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Featured Application: This work is currently undergoing field testing at Pingliang Wastewater
Treatment Plant situated in Gansu province, China, especially for the control of dissolved oxygen
concentration in the activated sludge process of the wastewater treatment. By implementing
this control algorithm, we can achieve two goals, namely improving the efficiency of wastewater
treatment and reducing the aeration energy. Meanwhile, the method proposed in this work can
also be extended to other large- or medium-scale wastewater treatment plants in the future.

Abstract: The concentration of dissolved oxygen (DO) in the aeration tank(s) of an activated sludge
system is one of the most important process control parameters. The DO concentration in the
aeration tank(s) is maintained at a desired level by using a Proportional-Integral-Derivative (PID)
controller. Since the traditional PID parameter adjustment is not adaptive, the unknown disturbances
make it difficult to adjust the DO concentration rapidly and precisely to maintain at a desired level.
A Radial Basis Function (RBF) neural network (NN)-based adaptive PID (RBFNNPID) algorithm is
proposed and simulated in this paper for better control of DO in an activated sludge process-based
wastewater treatment. The powerful learning and adaptive ability of the RBF neural network makes
the adaptive adjustment of the PID parameters to be realized. Hence, when the wastewater quality
and quantity fluctuate, adjustments to some parameters online can be made by RBFNNPID algorithm
to improve the performance of the controller. The RBFNNPID algorithm is based on the gradient
descent method. Simulation results comparing the performance of traditional PID and RBFNNPID in
maintaining the DO concentration show that the RBFNNPID control algorithm can achieve better
control performances. The RBFNNPID control algorithm has good tracking, anti-disturbance and
strong robustness performances.

Keywords: dissolved oxygen concentration; radial basis function (RBF) neural network; adaptive PID;
dynamic simulation
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1. Introduction

Currently, the activated sludge process is the most widely used process in wastewater treatment
plants to reduce the biochemical oxygen demand (BOD), nutrients and to some extent other
micro-pollutants such as pharmaceuticals, personal care products and other household chemicals.
The concentration of dissolved oxygen (DO) in the aeration tank(s) in an activated sludge process is
an important process control parameter that has a great effect on the treatment efficiency, operational
cost and system stability. As the DO drops, the quantity of these filamentous microorganisms
increases, adversely affecting the settle-ability of the activated sludge. It is important to recognize
these early warning signs and make corrections to dissolved-oxygen levels before the quality of the
effluent deteriorates. If dissolved oxygen continues to drop, even low dissolved-oxygen filamentous
microorganisms will not be present in the mixed liquor, and treatment efficiencies will be seriously
affected. At this point, effluent turbidity will increase and treatment will deteriorate rapidly. Higher
dissolved oxygen is often a target, but in reality, this is for the assurance of mixing. If dissolved
oxygen is 5.0 or higher there is a good chance that dead zones are minimal since normal currents and
mixing will transport the oxygenated mixed liquor throughout the reactor. However, if the dissolved
oxygen is excessive then there could be problems in the settling of sludge due to shearing of flocs
and re-suspension of inert materials. A high DO concentration also makes the denitrification less
efficient. Both the above-mentioned factors will lead to waste of energy. On the other hand, a low DO
level cannot supply enough oxygen to the microorganisms in the sludge, so the efficiency of organic
matter degradation is reduced [1,2]. Therefore, the premise of how the wastewater treatment process
can perform stably will depend on how effectively the concentration of DO is be maintained within
a reasonable range [3]. Due to the complex nature of microbial activities that are present in an activated
sludge process, even a small change introduced to the system (for example, change in flow rate, water
quality of the influent, the temperature of the wastewater in the reactors and so on) can affect the
concentration of DO. The air supplied to aeration tanks by blowers allows the oxygen to be transferred
from the air to the liquid phase (wastewater). The oxygen transfer is a complex process characterized
by large time-delays as well as strong nonlinearity, coupling and disturbance, which further increases
the difficulty of controlling the concentration of DO [4,5]. A large number of studies have been carried
out and achievements have been made by researchers all over the world to control the concentration
of DO level; a series of control methods to control the concentration of DO have been put into practice
and they have achieved some good effects.

Currently, the proportional–integral (PI) or proportional–integral–derivative (PID) control strategy
is widely used in the process control of wastewater treatment plants. It is well known that the control
effect might be affected by the unknown, unexpected disturbances and the great changes of operation
conditions while using the PI or PID control strategy. In order to improve the dissolved oxygen control
performance of the controller in the wastewater treatment process, various solutions are proposed, such
as fuzzy adaptive PID, multivariable robust control and model predictive control (MPC) strategy [6–9].
MPC [2] is an effective way to control DO, not only maintaining the DO concentration at a set value,
but also catching up with the real-time changes that occur in the process. Belchior et al. Proposed
an adaptive fuzzy control (AFC) strategy for tracking the DO set-points applied to the Benchmark
Simulation Model No. 1 (BSM1) [10] that was proposed by International Water Association (IWA) [11].
AFC is a supervised data-driven control method designed with a smooth switching scheme between
supervisory and nonsupervisory modes. Results show that it can learn and improve control rules
resulting in accurate DO control. Yu et al. simulated intelligent control method and traditional PID
control method in combination. Based on their respective advantages, they achieved better control
effect when they used the intelligent PID control algorithm into applications of control practice in
Haicheng sewage treatment plant, China [12].

Scholars also introduced the neural network into the control of DO in wastewater treatment
process, for example, back propagation (BP) neural network [13]. Furthermore, neural network is
employed into some control strategies for the wastewater treatment process control. Macnab [14] and
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Mirghasemi [15] proposed a robust adaptive neural network control strategy and used it to control the
dissolved oxygen in activated sludge process application. The proposed method prevented weight
drift and associated bursting, without sacrificing performance. They improved the control performance
by using the algorithm, Cerebellar Model Arithmetic Computer (CMAC) to estimate the nonlinear
behavior of the system. Results showed that it can effectively avoid state error. Ruan et al. proposed
an on-line hybrid intelligent control system based on a genetic algorithm (GA) evolving fuzzy wavelet
neural network software sensor to control dissolved oxygen (DO) in an anaerobic/anoxic/oxic (AAO)
process for treating papermaking wastewater [16]. The results indicate that the reasonable forecasting
and control performances were achieved with optimal DO, and the effluent quality was stable at
and below the desired values in real time. It can be an effective control method, attaining not only
adequate effluent quality but also minimizing the demand for energy, and is easily integrated into
a global monitoring system for purposes of cost management [16]. Qiao Junfei et al. proposed a control
method based on self-organizing T-S fuzzy neural network (SO-TSFNN), while using its powerful
self-learning, fault-tolerant and adaptive abilities of the environment [17]. It realized the real-time
control of dissolved oxygen of the BSM1 and achieved better control effect for DO concentration
with good adaptability. Li Minghe et al. proposed a neural network predictive control method for
dissolved oxygen based on Levenberg-Marquardt (LM) algorithm [18]. It overcomes the shortages
of the BP neural network by combining with the LM algorithm to improve the prediction accuracy
of neural network and the tracking performance of dissolved oxygen control. Xu et al. proposed
a new control strategy of DO concentration based on fuzzy neural network (FNN). The minimum
error of the gradient descent method is used to adjust the parameters of the neural network on-line.
Simulation results show that the FNN controller is better than other compared methods [19]. Lin and
Luo studied the design approach of a neural adaptive control method based on a disturbance observer.
A RBF neural network is employed to approximate the uncertain dynamic model of the wastewater
treatment process. The effectiveness of the controller is verified by simulation their study [20]. Han et al.
proposed a self-organizing RBF neural network model predictive control (SORBF-MPC) method for
controlling DO concentration in WWTP. The hidden nodes in RBF neural network can be added or
deleted online on the basis of node activity and mutual information to achieve necessary dynamics
of the network. The application results of DO concentration control show that SORBF-MPC can
effectively control the process of dissolved oxygen [21]. Zhou Hongbiao proposed a self-organizing
fuzzy neural network (SOFNN) control method based on. According to the activation strength and
mutual information, the algorithm dynamically adds and reduces the number of neurons in the regular
layer to meet the dynamic changes of the actual working conditions. At the same time, the gradient
descent algorithm is used to optimize the center, width and output weight of the membership function
online to ensure the convergence of SOFNN. Finally, experimental verification was carried out in the
international benchmark simulation platform BSM1. Experimental results on the BSM1 show that,
compared with control strategies of PID, fuzzy logic control (FLC) and FNN with fixed structure,
SOFNN has a better performance on tracking accuracy, control stability and adaptive ability [22].

Although there are many studies on how to control the DO concentration in wastewater treatment
system by using neural networks and predictive control methods with great outcomes, these kinds of
methods have complicated structures and require large amount of computations. They are difficult to
implement in practical engineering applications. Basically, most of the existing wastewater treatment
plants (WWTPs) are still using PID, a simple and practical control strategy, to control the process.
Unfortunately, since the parameters of the PID control algorithm are difficult to set up in advance
which are strongly affected by the nonlinearity and large time-delay characters of the wastewater
treatment process the control effect maybe unsatisfactory and the key problem is the parameters are
not self-adjusted [23]. Therefore, combining intelligent algorithm with the PID algorithm becomes
an effective way to realize simple structures and the control requirements of wastewater treatment
process in actual WWTPs.
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When we use intelligent algorithm into PID, the parameters can be adjusted real-time according
to the control effect of current strategy (such as gradient descent method) to avoid the problem of
difficult-to-adjust PID parameters. At the same time, they can be adaptively adjusted according to
the change of operation environment and dynamic disturbances. There are two ways to improve
the control accuracy: one is to improve the accuracy of the measurement equipment of dissolved
oxygen concentration, and another is the selection of the center point and the node width of the
neural network.

In this paper, a neural network-based adaptive PID control algorithm is proposed. The radial
basis function (RBF) neural network is employed which has good generalization ability besides
the strong self-learning and adaptive abilities and has a simple network structure. The proposed
network already has research and application basis for the control of practical processes in some
other areas [24–26]. Compared with the traditional PID control algorithm, the proposed RBF neural
network-based adaptive PID (RBFNNPID) control algorithm comprises the advantages of these
two methods. It is simple, easy to implement and has better control accuracy. More importantly, one
does not need to set up the best parameters of PID in advance; that is to say, it can solve the problem of
traditional PID controller that has difficulty in adjusting parameters online.

Considering the control problem of DO concentration level in the wastewater treatment process,
in this paper, the Benchmark model of BSM1 is introduced and the implementation of the RBF neural
network-based adaptive PID control algorithm is discussed. It can be seen from the comparison
simulation results that RBFNNPID control algorithm can effectively improve the control accuracy of
dissolved oxygen concentration under the Benchmark as opposed to traditional PID.

2. Materials and Methods

2.1. Activated Sludge Process (ASP) and Benchmark Simulation Model No. 1 (BSM1)

Activated sludge model No. 1 (ASM1) is a mathematical model that is widely accepted and applied
in the research and application of activated sludge process (ASP) used in biological wastewater treatment
systems. The typical ASP is shown in Figure 1, which includes two parts, the biological (more accurately
biochemical) reaction tanks (or aeration tanks) and the secondary settler [27,28]. In the aeration tanks,
the microorganisms are divided into active heterotrophic and autotrophic bacteria. The 13 reaction
components and 8 reaction processes of the organic matter present in the influent are incorporated into
the ASM1 [28–30]. In each process, all the organic substances and microorganisms have their own reaction
rates and stoichiometry. Since the model has been published, researchers have been using the ASM1
model to verify their new proposed control algorithms of the DO concentration of ASP.
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Figure 1. Typical biological (or biochemical) ASP to treat wastewater. ASP: Activated Sludge Process.

The activated sludge process aims to achieve, at minimum cost, sufficiently low concentrations
of biodegradable matter and nutrients in the effluent together with minimal sludge production.
In order to achieve this, the process has to be controlled [28]. However, it is difficult to predict the
performance of the proposed or applied control strategy based on existing reference, process or location.
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To enhance the acceptance of innovative control strategies the performance evaluation should be based
on a rigorous methodology that includes a simulation model, plant layout, controllers, performance
criteria and test procedures.

The first Benchmark Simulation Layout (BSM1), which was based on the ASM1, is relatively
a simple layout and is shown in Figure 2. Similar to ASM1, the first part of BSM1 is also a biological
(or biochemical) activated sludge reactor, which is comprised of five-compartments, two of them are
anoxic tanks and the following three are aerobic tanks; the second part of BSM1 is a secondary settler.
Reactors 1 and 2 are unaerated in open-loop, but fully mixed; reactors 3, 4 and 5 are aerated. For the
open-loop case, the oxygen transfer coefficients (KLa) are fixed; for reactors 3 and 4 the coefficient
(KLa3 and KLa4) is set to a constant at 240 d−1 (10 h−1), which means the air flow rate of the blower is
constant; for reactor 5, the coefficient (KLa5) is selected as the control variable (or operational variable)
in this paper to be manipulated for maintaining the DO concentration at a level of 2mg/L. Thus,
the system can achieve biological nitrogen removal through nitrification in the aeration tanks and
pre-denitrification in the anoxic tanks. The model equations to be implemented for the proposed
layout, the procedure to test the implementation and the performance criteria to be used are described
below along with the description of sensors and control handles [28]. For more information, it can be
seen in literature [28,29].
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The ASM1 [27] has been selected to describe the biological phenomena taking place in the
biological reactor and a double-exponential settling velocity function [31] has been selected to describe
the secondary settler which is modeled as a 10 layers non-reactive unit (i.e., no biological reaction).
In the activated sludge wastewater treatment system, the concentration of DO in the aeration tank is
the most important parameter in the process of nitrogen removal [32]. Actually, the DO concentration
has a direct impact on the effluent quality with respect to total nitrogen (Ntot), nitrate nitrogen (SNO)
and ammonia (SNH). Therefore, the study of DO control has its important practical significance and
prospect for application.

According to the mass balance of the system, the biochemical reactions that take place in each
compartment (reactor) can be described as the follows.

Reactor 1
dZ1

dt
=

1
V1

(QaZa + QrZr + Q0Z0 + r1V1 −Q1Z1) (1)

Reactors 2 through 5 (k = 2 to 5)

dZk
dt

=
1

Vk
(Qk−1Zk−1 + rkVk −QkZk) (2)

Special case for oxygen (SO,k)

dSO,k

dt
=

1
Vk

(Qk−1SO,k−1 −Qk−1SO,k)(KLa)k(S
∗
O − SO,k) + rk (3)



Appl. Sci. 2018, 8, 261 6 of 21

where, Q is the flow rate, Z is the mass concentration of either substrate or bacterial mass, V is
the volume of the reactor, r is the reaction rate, KLa is the oxygen transfer coefficient, SO is the
dissolved oxygen concentration. S* is the saturation concentration for oxygen (S* = 8 g/m3 at 15 ◦C);
also Q1 = Qa + Qr + Q0; Qk = Qk−1.

2.2. A Neural Network Based Adaptive PID Algorithm

2.2.1. Radial Basis Function (RBF) Neural Network

Artificial neural network (ANN) is an artificial intelligence system to imitate biological neural
networks (BNN). It uses nonlinear processing unit to simulate biological neurons for simulating the
behavior of biological synapses among neurons by adjusting the variable weights between connected
units. The specific topological structure of the network is organized from each processing unit in
a certain connected form. Parallel processing ability and distributed storage are the main features of
ANN. Furthermore, it has strong fault tolerance and nonlinear mapping ability with self-organization,
self-learning and adaptive reasoning ability [33].

BP (backpropagation) network and RBF network are the most widely used forms of ANN. It is
easily to be seen in the widely uses of pattern recognition, prediction, automatic control, etc. [34].
BP algorithm, a supervised learning algorithm, is based on gradient descent algorithm. The drawbacks
of BP include an easy fall into local optimum, slow convergence speed, and disunity network structure.
RBF network is a feedforward network based on the function approximation theory. It has strong
global approximation ability, which can guarantee the network to approximation any kind of nonlinear
function with arbitrary accuracy. It can fundamentally overcome the problem of local optimum occurs
in BP network. The RBF network has the advantages of simple structure, fast convergence speed and
strong generalization ability [35].

Radial basis function (RBF) neural network used in this paper is a three-layer forward network,
which is a local approximation method of neural networks. The RBF neural network is composed of
three layers, the input layer, the hidden layer and the output layer as shown in Figure 3. The mapping
of the input layer to the output layer is nonlinear and the mapping of the space from the hidden layer
to the output layer is linear. This kind of mapping configuration itself can speed up the learning rate
and avoid the problem of local minima [18].
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In Figure 3, the input vector of the input layer of the neural network is represented as:

X = [x1, x2, · · · , xs, · · · , xn]
T (4)

where, xs = [us(k), ys(k), ys(k − 1)], s = 1, 2, . . . , n; u(k) is the output of the controller; y(k) is the present
(measured) output of the system (or process), that is, the measured value of DO concentration; y(k − 1)
is the last measured value of DO concentration output from the process.
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The middle layer is the hidden layer. The activation function of the hidden layer is composed of
radial basis functions. Each array of computing units of hidden layers is called node. The radial basis
vector of the nodes in the RBF neural network is shown in Equation (5).

T = [h1, h2, · · · , hj, · · · , hm]
T (5)

where, hj is Gaussian function,

hj = exp(
‖X− Cj‖

2b2
j

) (6)

where, j = 1, 2, . . . , m. Cj is the central vector of the first j node of the hidden layer of the RBF
neural network,

Cj = [cj1, cj2, · · · , cji, · · · , cjn]
T (7)

where, i = 1, 2, . . . , n.
The basic width vector of the hidden layer node of the RBF neural network is

B = [b1, b2, · · · , bj, · · · , bm]
T (8)

where, bj is the parameter of the first j node and j = 1, 2, . . . , m.
The weight vector of RBF neural network W is given by:

W = [w1, w2, · · · , wj, · · · , wm]
T (9)

Then, the estimated output of the RBF network is defined as:

ym = w1h1 + w2h2 + · · ·+ wmhm (10)

The performance index function of the RBF neural network is set as follows:

E1 =
1
2
(y(k)− ym(k))

2 (11)

where, y(k) is the system output and ym(k) is the estimated output of the RBF network.
From the above analysis, the three most important parameters C, W and B of a RBF neural network

need to be obtained by the learning algorithm. In this paper, the gradient descent method is employed
to obtain those three parameters of the nodes. The iterative algorithm used is as follows:

wj(k) = wj(k− 1) + η(y(k)− ym(k))hj + α
(
wj(k− 1)− wj(k− 2)

)
(12)

∆bj = (y(k)− ym(k))wjhj
‖X− Cj‖2

b3
j

(13)

bj(k) = bj(k− 1) + η∆bj + α
(
bj(k− 1)− bj(k− 2)

)
(14)

∆cji = (y(k)− ym(k))wj
xj − cji

b2
j

(15)

cji(k) = cji(k− 1) + η∆cji + α
(
cji(k− 1)− cji(k− 2)

)
(16)

and the Jacobian matrix:
∂y(k)
∂u(k)

≈ ∂ym(k)
∂u(k)

=
m

∑
j=1

wjhj
cji − x1

b2
j

(17)

in which, η is the learning rate, α is the momentum factor and x1 = ∆u(k) is the control increment which
is defined as the first input of the neural network.
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2.2.2. Design of the RBF Neural Network Based Adaptive PID (RBFNNPID) Algorithm

In the past decades, Proportional-Integral-Derivative (PID) is the main control method for DO
level [36,37]. However, owing to the WWTP’s time-varying feature, strong nonlinearity, significant
perturbations and large uncertainty, a fixed parameter linear controller is not able to maintain
a satisfactory tracking performance under the full range of operating conditions [1,37].

The structure of the RBF neural network-based adaptive PID (RBFNNPID) algorithm is shown in
Figure 4. The RBF neural network will adaptively calculate weighting coefficient and the parameter
gradient information according to the operating state of the dissolved oxygen control system, by its
own great learning ability. These results will be used to update the parameters of the PID controller in
real time. Hence, such a repeated execution process realizes the adaptive adjustment of PID parameters
and achieves the control of DO concentration.
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We have adopted the incremental PID controller and the control error is:

error(k) = rin(k)− y(k) (18)

where, rin is the desired process value or setpoint of DO concentration; y(k) is the measured process
value of DO.

The input of the PID algorithm is three errors, which are defined as:

xc(1) = error(k)− error(k− 1) (19)

xc(2) = error(k) (20)

xc(3) = error(k)− 2error(k− 1) + error(k− 2) (21)

The output of the PID algorithm is:

u(k) = u(k− 1) + ∆u(k) (22)

∆u(k) = kpxc(1) + kixc(2) + kdxc(3) (23)

where, kp, ki and kd are the three parameters of the PID controller, which represents the proportion,
integration and differentiation. The performance function is defined as:

E(k) =
1
2
(error(k))2 (24)

According to the gradient descent method, the adjustment rules of three parameters are given as:

∆kp = −η
∂E
∂kp

= −η
∂E
∂y

∂y
∂u

∂u
∂kp

= −ηerror(k)
∂y
∂u

xc(1) (25)
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∆ki = −η
∂E
∂ki

= −η
∂E
∂y

∂y
∂u

∂u
∂ki

= −ηerror(k)
∂y
∂u

xc(2) (26)

∆kd = −η
∂E
∂kd

= −η
∂E
∂y

∂y
∂u

∂u
∂kd

= −ηerror(k)
∂y
∂u

xc(3) (27)

in which, ∂y/∂u is the identification information for the Jacobian matrix of the controlled object and it
can be obtained through the identification process of neural network. The Jacobian matrix reflects the
sensitivity of the output of the controlled object to the change of the input of the control.

The steps of the proposed RBFNNPID control strategy are as follows:

Step 1: Initializing the network parameters, including the number of nodes in input layers and hidden
layers, learning rate, inertia coefficient, the base width vector and the weight vector.

Step 2: Sampling to get input rin and output y, calculating error in terms of Equation (18).
Step 3: Calculating the output u of regulator according to Equation (22).
Step 4: Calculating network output ym, adjusting center vector C, base width vector B, weight

vector W and the Jacobian matrix in terms of Equations from (10) to (17) to obtain network
identification information.

Step 5: Adjusting parameters of regulator in terms of Equations (25)–(27).
Step 6: Back to Step 2 and repeat the subsequent steps until the end of the simulation time.

The DO control module and the main codes of the S-function module of RBFNNPID can be found
in Appendixs A and B. Appendix C describes the stability and convergence analysis of the proposed
RBFNNPID algorithm. An example to verify the convergence of the parameters of the neural network
is shown in Appendix D.

3. Results

In order to verify the effectiveness and feasibility of the proposed neural network-based adaptive
PID (RBFNNPID) algorithm for DO concentration control of the activated sludge wastewater treatment
process, comparison simulation of RBFNNPID and traditional PID are designed in this section,
including tracking performance and anti- disturbance performance.

We have selected the BSM1 as the simulation model and the dry weather wastewater data
provided by IWA as the source data. The dry weather data contains two weeks long actual operational
data of a wastewater treatment system, sampled at every 15 min. Figure 5 shows the dynamic influent
data and the changes to the concentrations of some of the components between days 7 and 14.
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Figure 5. Dynamic data for experimental use: (a) Influent flow rate (days 7 to 14); (b) Concentration
of some of the chemical species in the influent (days 7 to 14) (SS—readily biodegradable substrate;
SNH—ammonium and ammonia nitrogen; SND—soluble biodegradable organic nitrogen).
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In the simulation, the three parameters of both the traditional incremental PID algorithm and
the proposed RBFNNPID algorithm are set as: kp = 5, ki = 1, kd = 0.5; the learning rate, η of the
three parameters of PID is 0.2; the momentum factor α is 0.05; the network sampling period is 0.001 s;
the structure of the RBFNN is defined as “3-6-1”, that is to say, the input layer has three nodes,
the hidden layer has six nodes and the output layer has one node.

3.1. Tracking Performance Test 1

When the BSM1 wastewater treatment system is operating, due to the dynamic changes in
the flow rate and composition of the influent, one need to adjust the oxygen transfer rate (KLa5) in
the fifth tank in real-time to maintain the dissolved oxygen concentration in the appropriate range
to ensure the effluent water quality meets the discharge standards. Therefore, how to control the
DO concentration around the set point during the process is the aim of control algorithm that is
being employed. The tracking performance is one of the deterministic criteria to evaluate whether
an algorithm can be applied to an actual wastewater treatment system control.

Generally, the effluent water quality is the best when the DO concentration in the aeration tank
is kept between 1~3 mg/L. Therefore, the DO concentration is setup to 2 mg/L in this simulation.
The simulation results of last seven days are taken to evaluate the performance of the controller,
which is shown in Figure 6.
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3.2. Tracking Performance Test 2

The set point of DO concentration was changed on days 8, 10 and 12 to 2.5, 1.7 and back to
2 mg/L, respectively to verify the tracking performance of the new proposed RBFNNPID algorithm.
Simulation results are shown in Figure 7.
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3.3. Anti-Disturbance Performance Test

A good control algorithm should not only have a good tracking performance, but also have
a strong anti-disturbance ability. By having these properties, it can be applied to control a complex
system such as wastewater treatment process to achieve a precise control effect. To further verify the
anti-disturbance ability of the RBFNNPID algorithm, we used the data collected in rain and storm
weather to simulate the algorithm. Different weather condition can be looked as different disturbances
in the influent. The results are shown in Figures 8 and 9.
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(days 7 to 14); (b) DO concentration in the fifth tank; (c) Dynamic changes of the manipulated variable
KLa5; (d) Dynamic adaptive adjustments of the three parameters kp, ki, kd of RBFNNPID algorithm.
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Figure 9. Comparison results of the anti-disturbance performance (storm weather): (a) Influent flow rate
(days 7 to 14); (b) DO concentration in the fifth tank; (c) Dynamic changes of the manipulated variable KLa5;
(d) Dynamic adaptive adjustments of the three parameters kp, ki, kd of RBFNNPID algorithm.
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3.4. Controller Performance Evaluation Index

There are two main indices for evaluating the performance of the dissolved oxygen controller.
One is the assessment of the underlying control strategy. Indices include the integral of absolute
error (IAE), the integral of squared error (ISE), the maximal deviation from set point (Devmax) and the
variance of error (Vare). The four indices are calculated by Equation (28) through to (31) as shown below.

IAEi =

t=14∫
t=7

|ei|dt (28)

ISEi =

t=14∫
t=7

e2
i dt (29)

Devmax
i = max|ei| (30)

Var(ei) =
ISEi

T
− (

IAEi
T

)
2

(31)

The aeration cost can be calculated using aeration energy (AE), which will be the economic
indicator. AE is mainly used in the last three units of the biochemical reaction tanks. AE can be
obtained by using the oxygen transfer function (KLa) of the three units as shown in Equation (32)

AE =
S∗O

T·1800

t=14∫
t=7

i=5

∑
i=1

Vi·KLa(t)dt (32)

where, S∗O is the saturation value of dissolved oxygen, Vi is the volume of each unit, and T is the
calculation period of AE, in this case T = 7 days.

Generally, the smaller the value of the above evaluation indices, the better the performance of
the controller is. Results of the evaluation indices are shown in Tables 1 and 2. We can see that,
under the different weather conditions, the RBFNNPID control strategy reduced the values of the
above evaluation indices, compared with the traditional PID control strategy, indicating that the
control performance of the system has been effectively improved, and the cost of aeration has also
been reduced.

Table 1. Performance of two DO control methods.

Weather Method ISE IAE Devmax Vare

Dry RBFNNPID 1.64× 10−2 2.08× 10−1 1.89× 10−1 2.10× 10−3

PID 4.44× 10−2 4.03× 10−1 3.43× 10−1 6.30× 10−3

Rain
RBFNNPID 2.50× 10−3 9.47× 10−2 6.94× 10−2 3.53× 10−4

PID 3.59× 10−2 3.61× 10−1 2.95× 10−1 5.10× 10−3

Storm
RBFNNPID 5.70× 10−3 1.39× 10−1 1.46× 10−1 8.16× 10−4

PID 1.38× 10−2 2.27× 10−1 1.97× 10−1 2.00× 10−3

Table 2. Aeration energy of two control methods.

Weather PID (kWh/d) RBFNNPID (kWh/d)

Dry 7149.9 7032.1
Rain 6955.8 6805.8

Storm 7199.6 6971.8
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4. Discussion

PID may fail to achieve the control goal or effect of the process while using the traditional
PID control algorithm due to unknown and unexpected disturbances as well as significant changes
in operating conditions, such as a significant change in the (i) quality of influent; (ii) weather, etc.
Therefore, in general, the parameters of the traditional PID controller need to be adjusted under
different operating environments. However, a long period of accumulated experience and several tests
are needed in order for the traditional PID to be adjusted to achieve satisfactory results under each
operating environment. Clearly, it is not feasible in real time applications and increases the difficulty in
applying it in different wastewater treatment plants. Our work will reduce the difficulty of parameter
tuning of the traditional PID controller, which is essential to improve the adaptability of the PID control
parameters in practice.

The simulation results in Figures 6a, 7a, 8b and 9b show that the DO concentration is difficult to
maintain at set point under the control of the conventional incremental PID controller when the influent
flow rate and quality changed greatly. On the contrary, RBFNNPID can effectively maintain the DO
concentration around the set value with a relatively low error by adjusting the air flow (which can be
seen in Figures 6b, 7b, 8c and 9c). It can be seen that the dynamic changes of the manipulated variable
KLa5 is smooth under the control of RBFNNPID. This means we can get a more stable status by using
less air supply to the aeration tank. Therefore, using RBFNNPID can reduce the aeration cost which is
one of the major electrical costs of the wastewater treatment processes. It also can be verified from the
results shown in Tables 1 and 2.

According to the results of the rain weather and storm weather, which can be considered as there
has the disturbances of the influent, shown in Figures 8 and 9, compared with the conventional
PID controller, the RBFNNPID controller can quickly and accurately track the desired output
trajectory values, which means it not only has a good tracking performance, but also has a stronger
anti-disturbance ability with the changes to the set points. Figures 6c, 7c, 8d and 9d show the curves
of the PID parameters are being adjusted adaptively. Parameters adjusted rapidly at the start of the
simulation and small adjustments took place as the simulation goes on.

Applying precise control of the concentration of dissolved oxygen can not only avoid the
occurrence of sludge bulking, but also reduce the aeration energy in a wastewater treatment plant.
Intermittent aeration can be successfully implemented in a small-scale wastewater treatment plant to
reduce the aeration energy while ensuring good effluent water quality [38]; however the same cannot
be said in a large-scale wastewater treatment plant such as Pingliang Wastewater Treatment Plant that
is situated in Gansu Province, China. In a large-scale wastewater treatment plant, intermittent aeration
can reduce only a fraction of aeration energy. However, continuous aeration can effectively reduce the
emissions of volatile organic compounds (VOCs) from a wastewater treatment plant, which has been
proven as a factor for the increase of haze in some Chinese cities [39].

The characteristics of strong coupling, nonlinearity and large time delay of dissolved oxygen
control system in activated sludge wastewater treatment and a control algorithm called RBFNNPID
algorithm are discussed in this paper. However, this algorithm has not been applied directly into
practice so far as it has certain complexity. We are currently undertaking the following two studies to
verify its feasibility, validity, and superiority: (i) Simplifying the algorithm for practical use; (ii) Trialing
the algorithm at Pingliang Wastewater Treatment Plant in Gansu Province, China.

5. Conclusions

In this paper, an adaptive PID control algorithm based on RBF neural network is proposed.
The RBFNNPID algorithm combines the good learning and adaptive ability of neural networks and
the practical advantages of PID algorithm. The gradient descent method is used to adaptively adjust
the increment of the three parameters of the PID controller to achieve an optimal control effect on the
control of DO concentration. The simulation results show that the RBFNNPID algorithm not only has
a better performance of tracking and anti-jamming, but also has a great improvement to the robustness
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compared to that of the traditional PID. Thus, it can reduce the aeration costs of a wastewater treatment
plant employing ASP.
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Appendix A

We designed a DO control module in the Matlab Simulink environment which is shown in
Figure A1. The output one “kla_out” is used to adjust the air flow of the blower, equipped for reactor 5,
to maintain the DO concentration at a level of desired value. The scope is used to monitor the dynamic
changes of the three parameters of the controller, which have been shown in Figures 6c, 7c, 8d and 9d.
Detail of the inner structure of the controller is shown in Figure A2.

Appl. Sci. 2018, 8, x 15 of 21 

Author Contributions: Xianjun Du, Guohua Shi and Junlu Wang conceived and designed the experiments; 
Junlu Wang performed the experiments; Xianjun Du, Junlu Wang and Veeriah Jegatheesan analyzed the data; 
Xianjun Du and Veeriah Jegatheesan wrote the paper.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

We designed a DO control module in the Matlab Simulink environment which is shown in 
Figure A1. The output one “kla_out” is used to adjust the air flow of the blower, equipped for reactor 5, 
to maintain the DO concentration at a level of desired value. The scope is used to monitor the 
dynamic changes of the three parameters of the controller, which have been shown in Figures 6c, 7c, 
8d and 9d. Detail of the inner structure of the controller is shown in Figure A2. 

 
Figure A1. Overview of the DO control module. 

 

Figure A2. Detailed structure of the RBFNNPID controller. 

Appendix B 

The main codes of the S-function module, shown in Figure A2, are given below: 
function [sys, x0, str, ts] = nnrbf_pid(t,x,u,flag,T,nn,K_pid, eta_pid, xite, alfa, beta0, w0) 

switch flag, 
case 0, [sys, x0, str, ts] = mdlInitializeSizes(T,nn); 
case 2, sys = mdlUpdates(u); 
case 3, sys = mdlOutputs(t, x, u, T,nn, K_pid,eta_pid, xite, alfa, beta0, w0); 
case {1, 4, 9}, sys = []; 
otherwise, error (['Unhandled flag = ' , num2str(flag)]); 

end 
function [sys,x0,str,ts] = mdlInitializeSizes(T, nn) 

sizes = simsizes;  
sizes. NumContStates = 0;  

Figure A1. Overview of the DO control module.

Appl. Sci. 2018, 8, x 15 of 21 

Author Contributions: Xianjun Du, Guohua Shi and Junlu Wang conceived and designed the experiments; 
Junlu Wang performed the experiments; Xianjun Du, Junlu Wang and Veeriah Jegatheesan analyzed the data; 
Xianjun Du and Veeriah Jegatheesan wrote the paper.  

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

We designed a DO control module in the Matlab Simulink environment which is shown in 
Figure A1. The output one “kla_out” is used to adjust the air flow of the blower, equipped for reactor 5, 
to maintain the DO concentration at a level of desired value. The scope is used to monitor the 
dynamic changes of the three parameters of the controller, which have been shown in Figures 6c, 7c, 
8d and 9d. Detail of the inner structure of the controller is shown in Figure A2. 

 
Figure A1. Overview of the DO control module. 

 

Figure A2. Detailed structure of the RBFNNPID controller. 

Appendix B 

The main codes of the S-function module, shown in Figure A2, are given below: 
function [sys, x0, str, ts] = nnrbf_pid(t,x,u,flag,T,nn,K_pid, eta_pid, xite, alfa, beta0, w0) 

switch flag, 
case 0, [sys, x0, str, ts] = mdlInitializeSizes(T,nn); 
case 2, sys = mdlUpdates(u); 
case 3, sys = mdlOutputs(t, x, u, T,nn, K_pid,eta_pid, xite, alfa, beta0, w0); 
case {1, 4, 9}, sys = []; 
otherwise, error (['Unhandled flag = ' , num2str(flag)]); 

end 
function [sys,x0,str,ts] = mdlInitializeSizes(T, nn) 

sizes = simsizes;  
sizes. NumContStates = 0;  

Figure A2. Detailed structure of the RBFNNPID controller.

Appendix B

The main codes of the S-function module, shown in Figure A2, are given below:



Appl. Sci. 2018, 8, 261 16 of 21

function [sys, x0, str, ts] = nnrbf_pid(t,x,u,flag,T,nn,K_pid, eta_pid, xite, alfa, beta0, w0)
switch flag,

case 0, [sys, x0, str, ts] = mdlInitializeSizes(T,nn);
case 2, sys = mdlUpdates(u);
case 3, sys = mdlOutputs(t, x, u, T,nn, K_pid,eta_pid, xite, alfa, beta0, w0);
case {1, 4, 9}, sys = [];
otherwise, error (['Unhandled flag = ' , num2str(flag)]);

end
function [sys,x0,str,ts] = mdlInitializeSizes(T, nn)

sizes = simsizes;
sizes. NumContStates = 0;
sizes.NumDiscStates = 3;
sizes. NumOutputs = 4 + 5* nn;
sizes.NumInputs = 9 + 15* nn;
sizes. DirFeedthrough = 1;
sizes. NumSampleTimes =1;
sys = simsizes(sizes) ;
x0 = zeros(3, 1);
str = [];
ts = [T0];

function sys = mdlUpdates(u)
sys = [ u(1) − u(2); u(1); u(1) + u(3) − 2* u(2)];

function sys = mdlOutputs(t, x, u,T, nn, K_pid, eta_pid, xite, alfa, beta0, w0)
% Initialization of the radial basis centers
ci3 = reshape(u(7: 6 + 3* nn), 3, nn);
ci2 = reshape(u(7 + 5* nn: 6 + 8* nn), 3, nn);
ci1 = reshape(u(7 + 10* nn: 6 + 13* nn), 3, nn);
% Initialization of the radial basis width
bi3 = u(7 + 3* nn: 6 + 4* nn);
bi2 = u(7 + 8*nn: 6 + 9* nn);
bi1 = u(7 + 13* nn: 6 + 14* nn);
% Initialization of the weights
w3 = u(7 + 4* nn: 6+ 5* nn) ;
w2 = u(7 + 9* nn: 6+ 10* nn) ;
w1 = u(7 + 14* nn: 6+ 15* nn) ;
xx = u([6; 4; 5]);
if t = 0

% Initialize the PID parameters
ci1 = w0(1) * ones(3, nn);
bi1 = w0(2) *ones(nn, 1);
w1 = w0(3) * ones(nn, 1);
K_pid0 = K_pid;
else
% Update the PID parameters
K_pid0 = u(end-2: end);

end
for j = 1: nn

% Gaussian
h(j, 1) = exp(−norm(xx−ci1( : , j))ˆ2/(2* bi1(j) * bi1(j)));

end
% Dynamic of gradient descent method
dym = u(4) − w1'* h;
W = w1 + xite* dym* h + alfa* (w1 − w2) + beta0*(w2 − w3) ;
for j = 1: nn

dbi(j,1) = xite* dym* w1(j) * h(j) * (bi1(j) ˆ(−3)) * norm(xx − ci1(:,j))ˆ2;
dci( : ,j) = xite*dym* w1(j)* h(j) * (xx − ci1(:,j)) * (bi1(j)ˆ(−2));

end
bi = bi1 + dbi + alfa* (bi1 − bi2) + beta0*(bi2 − bi3) ;
ci = ci1 + dci + alfa* (ci1 − ci2) + beta0*(ci2 − ci3) ;
% Jacobian
dJac = sum(w.*h.*(−xx (1) + ci (1,:)') ./bi.ˆ2);
% adjustments of the PID parameters
KK(1) = K_pid0(1) + u(1) * dJac* eta_pid(1)* x(1);
KK(2) = K_pid0(2) + u(1) * dJac* eta_pid(2)* x(2);
KK(3) = K_pid0(3) + u(1) * dJac* eta_pid(3)* x(3);
sys= [ u(6) + KK* x; KK'; ci( : ) ; bi( : ) ; w( : ) ] ;



Appl. Sci. 2018, 8, 261 17 of 21

Appendix C

This section describes the stability and convergence analysis of the proposed RBFNNPID algorithm.
The basic knowledge of the stability and convergence analysis is Lyapunov theorem, also known

as Lyapunov stability.
V(x1, x2, K, xN) is an arbitrary function defined in the neighborhood of the origin Ω, where Ω is

a state of equilibrium and x1, x2, K, xN are variables, then

|xi| ≤ H, i = 1, 2, K, N (A1)

where, H is a positive constant.
Assuming that V is a continuous differentiable function in Ω and V(0, 0, K, 0) = 0. Such that

(i) V(x) > 0 is positive definite or V(x) < 0 is negative definite, x ∈ Ω and x 6= 0;
(ii) V(x) > 0 is positive semi-definite or V(x) < 0 is negative semidefinite, x ∈ Ω;

Consider an autonomous nonlinear dynamical system

.
x = f (x) (A2)

where, f (0) = 0.
Assuming xi = xi(t), (i = 1, 2, K, N) is the solution of the system (A2). We can obtain the derivation

dV
dt

=
∂V
∂x1

∂x1

∂t
+

∂V
∂x2

∂x2

∂t
+ K +

∂V
∂xN

∂xN
∂t

(A3)

Introducing the gradient vector (Equation (A4)) into Equation (A3)

∇V(x) =
[

∂V
∂x1

,
∂V
∂x2

, L,
∂V
∂xN

]T
(A4)

We will arrive at the final equation as below:

V = [∇V(x)]T f (x) = ω(x) (A5)

The following conclusions can be made from the above analysis:

(i) If V(x) is positive (or negative) definite, and if derivation V = ω(x) is negative (or positive)
semi-definite, the system is said to be Lyapunov stable at the equilibrium of the origin;

(ii) If V(x) is positive (or negative) definite, and if derivation V = ω(x) is negative (or positive)
definite, the system is said to be exponentially stable at the equilibrium of the origin;

(iii) If V(x) is positive (or negative) definite, and if derivation V = ω(x) is also positive (or negative)
definite, the system is said to be unstable at the equilibrium of the origin;

For the adjustment of the weights of the neural network, we need a parameter called learning
rate η. If η is too large, NN will be unstable; but if η is too small, the convergence rate will be too
slow. Therefore, the selection of the value of learning rate is crucial to the stability and convergence of
the system.

Assuming the indicator function of the RBFNNPID controller

J(k) =
1
2
[y(k)− ym(k)]

2 =
1
2

e2(k) (A6)

where, e(k) is the learning error of the network.
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In order to ensure the adjustment of the weight coefficient is carried out in the direction of the
negative gradient relative to ω(k), there must be

ω(k + 1) = ω(k)− η
∂J(k)
∂ω(k)

(A7)

From Equations (A6) and (A7), we can get

∆ω(k) =
∂J(k)
∂ω(k)

= e(k)
∂e(k)
∂ω(k)

= e(k)
∂e(k)

∂∆u(k)
∂∆u(k)
∂ω(k)

(A8)

Defining a Lyapunov function of a discrete-time systems as

v(k) =
1
2

e2(k) (A9)

As we introduced in the paper, the gradient descent method is used as the change of the
network-learning algorithm.

∆v(k) = v(k + 1)− v(k) =
1
2

e2(k + 1)− 1
2

e2(k) =
1
2

∆e(k)[2e(k) + ∆e(k)] (A10)

where, e(0) = 0, and,

∆e(k) =
∂J(k)
∂e(k)

= e(k) (A11)

It can be obtained from Equation (A8), that

∆e(k) = e(k) = (
∂e(k)
∂ω(k)

)
T

∆ω(k) (A12)

and

∆ω(k) = −η
∂J(k)
∂ω(k)

= −ηe(k)
∂e(k)

∂∆u(k)
∂∆u(k)
∂ω(k)

(A13)

By substituting Equation (A13) into Equation (A12)

∆e(k) = −η‖ ∂J(k)
∂ω(k)

‖
2

e(k) (A14)

Then, substituting Equation (A14) into Equation (A10)

∆v(k) = −1
2

η‖ ∂J(k)
∂ω(k)

‖
2

e(k)

[
2e(k)− η‖ ∂J(k)

∂ω(k)
‖

2

e(k)

]
= −1

2
η‖ ∂J(k)

∂ω(k)
‖

2

e2(k)

[
2− η‖ ∂J(k)

∂ω(k)
‖

2
]

(A15)
Knowing from the Lyapunov stability theory, the system is stable when ∆v < 0. In addition,

because of η > 0,

2− η‖ ∂J(k)
∂ω(k)

‖
2

> 0 (A16)

That is,

0 < η <
2

‖ ∂J(k)
∂ω(k)‖

2 (A17)

Therefore, the system is stable.
When ∆v < 0,

1
2

e2(k + 1) <
1
2

e2(k) (A18)
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lim
k→∞

e(k) = 0 (A19)

It means, with the increase of k, e(k) gradually reaches to zero, and it guarantees the convergence
of the learning algorithm. Based on the above analysis, if the value of η is according to Equation (A17),
the system is stable and the learning algorithm will converge.

Appendix D

To verify the convergence of the parameters of the neural network, the dynamic changes of the
centers (Figure A3) as well as weights and widths (Figure A4) of the neural network were computed,
taking the first neuron of the hidden layer neurons as the example. From those figures, it can be seen
that the parameters are converging with adaptive changes while the control process is going on.
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