is the 

maximum allowed velocity. Time 𝜏 < 𝑅/𝑉𝑚𝑎𝑥  will let all vehicles running towards the 

intersection be detectable at time 𝑇0 + 𝜏. 

For example: 

If R = 150 m and 𝑉𝑚𝑎𝑥 = 20 m/s, 𝜏 = 5 s can be used as  5 <
150

20
= 7.5. The maximal length a 

vehicle can run during 𝜏  is 
20 m

s
× 5 s = 100 m < 150 m . Then, no vehicle entering the 

intersection at T0 can run outside the communication range of V11 and be detectable at 𝑇0 + 𝜏. 

Step 5. The vehicles’ set run from road A to road B is calculated by formula: 𝑉𝑠𝑒𝑡(𝐴 → 𝐵, 𝑇0 + 𝜏) =

𝑉𝑠𝑒𝑡(𝐴, 𝑇0) ∩ 𝑉𝑠𝑒𝑡(𝐵, 𝑇0 + 𝜏). 

For example: 

As shown in Figure 1, the traffic output from S to E from T0 to 𝑇0 + 𝜏 is: 

𝑉𝑠𝑒𝑡(𝑆 → 𝐸, 𝑇0 + 𝜏) = 𝑉𝑠𝑒𝑡(𝑆, 𝑇0) ∩ 𝑉𝑠𝑒𝑡(𝐸, 𝑇0 + 𝜏)

= {𝑉1, 𝑉2, 𝑉3, 𝑉4} ∩ {𝑉1, 𝑉8, 𝑉9, 𝑉10} = {𝑉1} 
 

Step 6. The TIC calculates the traffic output of each road with time interval  𝜏  until the traffic light 

for the east-west direction turns green. As the traffic light for the south-north direction turns 

red, the first vehicle stopped at the north or south side will be selected as the TIC and collect 

traffic information continuously. 

As a part of the advance travel information system (ATIS), the TIC will send out the collected 

traffic information via VANET for applications such as traffic prediction. In normal urban traffic 

conditions, there should always be vehicles stopped at the red light to act as the TIC. If there is no 

vehicle stopped at the red light to be the TIC, the traffic information of the last time slot will be used. 

This is acceptable as it normally happens in very low traffic density cases and real-time traffic 

information is not important. 

With the collected traffic information, the traffic output of each road section j can be calculated by: 

𝑄(ℎ)𝑖𝑗(𝑡) =∑∑𝑉𝑠𝑒𝑡(𝑗 → 𝑗𝑚, 𝑇 + 𝑛τ)

𝑚𝑛

,  

where 𝑇 + 𝑛τ ∈ (𝑡 − 1, 𝑡], 𝑗  is the ℎ order neighbor of road 𝑖, 𝑗𝑚  is the ℎ − 1 order neighbor of 

road 𝑖 (𝑗𝑚  is 𝑖 when ℎ = 1), 𝑚 is the total number of 𝑗𝑚 which are downstream 𝑗. 
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Figure 1. Traffic information collection. 

4. Main Results 

For the LSTAR model, in this section we discuss how to determine the parameter 𝜙𝑖,𝑘ℎ with a 

given weight matrix 𝑊𝑖
(ℎ)(𝑡). With the determined weight matrix 𝑊𝑖

(ℎ)(𝑡) and 𝜙𝑖,𝑘ℎ , the future 

traffic observation �̂�(𝑡) of road 𝑖 can be predicted. Normally, 𝑤𝑖𝑗
(ℎ)(𝑡)  is time variant. When the 

traffic flow distribution is stable in the road network, 𝑤𝑖𝑗
(ℎ)(𝑡) will be time invariant since 

𝑄(ℎ)𝑖𝑗(𝑡)

∑𝑄(ℎ)(𝑡)
 is 

constant. Considering the weight matrix differences of being time invariant or not, two theorems are 

discussed, and the LSTAR parameters estimation can be conducted accordingly. 

Definitions 1. 𝑟𝑖𝑗(𝑚) is the correlation coefficient of road 𝑖 and 𝑗, 𝑟𝑖(𝑚) = 𝑟𝑖𝑖(𝑚) is the autocorrelation 

coefficient of road 𝑖. We define 𝛷𝑖 = [𝜙𝑖,10, 𝜙𝑖,11, … 𝜙𝑖,1𝜆𝑖,0 , 𝜙𝑖,20, 𝜙𝑖,21, … , 𝜙𝑖,𝑝𝑖𝜆𝑖,𝑘]
𝑇, let 𝑛 = ∑ 𝜆𝑖,𝑘

𝑝𝑖
𝑘=1  to be 

the dimension of 𝛷𝑖. 𝑅𝑖 = [𝑟𝑖(0), 𝑟𝑖(1), … , 𝑟𝑖(𝑛 − 1)]
𝑇 , 𝛴 = [𝜎𝑖

2, 0, … ,0]𝑇 , 𝑆(ℎ,𝑚) = ∑ 𝑤𝑖𝑗
(ℎ)𝑁𝑖

𝑗=1 𝑟𝑖𝑗(𝑚), 

𝐴 =

[
 
 
 
 
𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖)

𝑆(0,0) 𝑆(1,0) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 1)

𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 2)

⋮ ⋮ ⋮ ⋮
𝑆(0, 𝑛 − 1) 𝑆(1, 𝑛 − 1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑛 − 1 − 𝑝𝑖)]

 
 
 
 

, �̅� = [𝐴 𝑅𝑖 − 𝛴].  

Theorem 1 follows: 

Theorem 1. If  𝑊𝑖
(ℎ)(𝑡) is time invariant and 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(�̅�) = 𝑛, the LSTAR model can be uniquely 

determined. 
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Proof. As 𝑊𝑖
(ℎ)(𝑡)  is time invariant, we can observe that 𝑊𝑖

(ℎ)(𝑡) = 𝑊𝑖
(ℎ)(𝑡 − 𝑘)  and it can be 

rewritten to 𝑊𝑖
(ℎ). 

The model of Equation (5) will be a time invariant system. Since 𝑧𝑖(𝑡) is a stationary random 

signal, Equation (5) will be: 

𝑧𝑖(𝑡) = ∑∑∑𝜙𝑖,𝑘ℎ𝑤𝑖𝑗
(ℎ)𝑧𝑗(𝑡 − 𝑘)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

+ 휀𝑖(𝑡).  (7) 

Pre-multiplying both sides of the model (Equation (7)) by 𝑧𝑖(𝑡 − 𝑚): 

𝑧𝑖(𝑡)𝑧𝑖(𝑡 − 𝑚) =∑∑∑𝜙𝑖,𝑘ℎ𝑤𝑖𝑗
(ℎ)𝑧𝑗(𝑡 − 𝑘)𝑧𝑖(𝑡 − 𝑚)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

+ 휀𝑖(𝑡)𝑧𝑖(𝑡 − 𝑚).  (8) 

Taking the expected values in both sides, we obtain an equation similar to the Yule-Walker 

equation: 

𝑟𝑖(𝑚) = ∑∑∑𝜙𝑖,𝑘ℎ𝑤𝑖𝑗
(ℎ)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

𝑟𝑖𝑗(𝑚 − 𝑘) + 𝜎𝑖
2𝛿(𝑚) (9) 

where the expected value is: 

𝐸(휀𝑖(𝑡)𝑧𝑖(𝑡 − 𝑚)) = 𝜎𝑖
2𝛿(𝑚). (10) 

As 𝜙𝑖,ℎ𝑘 does not have tag j, we obtain: 

𝑟𝑖(𝑚) =∑∑𝜙𝑖,𝑘ℎ∑𝑤𝑖𝑗
(ℎ)

𝑁𝑖

𝑗=1

𝜆𝑖,𝑘

ℎ=0

𝑝𝑖

𝑘=1

𝑟𝑖𝑗(𝑚 − 𝑘) + 𝜎𝑖
2𝛿(𝑚). (11) 

For Equation (11), rewrite 𝜙𝑖,𝑘ℎ  to a column vector as  𝛷𝑖 =

[𝜙𝑖,10, 𝜙𝑖,11, … , 𝜙𝑖,1𝜆𝑖,0 , 𝜙𝑖,20, 𝜙𝑖,21, … , 𝜙𝑖,𝑘𝜆𝑖,𝑘]
𝑇 . In addition, n = ∑ λi,k

pi
k=1  is the number of parameters 

𝜙𝑖,𝑘ℎ to be estimated.  

As 𝑆(ℎ,𝑚) = ∑ 𝑤𝑖𝑗
(ℎ)𝑁𝑖

𝑗=1 𝑟𝑖𝑗(𝑚), we obtain: 

[
 
 
 
 
𝑟𝑖(0)

𝑟𝑖(1)

𝑟𝑖(2)
⋮

𝑟𝑖(𝑛 − 1)]
 
 
 
 

=

[
 
 
 
 
𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖)

𝑆(0,0) 𝑆(1,0) ⋯ 𝑆(𝜆𝑖,𝑘, 𝑝𝑖 − 1)

𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘, 𝑝𝑖 − 2)

⋮ ⋮ ⋮ ⋮
𝑆(0, 𝑛 − 1) 𝑆(1, 𝑛 − 1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑛 − 1 − 𝑝𝑖)]

 
 
 
 

[
 
 
 
 
𝜙𝑖,10
𝜙𝑖,11
𝜙𝑖,12
⋮

𝜙𝑖,𝑘𝜆𝑖,𝑘]
 
 
 
 

+

[
 
 
 
 
𝜎𝑖
2

0
0
⋮
0 ]
 
 
 
 

.  (12) 

Let 𝐴 =

[
 
 
 
 
𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖)

𝑆(0,0) 𝑆(1,0) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 1)

𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 2)

⋮ ⋮ ⋮ ⋮
𝑆(0, 𝑛 − 1) 𝑆(1, 𝑛 − 1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑛 − 1 − 𝑝𝑖)]

 
 
 
 

, 𝑅𝑖 =

[
 
 
 
 
𝑟𝑖(0)

𝑟𝑖(1)

𝑟𝑖(2)
⋮

𝑟𝑖(𝑛 − 1)]
 
 
 
 

, Σ =

[
 
 
 
 
𝜎𝑖
2

0
0
⋮
0 ]
 
 
 
 

. 

Then, the augmented matrix of Equation (12) is: 

�̅� =

[
 
 
 
 
 
𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘, 𝑝𝑖) 𝑟𝑖(0) − 𝜎𝑖

2

𝑆(0,0) 𝑆(1,0) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 1) 𝑟𝑖(1)

𝑆(0,1) 𝑆(1,1) ⋯ 𝑆(𝜆𝑖,𝑘 , 𝑝𝑖 − 2) 𝑟𝑖(2)

⋮ ⋮ ⋮ ⋮ ⋮
𝑆(0, 𝑛 − 1) 𝑆(1, 𝑛 − 1) ⋯ 𝑆(𝜆𝑖,𝑘, 𝑛 − 1 − 𝑝𝑖) 𝑟𝑖(𝑛 − 1) ]

 
 
 
 
 

= [𝐴 𝑅𝑖 − Σ].  

If 𝑅𝑎𝑛𝑘(𝐴) = 𝑛, then 𝑅𝑎𝑛𝑘(�̅�) = 𝑛 and we will have a unique solution of parameters 𝛷𝑖: 

𝛷𝑖 = 𝐴−1(𝑅𝑖 − Σ) (13) 

Then, we can uniquely define the LSTAR model and predict traffic flow with it. 
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If 𝑅(𝐴) ≠ 𝑅(�̅�), there is no solution for Equation (12). 

If 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(�̅�) < 𝑛, there are infinite solutions for 𝛷𝑖.☐ 

Remark 1. In case the spatial weight matrix 𝑊𝑖
(ℎ)(𝑡)  is time invariant, we can determine the LSTAR 

prediction model by the correlation of roads. We can uniquely define the LSTAR model when  𝑅𝑎𝑛𝑘(𝐴) =

𝑅𝑎𝑛𝑘(�̅�) = 𝑛. When 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(�̅�) < 𝑛, there will be many solutions for parameter 𝛷. This means 

that we have defined more parameters than are actually needed. We can reduce 𝜆𝑖,𝑘 and/or 𝑝𝑖  to obtain a 

unique LSTAR model. 

Definitions 2. Let 𝑟𝑖
′(𝑚) be the autocorrelation coefficient of 𝑖𝑡ℎ  element of 𝑈(𝑡) = 𝑊(𝑡)𝑍(𝑡), where the 

matrix 𝑊(𝑡)= ∑ 𝑊𝑖
(ℎ)(𝑡)

𝜆𝑖,𝑘
ℎ=0 , which combines all spatial effect defined in 𝑊𝑖

(ℎ)(𝑡) to one matrix, and 𝑍(𝑡) =

[𝑧1(𝑡), 𝑧2(𝑡), … ,  𝑧𝑁𝑖(𝑡)]
𝑇  is the vector form of 𝑧𝑖(𝑡) . We define 𝛷𝑖 = [𝜙𝑖,1, 𝜙𝑖,2, … , 𝜙𝑖,𝑝𝑖]

𝑇 , �̅�𝑖
′ =

[�̅�𝑖
′(0), �̅�𝑖

′(1), … , �̅�𝑖
′(𝑝𝑖 − 1)]

𝑇, 𝛴 = [𝜎𝑖
2, 0, … , 0]𝑇, 

𝐴′ = [

𝑟𝑖
′(1) 𝑟𝑖

′(2) ⋯ 𝑟𝑖
′(𝑝𝑖)

𝑟𝑖
′(0) 𝑟𝑖

′(1) ⋯ 𝑟𝑖
′(𝑝𝑖 − 1)

⋮ ⋮ ⋮ ⋮
𝑟𝑖
′(𝑝𝑖 − 2) 𝑟𝑖

′(𝑝𝑖 − 3) ⋯ 𝑟𝑖
′(1)

], 𝐴′̅ = [𝐴′ �̅�𝑖
′ − 𝛴].  

We then present Theorem 2. 

Theorem 2. If  𝑊𝑖
(ℎ)(𝑡) is time variant, the combined weight matrix 𝑊(𝑡) is full ranked, and 𝑅𝑎𝑛𝑘(𝐴′) =

𝑅𝑎𝑛𝑘(𝐴′̅) = 𝑝𝑖 , the LSTAR model can be uniquely determined. 

Proof. According to the weight matrix  𝑊𝑖
(ℎ)(𝑡)  construction in the LSTAR model, the element 

𝑤𝑖𝑗
(ℎ)(𝑡) will always be zero when 𝑖, 𝑗 is not at spatial order ℎ. We combine all of the 𝜆𝑖,𝑘 weight 

matrix into one weight matrix, 𝑊(𝑡) = ∑ 𝑊𝑖
(ℎ)(𝑡)

𝜆𝑖,𝑘
ℎ=0 . This simplification is reasonable as (1) time 

variant 𝑤𝑖𝑗(𝑡) can somehow give an effect similar to spatial order ℎ; and (2) 𝑤𝑖𝑗(𝑡) is always equal 

to the only non-zero 𝑤𝑖𝑗
(ℎ)(𝑡): 

𝑤𝑖𝑗(𝑡) = 0 + 0 +⋯+𝑤𝑖𝑗
(ℎ)(𝑡) + ⋯+ 0 = 𝑤𝑖𝑗

(ℎ)(𝑡) number of zero is 𝜆𝑖,𝑘 − 1  

Considering the combined spatial weight matrix 𝑊(𝑡) = ∑ 𝑊𝑖
(ℎ)(𝑡)

𝜆𝑖,𝑘
ℎ=0  , 𝑍(𝑡) =

[𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝑁𝑖(𝑡)]
𝑇 is an 𝑁𝑖 dimension column vector that includes all neighbor roads within the 

spatial order to be considered by road 𝑖, and 𝛴 = [𝜎𝑖
2, 0, … ,0]𝑇 , we can obtain a matrix from the 

LSTAR model according to Equation (5). 

𝑍(𝑡) = ∑𝜙𝑖,𝑘𝑊(𝑡 − 𝑘)𝑍(𝑡 − 𝑘)

𝑝𝑖

𝑘=1

+ 𝛴(𝑡) (14) 

when the rank of 𝑊(𝑡) is 𝑁𝑖, Equation (14) can be rewritten as: 

[𝑊(𝑡)]−1[𝑊(𝑡)𝑍(𝑡)] = ∑𝜙𝑖,𝑘𝑊(𝑡 − 𝑘)Z(𝑡 − 𝑘)

𝑝𝑖

𝑘=1

+ Σ(𝑡). (15) 

Let  𝑈(𝑡) = [𝑊(𝑡)Z(𝑡)], we obtain: 

[𝑊(𝑡)]−1𝑈(𝑡) = ∑𝜙𝑖,𝑘𝑈(𝑡 − 𝑘)

𝑝𝑖

𝑘=1

+ 𝛴(𝑡). (16) 

[𝑊𝑖
(ℎ)(𝑡)]−1 can be treated as an instantaneous window to 𝑈(𝑡), so 𝑈(𝑡) is stationary in the 

short term. We have: 
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𝑈(𝑡) = ∑𝜙𝑖,𝑘𝑈(𝑡 − 𝑘)

𝑝𝑖

𝑘=1

+ 𝛴(𝑡). (17) 

Let 𝑢𝑖(𝑡) be the element of 𝑈(𝑡), then: 

�̅�𝑖(𝑡) = ∑𝜙𝑖,𝑘𝑢𝑖(𝑡 − 𝑘)

𝑝𝑖

𝑘=1

+ 휀𝑖(𝑡). (18) 

Pre-multiplying both sides of Equation (18) by 𝑢𝑖(𝑡 − 𝑚): 

�̅�𝑖(𝑡)𝑢𝑖(𝑡 − 𝑚) =∑𝜙𝑖,𝑘𝑢𝑖(𝑡 − 𝑘)𝑢𝑖(𝑡 − 𝑚)

𝑝𝑖

𝑘=1

+ 휀𝑖(𝑡)𝑢𝑖(𝑡 − 𝑚). (19) 

Taking expected values in both sides, we obtain: 

�̅�𝑖
′(𝑚) = ∑𝜙𝑖,𝑘𝑟𝑖

′(𝑚 − 𝑘)

𝑝𝑖

𝑘=1

+ 𝜎𝑖
2𝛿(𝑚) (20) 

where the expected value 𝑟𝑖
′(𝑚) = 𝐸(𝑢𝑖(𝑡 − 𝑚)𝑢𝑖(𝑡 − 𝑘)) , �̅�𝑖

′(𝑚) = 𝐸([𝑊𝑖
(ℎ)(𝑡)]−1𝑢𝑖(𝑡)𝑢𝑖(𝑡 − 𝑚)) , 

𝐸(휀𝑖(𝑡)𝑢𝑖(𝑡 − 𝑚)) = 𝜎𝑖
2𝛿(𝑚). 

We can then obtain: 

[

�̅�𝑖
′(0)

�̅�𝑖
′(1)
⋮

�̅�𝑖
′(𝑝𝑖 − 1)

] = [

𝑟𝑖
′(1) 𝑟𝑖

′(2) ⋯ 𝑟𝑖
′(𝑝𝑖)

𝑟𝑖
′(0) 𝑟𝑖

′(1) ⋯ 𝑟𝑖
′(𝑝𝑖 − 1)

⋮ ⋮ ⋮ ⋮
𝑟𝑖
′(𝑝𝑖 − 2) 𝑟𝑖

′(𝑝𝑖 − 3) ⋯ 𝑟𝑖
′(1)

]

[
 
 
 
𝜙𝑖,1
𝜙𝑖,2
⋮

𝜙𝑖,𝑝𝑖]
 
 
 

+ [

𝜎𝑖
2

0
⋮
0

] (21) 

Let 𝛷𝑖 =

[
 
 
 
𝜙𝑖,1
𝜙𝑖,2
⋮

𝜙𝑖,𝑝𝑖]
 
 
 

, 𝐴′ = [

𝑟𝑖
′(1) 𝑟𝑖

′(2) ⋯ 𝑟𝑖
′(𝑝𝑖)

𝑟𝑖
′(0) 𝑟𝑖

′(1) ⋯ 𝑟𝑖
′(𝑝𝑖 − 1)

⋮ ⋮ ⋮ ⋮
𝑟𝑖
′(𝑝𝑖 − 2) 𝑟𝑖

′(𝑝𝑖 − 3) ⋯ 𝑟𝑖
′(1)

], �̅�𝑖
′ = [

�̅�𝑖
′(0)

�̅�𝑖
′(1)
⋮

�̅�𝑖
′(𝑝𝑖 − 1)

], Σ = [

𝜎𝑖
2

0
⋮
0

]. 

Then the augmented matrix of Equation (21) is: 

𝐴′̅ =

[
 
 
 

𝑟𝑖
′(1) 𝑟𝑖

′(2) ⋯ 𝑟𝑖
′(𝑝𝑖) �̅�𝑖

′(0) − 𝜎𝑖
2

𝑟𝑖
′(0) 𝑟𝑖

′(1) ⋯ 𝑟𝑖
′(𝑝𝑖 − 1) �̅�𝑖

′(1)
⋮ ⋮ ⋮ ⋮ ⋮

𝑟𝑖
′(𝑝𝑖 − 2) 𝑟𝑖

′(𝑝𝑖 − 3) ⋯ 𝑟𝑖
′(1) �̅�𝑖

′(𝑝𝑖 − 1) ]
 
 
 
= [𝐴′ �̅�𝑖

′ − Σ].  

If 𝑅𝑎𝑛𝑘(𝐴′) = 𝑝𝑖, then 𝑅𝑎𝑛𝑘(𝐴′̅) = 𝑝𝑖 and we will have a unique solution of parameters 𝛷: 

𝛷𝑖 = [𝐴′]−1(�̅�𝑖
′ − Σ). (22) 

If 𝑅(𝐴′) ≠ 𝑅(𝐴′̅), there is no solution for Equation (21). 

If 𝑅𝑎𝑛𝑘(𝐴′) = 𝑅𝑎𝑛𝑘(𝐴′̅) < 𝑝𝑖 , there are infinite solutions for 𝛷. ☐ 

Remark 2. Unlike 𝑊𝑖
(ℎ)(𝑡) with most of its elements being zero and normally not being full ranked, most 

elements of the combined weight matrix 𝑊(𝑡) are not zero. So 𝑊(𝑡) is normally a full rank matrix. For some 

special cases when 𝑊(𝑡) is not a full rank matrix, we can reduce the size of 𝑊(𝑡) to make it fully ranked. 

When 𝑊(𝑡) is a full rank matrix, we can uniquely define the LSTAR model when 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(�̅�) = 𝑛. 

Similar to Remark 1, we can reduce 𝑝𝑖  to obtain a unique LSTAR model if 𝑅𝑎𝑛𝑘(𝐴) = 𝑅𝑎𝑛𝑘(�̅�) < 𝑛. 

In this section, two theorems were given and proven according to the weight matrix determined. 

When the traffic flow distribution is stable,  𝑊𝑖
(ℎ)(𝑡) can be treated as time invariant and Theorem 1 

can be used. When the traffic flow distribution is not stable,  𝑊𝑖
(ℎ)(𝑡) is time variant and Theorem 2 

should be used. With the measured weight matrix  𝑊𝑖
(ℎ)(𝑡) and estimated 𝛷𝑖 , future traffic state 

�̂�𝑖(𝑡 + 1) can be predicted according to the LSTAR model (Equation (5)) by one-time slot shifting. 
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5. Practical Example and Experimental Evaluation 

5.1. Practical Example 

In this paper, we provide a practical example on how to use our LSTAR model to predict future 

traffic flow of the Shanghai Century Park area. To evaluate the prediction approach of LSTAR, we 

adopted the widely used traffic simulation tools Simulation of Urban Mobility (SUMO) [39] and 

OpenStreetMap (OSM) [40], which are recognized as promising candidates for traffic simulations, 

and the simulation results are commonly accepted as a replacement of real data. Additionally, plenty 

of works exist that have adopted SUMO and OSM as tools to generate traffic data for research [41,42]. 

In this example, we demonstrate the model-building procedure for our proposed LSTAR model 

in the context of traffic flow prediction on a road network. First, we downloaded the OSM format 

road network map of the area near Shanghai Century Park, as shown in Figure 2. The OSM format 

map not only included the geography topology of the road network, but also the road type, lane 

number, speed limitation, traffic light duration, and so on, according to real-world information. Then, 

the SUMO NetConvert tool was used to convert the OSM format map to a SUMO format map. SUMO 

was then used to simulate the traffic flow of this area according to the road network information 

converted from the OSM map. 

 

Figure 2. OpenStreetMap (OSM) map of Shanghai Century Park area. 

In the simulation, trip demands were generated randomly every two seconds according to the 

edge length. The “Fringe factor” was set to 4, which means that roads with no successor or no 

predecessor had four times the possibility of being selected as the start or end of a trip when 

compared to other roads. The speed limitations, traffic light durations of each road, and so on were 

obtained from the real-world data of the OSM map. The simulation duration was one week. The 

detailed simulation parameters are listed in Table 1. 

After we obtained traffic flow data generated from SUMO, they were used to conduct traffic 

flow prediction with different prediction models. The prediction intervals were five minutes, 15 min, 

and 30 min, as normally a prediction interval over 30 min has less significance to real-time route 

planning or vehicle navigation. 

The SUMO format map converted from the OSM map is shown in Figure 3. The roads were 

renamed as Rn-m for easy usage in the following discussion. In the following section, road R7-3 in a 

north-to-south direction was selected as the example road to demonstrate the LSTAR prediction 

procedure. Furthermore, we conducted traffic flow prediction for roads R7-2, R3-3, and R3-4 with the 

same procedure used for road R7-3. 
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Table 1. Simulation parameters. 

Parameters Value 

Trip Generation Method Random 

Trip Possibility Weight Edge Length 

New Trip Start Interval 2 s 

Fringe Factor 4 

Max Vehicle Number 300 

Traffic Light Duration OSM Map data 

Speed Limitation OSM Map data 

Simulation Duration 604,800 s (1 Week) 

 

Figure 3. Simulation of Urban Mobility (SUMO) road network. 

Construction of a Dynamic Spatial Weight Matrix 

Step 1. Build a spatial adjacency matrix. 

The first step was to build a spatial adjacency matrix based on the topological structure of the 

network, which appears in Figure 1. In this paper, spatial adjacency matrices of spatial orders up to 

three were constructed as per Reference [13]. The spatial neighborhood information can be found in 

Table 2 with the first, second, and third order neighbors separated. 

Step 2. Determine the dynamic spatial order and weights. 

The second step was to determine the dynamical spatial order and weights for every road link 

with the method proposed in this paper (Section 3.2. Weight Matrix Construction). In this simulation, 

only road R7-3 in a north-to-south direction was selected to show how the weight matrix was 

determined. According to weight matrix definition, only upstream road sections of R7-3 in the north-

to-south direction were considered. The dynamic spatial weights calculation results of road R7-3 in a 

north-to-south direction with a five-minute time step are shown in Table 2.
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Table 2. The dynamic spatial weights. 

Spatial First Second Third 

Temporal Order 𝒌 R7-2 R3-3 R3-4 R7-1 R2-3 R2-4 R3-2 R6-1 R3-5 R8-1 R3-1 R5-1 R2-2 R1-1 R1-2 

5 0.74 0.11 0.16 0.48 0.22 0.13 0.13 0.00 0.04 0.00 0.17 0.09 0.22 0.26 0.26 

10 0.69 0.31 0.00 0.29 0.21 0.11 0.25 0.07 0.04 0.04 0.43 0.07 0.13 0.33 0.03 

15 0.61 0.35 0.04 0.59 0.07 0.07 0.21 0.03 0.00 0.03 0.29 0.13 0.10 0.42 0.06 

20 0.65 0.23 0.13 0.49 0.19 0.08 0.16 0.03 0.03 0.03 0.26 0.12 0.06 0.44 0.12 

25 0.72 0.07 0.21 0.63 0.13 0.08 0.13 0.00 0.04 0.00 0.43 0.00 0.09 0.35 0.13 

30 0.36 0.27 0.36 0.32 0.09 0.09 0.32 0.09 0.05 0.05 0.17 0.08 0.00 0.58 0.17 

35 0.38 0.38 0.25 0.59 0.29 0.06 0.00 0.00 0.00 0.06 0.23 0.03 0.16 0.48 0.10 

40 0.78 0.11 0.11 0.48 0.14 0.07 0.21 0.03 0.07 0.00 0.36 0.04 0.04 0.48 0.08 

45 0.74 0.19 0.07 0.50 0.23 0.08 0.19 0.00 0.00 0.00 0.26 0.07 0.04 0.52 0.11 

50 0.71 0.14 0.14 0.49 0.16 0.08 0.19 0.05 0.00 0.03 0.19 0.11 0.08 0.56 0.06 

55 0.53 0.33 0.13 0.46 0.17 0.13 0.13 0.04 0.08 0.00 0.11 0.05 0.21 0.58 0.05 

60 0.47 0.27 0.27 0.29 0.24 0.05 0.24 0.10 0.10 0.00 0.19 0.24 0.29 0.29 0.00 

65 0.55 0.27 0.18 0.39 0.18 0.09 0.12 0.12 0.00 0.09 0.25 0.16 0.19 0.38 0.03 

70 0.48 0.33 0.19 0.41 0.19 0.15 0.15 0.00 0.07 0.04 0.26 0.06 0.13 0.52 0.03 

75 0.56 0.25 0.19 0.50 0.17 0.08 0.13 0.08 0.04 0.00 0.33 0.06 0.11 0.50 0.00 

80 0.71 0.29 0.00 0.43 0.19 0.00 0.33 0.05 0.00 0.00 0.24 0.16 0.12 0.36 0.12 

85 0.76 0.10 0.14 0.59 0.09 0.05 0.18 0.05 0.05 0.00 0.29 0.04 0.04 0.54 0.08 

90 0.67 0.13 0.20 0.46 0.14 0.07 0.25 0.04 0.04 0.00 0.33 0.00 0.21 0.42 0.04 

95 0.23 0.69 0.08 0.40 0.20 0.05 0.15 0.00 0.10 0.10 0.22 0.13 0.04 0.39 0.22 

100 0.79 0.10 0.10 0.24 0.19 0.10 0.38 0.05 0.05 0.00 0.13 0.13 0.08 0.65 0.03 
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With the dynamic spatial weights estimated in Table 2, we can see that the weights are time 

variant in this case as the traffic flow was time variant. Then, we used Theorem 2 to conduct a 

parameters estimation and traffic flow prediction. 

After the future traffic states are predicted, the information can be used to conduct route 

planning or predictive traffic signal control applications, and so on. 

5.2. Experimental Evaluation 

The traffic flow prediction accuracy results of the different prediction methods by means of Root 

Mean Square Error (RMSE) are shown in Figure 4. Figure 5 shows the average RMSE and Root Mean 

Square Percentage Error (RMSPE). The average of Figures 4 and 5 is the average RMSE, RMSPE 

values of roads R7-3, R7-2, R3-3, and R3-4 per the prediction models. The definition of RMSE and 

RMSPE are shown below. 

RMSE = √
∑ (𝑥𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 (23) 

RMSPE =
√
∑ (𝑥𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
 

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛

× 100% (24) 

where n is the prediction interval number, 𝑥𝑖 is the actual value, and �̂�𝑖 is the prediction value. 

 

 

 

Figure 4. Prediction accuracy comparison of different models with: (a) 5-min prediction interval; (b) 

15-min prediction interval; and (c) 30-min prediction interval. 
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The average RMSE and RMSPE values of all road sections are shown in Figure 5. 

 

Figure 5. Average prediction accuracy comparison of different models: (a) Root Mean Square Error 

(RMSE); and (b) Root Mean Square Percentage Error (RMSPE). 

From Figure 4, the results showed that on most roads, the prediction accuracies of the different 

prediction models were similar for all intervals. The predication accuracy from low to high was Shift, 

AR, Seasonal MA, STAR, LSTAR, and LSTARIMA, with some exceptions on R3-4 and R3-3. From 

Figure 5, we can see that the RMSE increased as the prediction intervals increased for all prediction 

methods, while the RMSPE decreased when the prediction intervals increased. This indicates that 

although the absolute error increased as the prediction intervals increased, the actual prediction 

accuracy increased with larger prediction intervals as the percentage form errors decreased. Figure 5 

also shows that, regardless of the prediction interval, the average prediction accuracy of LSTAR was 

always better than Shift, AR, Seasonal MA, and STAR. Moreover, LSTARIMA always had a little 

higher accuracy when compared to LSTAR in all prediction intervals. 

According to Diebold [43], only comparing values such as RMSE is not sufficient to declare that 

one prediction model is better than another without a statistics significance check. There are many 

hypothesis tests designed for prediction accuracy comparison and the Diebold-Mariano (DM) test 

[43] is the most popular one. To further evaluate the prediction performance of LSTAR, the DM test 

was used to check if LSTAR was better than other statistically significant prediction models. The 

forecast package of R [44] was used to conduct the DM test for the prediction results of road R7-3. As 

the DM test can only compare the prediction accuracy of two models, we did the DM test for LSTAR 

and the other models one by one. The DM test hypothesis was that LSTAR had better performance than 

all of the other methods subjected to the test. The p-values of each DM test are shown in Table 3. 

Table 3. Diebold-Mariano (DM) test results; AR: autoregressive; Seasonal MA: seasonal moving 

average; STAR: Space-Time AR. 

Prediction Model 5 min 15 min 30 min 

Shift 0.0000 0.0000 0.0000 

AR 0.0351 0.0225 0.0000 

Seasonal MA 0.0611 0.0822 0.07814 

STAR 0.1023 0.0884 0.0929 

LSTARIMA 0.8985 0.7828 0.6797 
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The DM test results showed that the LSTAR prediction accuracy was significantly better than 

Shift at p-value < 1%, better than AR at p-value < 5%, and almost better than Seasonal MA and STAR 

at p-value < 10% (one p-value of STAR > 10%). LSTARIMA was not significantly better than LSTAR 

at p-value < 10%, as no p-value was greater than 90% with the hypothesis that LSTAR is better than 

LSTARIMA. 

6. Conclusions 

This paper discussed the application of a local space-time autoregressive (LSTAR) model for 

traffic flow prediction. In this paper, we showed the prediction process of the LSTAR model in detail. 

The LSTAR model appears to be the best model among the Shift, AR, Seasonal MA, and STAR models 

given its greater parameter flexibility (dynamic spatial neighborhood and dynamic spatial weight). 

According to the DM test results, the LSTAR prediction accuracy was significantly better than Shift 

and AR, and was better than seasonal MA and STAR, but not significantly. As LSTARIMA also 

considers the local spatial and time dynamics and still keeps the MA component, the prediction 

accuracy was always better than the LSTAR model in the simulation results. However, the decrease 

in LSTAR prediction accuracy was very minor when compared to LSTARIMA, and was not statically 

significant. Furthermore, the computational complexity of the LSTAR model was also lower than that 

of the LSTARIMA model. Therefore, there existed a tradeoff between the prediction accuracy and the 

computational complexity for the two models. 

Future studies will be carried out to assess the performance of the LSTAR model with different 

real-world traffic data and the usage of prediction data for different urban traffic applications. We 

will also conduct the simulation and performance evaluation of the traffic information collection via 

the VANET approach. 
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