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Abstract: Due to high implementation rates of smart meter systems, considerable amount of research
is placed in machine learning tools for data handling and information retrieval. A key tool in load data
processing is clustering. In recent years, a number of researches have proposed different clustering
algorithms in the load profiling field. The present paper provides a methodology for addressing
the aforementioned problem through Multi-Criteria Decision Analysis (MCDA) and namely, using
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). A comparison of
the algorithms is employed. Next, a single test case on the selection of an algorithm is examined.
User specific weights are applied and based on these weight values, the optimal algorithm is drawn.
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1. Introduction

1.1. Motivation

Among the key targets of Smart Grid’s operation is to bring forth new opportunities for the end
consumers [1,2]. In traditional power systems, the consumers have zero or limited information about
the actions that take place in electricity markets [3]. In order to upgrade the role of the consumer in the
new landscape of power systems, it is essential to measure the load consumption and implement tools
for information retrieval [4,5]. Smart metering infrastructure provides discrete time interval metering
and, generally, more detailed data in terms of time resolution is available [6,7]. The processing of
the collected load data can lead to the determination of consumers’ load profiles [8]. The term “load
profiling” refers to the formulation of representative load curves over a given time period of a single
consumer or groups of consumers [9–11]. The representative load curves or load profiles are actually
the averaged load curves that have been grouped together in the same cluster. It should be noted
that criteria such as voltage level, demographic parameters, type of economic activity, location and
others are not sufficient enough to support a solid consumer classification [12]. This fact is recognized
by current research leading to the examination of alternative methods to form consumer classes and
derive the load profiles of each class [13].

Clustering is an unsupervised machine learning tool with proven performance in a wide variety
of problems [14–16]. In recent years, many researchers have proposed clustering algorithms in the
field of load profiling. A clustering algorithm is a tool for data processing and information retrieval.
The data processing may refer to non-typical data detection and discarding. The load data are grouped
together based on their similarity. The load profiles of the load data clusters are actually a descriptive
model of the recorded load data. The amount of data can be represented by a reduced set of typical
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load curves or load profiles. Therefore, clustering-based load profiling can serve as the basic tool for
processing of smart meter data. This fact is recognized in power systems community leading to an
intense research effort to test algorithms for load data clustering [17]. However, while the load profiling
literature is rich with implementations of clustering algorithms, there is no study that provides a
general framework that reaches safe conclusions for algorithm selection. The aim of the present paper
is not only to provide a detailed comparative analysis of the most commonly used algorithms in the
literature and based on this analysis and to identify and discuss the benefits and drawbacks of each
algorithm category but to rank the algorithms of the literature from the most to less efficient.

1.2. Solution Approach

The performance of a clustering algorithm is checked either with qualitative or quantitative
criteria [17,18]. In the qualitative assessment, different algorithms are compared based on the shapes
of the generated load profiles and the clustering compositions, i.e., the number of patterns that belong
to each cluster. This assessment does not rely on mathematical objective criteria and is a minority
in the literature. The quantitative assessment is based on the scores of the algorithm in a set of
adequacy measures or clustering validity indicators. These indicators are built upon the Euclidean
distance metric and evaluate the capacity of an algorithm to formulate well-separated and compact
clusters. This assessment approach is the most common in the literature. However, while a clustering
validity indicator provides a strong mathematical basis to build upon the conclusions derived from
load profiling, the process of the evaluation of an algorithm is actually validity indicator specific.
This means that the selection of an indicator influences the conclusions. For instance, a comparison of
the algorithms with 2 different indicators can lead to different algorithms ranking. In order to deal
with this issue, the present paper presents a set of 5 overarching criteria that can assess the complexity
of an algorithm, its capacity per application and availability. These criteria are the following:

• Criterion#1: Minimum number of parameters that need to be specified.
• Criterion#2: Minimum requirement for parameter updating.
• Criterion#3: Superior performance as measured by the most validity indicators.
• Criterion#4: High execution speed/minimum time requirement.
• Criterion#5: Generation of exploitable information about load data clusters.
• Criterion#6: Software availability.

This paper implements the algorithms’ comparison as a multi-criteria decision-making problem,
using the above criteria. We employ the Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) method to indicate which algorithm performs better at all the aforementioned
criteria [19]. TOPSIS is a well-tested method in decision making; it is characterized by simplicity
and flexibility, i.e., different distance metrics can be regarded to calculate the similarities between the
alternative solutions and the ideal ones.

1.3. Literature Survey and Contributions

Two general models of load profiling are considered by utilities, namely the area based model and
the category based model [20]. The area based model is adopted when there is not sufficient number
of smart meter installations. Within a territory, at every time interval the consumption of consumers
with smart meters (i.e., usually industrial consumers) is subtracted by the total (i.e., distribution
transformer readings) and the remaining curve is deemed to the rest consumers with conventional
meters. The area based model is appropriate in cases with low availability of data and high meter
installation cost. The requirements of IT infrastructure (i.e., hardware, communication protocols, etc.)
are lower compared to the category based model. However, it shortfalls in terms of accuracy, since
it provides a simplified approach to load profile extraction. The category based model requires a
considerable number of smart meters and a long period of systematic measurements. After the data
collection, a data mining process takes place to formulate the load profiles. The process may refer to
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statistical analysis or to the implementation of clustering algorithms. For instance, static profiles are
derived from existing historic data. The data classes are a priori known. If the data sample is sufficient
then an average profile is extracted that represents the pre-defined class. Usually, the criterion for the
classes’ formation is the type of electricity tariff. Static profiles formation does not require continuous
measurements and averaging. Dynamic profiles refer to periodically updating the static profiles and
adjusting them by taking into account temperature variations and other factors that affect the demand
in daily or seasonal basis [21,22].

Load data profile generation is accomplished by load survey studies and clustering algorithms.
Apart from consumption data, load surveys seek to gather weather data, consumer preferences,
occupancy behaviour and others [23,24]. The accuracy of load surveys depends on the characteristics
of the eligible sample of consumers [25,26]. Following a bottom-up-approach, the findings of load
surveys on the eligible set are scaled up to include the rest consumers. This fact makes the clustering
approach more flexible; different algorithms can be tested and no information on number of clusters
is necessary. Also, the clustering approach requires only load data. While other variables such as
temperature, tariff type and others may be incorporated in clusters, they are not mandatory.

Clustering-based load profiling is a multi-stage process [27,28]. The first stage refers to data
cleansing, i.e., erroneous values detection and removal, missing data filling and others. Next, the
1st stage clustering takes place. For each consumer separately, the set with the daily load curves is
clustered. The average daily load of each cluster is actually the normalized load profile. A specific
load profile is chosen for each consumer and a second clustering occurs on the selected load profiles
to produce the consumer classes. Therefore, the 1st stage clustering is held using the available daily
load curves of each consumer and the 2nd stage clustering uses the load profiles derived from the
previous stage. The final consumer clusters and the consumer clusters load profiles is the product
of the 2nd stage. Note that the 1st stage clustering can be avoided [29]. In this case, the load profile
that will represent the consumer refers to the average daily load curve of the consumer’s daily load
curve set. These two stages can utilize one or more clustering algorithms. The algorithms that have
been proposed in the related literature can be divided to the following categories: (a) Partitional
algorithms such as the K-means, K-medoids and others; (b) hierarchical agglomerative algorithms
such as the Ward’s algorithm and others; (c) fuzzy algorithms, such as the Fuzzy C-Means (FCM)
and others (d) neural network based algorithms such as the Self-Organizing Map (SOM), Hopfield
neural network and others and (e) algorithms that do not belong to the above classes, such as the
Support Vector Clustering (SVC), the modified “follow-the-leader” (FDL), Renyi Entropy Clustering
and others [11,17–78]. The algorithms differ in terms of efficiency, computational complexity, speed
and others. The performance of an algorithm is evaluated by a set of clustering validity indicators [17].
In the majority of load profiling problems, the number of clusters is not known, i.e., external expertise
information is absent. Therefore, a load profiling problem can be viewed as purely unsupervised
machine learning task. This means that an algorithm should be executed for different number of
clusters. For each number, the score on the validity indicator is checked. The clustering process
is data driven and thus, external norms have to be considered to obtain the optimal number of
clusters. A validity indicator is used for this purpose. It should be noted that increasing the number of
clusters leads to better clustering. Yet, a high number of clusters is not preferable since it corresponds
to increased complexity on the exploitation of clustering results. For example, a large number of
consumer clusters may lead to difficulties in tariff design. On the other hand, a small number is also
not desirable since it refers to poor clustering, i.e., high clustering errors. The data may refer to public
buildings, a mix of residential, commercial and industrial consumers, single consumers, distribution
feeders and others.

The existing works in the literature can be distinguished into 2 general types: The 1st type refers
to the sole application of a clustering algorithm, while the 2nd type refers to a comparative analysis of
algorithms of different type.
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The sole application of the K-means algorithm is tested in [30]. The scope is to formulate the
seasonal load profiles of 103 residential consumers with data measured per minute and covering a
period of a full year. The results of the K-means are combined with homeowner’s survey data in order
to track correlations between the consumption and other parameters like income, education level and
others. In [31], the authors propose via the K-means the concept of dynamic clustering in Spanish
residential consumers. This refers to clustering the full load time series (i.e., the total load sequence)
instead of using daily curves. In [32], the data under examination are obtained from metering systems
of a large utility in South Korea. The K-means is applied separately to the data corresponding to
different consumer types such as residential, general high-voltage, industrial high-voltage and others.
The optimal number of clusters per category varies. The study also includes a statistical analysis
to obtain some key information of the consumption per cluster. In [33], the data set includes a set
of households that is charged with time-of-use rates and another set with real-time pricing tariffs.
The authors apply the principal component analysis to derive the principal components of household
variables like solar heating, number of persons, building age and others. The K-means is applied in
the set of principal components to cluster the variables and track households with similar variables.

Hierarchical agglomerative clustering is used in [34,35]. In [34], the single distance hierarchical
algorithm is applied to the daily load curves of a Brazilian hospital. The purpose is to classify the
load curves in clusters and afterwards employ a statistical analysis per clusters in order to gather
information about the demand patterns and consumption levels per cluster. The scope is to exploit the
load profiling outcome to build an energy management system for the hospital. In [35], the authors
propose a new load data representation technique different from the time-domain one, using symbolic
representation of the demand (i.e., letter characters). While the proposed representation technique
seems promising in terms of expressing the daily load curves with a reduced set of features, it does not
provide the optimal results in terms of low clustering compared with Sammon mapping, principal
component analysis and others.

Fuzzy clustering is a generalization of crisp or hard clustering; the patterns (i.e., load curves)
are distributed in all clusters with membership degrees that express partial membership. This fact
provides flexibility in cluster structure and definition. The FCM algorithm is considered in [36] to
cluster a set of load curves of distribution feeders in Malaysia that cover the needs of various domestic,
commercial and small size industries consumers. The FCM performance is checked by 2 validity
indicators. The same data set and algorithm are examined in [37]. The data refer to aggregated feeder
loads and thus, no large differences in the shapes of the load profiles of the different clusters are
observed. After the initial execution of the FCM, the algorithm is executed again separately in the
daily load curves of each cluster. This leads to the formation of an additional load profile per cluster,
a fact that increases the final number of load profiles. In [38], the FCM is checked with 7 clustering
validity indicators. The algorithm is applied to the daily load curves that cover a period of a full year
and correspond to the consumption of a city located in China. According to the paper’s findings, the
value of the fuzziness parameter holds an important role in the FCM operation. This parameter is data
specific, a fact that raise the need for several trial-and-error executions for its calibration. In [39], the
authors investigate the influence of the fuzziness parameter in the FCM clustering outcome via a trial
and error approach.

According to the results, the increment of the parameter results in lower clustering errors. In [40],
the experiments include different execution of the FCM in order to calibrate the fuzziness parameters.
The results indicate that while the value increases, the clustering error, as measured by 3 validity
indicators, decreases. In [41], the set contains 124 daily load curves of an educational building in Spain.
The FCM is used to cluster the data. The emphasis of the paper is placed on similarity metrics on the
clustering validation. The authors experiment with different similarity metrics such as Mahalanobis
distance, Dynamic Time Wrapping distance and others and conclude that the type of the metric
considerably influence the results. Another trend in the related literature is to combine the FCM with
supervised machine learning algorithm and namely, artificial neural networks. The general approach
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is to assign the load profiles generated by the FCM to pre-defined types of consumers or activities.
More specifically, in [42] a number of pre-defined consumer types is present. The FCM clusters the
data and later a Probabilistic Neural Network (PNN) is used to classify the load profiles drawn by
the FCM to the consumer types. In [43], the FCM is again combined with the PNN. The load profiles
obtained by the FCM are used to train the PNN. The latter is used to categorize the load profiles in
pre-defined activity types. The authors of [44] examine the application of FCM in a set of low voltage
consumers. After the extraction of load profiles, a feed-forward neural network is used to assign the
consumers to the clusters. The output layer of the neural network includes the fuzzy membership
degrees of the consumers to the clusters.

The SOM provides a visual interpretation of the formulated clusters. The input patterns are
organized in a 1 or 2-Dimensional (D) map. The patterns that are topologically close, i.e., in the same
neighbourhood of coordinates, are characterized by high similarity. Ref. [45] describes the findings after
the application of a 2D SOM to Spanish consumers. The time-domain representation is compared with
a representation approach that refers to load shape factors, such as the ratios of average to maximum
daily load, average to maximum load of daylight hours and others and with frequency-domain
representation, i.e., indices that have been obtained after the application of Discrete Fourier Transform.
The 3 representation approaches are compared in terms of their influence on clustering composition.
In Reference [46] the data includes the load curves of 2 consumers, namely a medium sized industry
and a university. Prior to clustering, the SOM is used for data filtering, i.e., removal of abnormal data
such as missing data and outliers. In Reference [47], the authors deal with a large number of residential
consumers in Ireland. After the clustering, an analysis takes place in order to examine the distribution
of home characteristics such as number of rooms, etc. and occupants features such as age, etc. in
the clusters. In Reference [48], the authors argue that a macro-categorization should take place to
distinguish the consumers to residential, commercial and others. Afterwards, for the macro-category
under study, clustering should be applied. In this study, the 2D SOM is utilized and the clustering
performance is checked by 4 adequacy measures or clustering validity indicators. In Reference [49],
prior to SOM application a macro-categorization to consumer types is held. This information is passed
in the SOM as an identification index. For instance, the values “1” and “2” are assigned to medium
industries, “3” to warehouses and others. A SOM of different dimensions is used to cluster the
electricity market prices. The purpose is to correlate the consumer and the price clusters in order to
design real-time pricing schemes for the consumers in the different clusters.

In Reference [50], the data include 183 substations. The input vector for SOM is composed by
5 elements. Each element refers to the portion of a specific type of load among the five that the
substation serves. The authors test various maps but no validity indicator is used. Contrary to the 1D
map, a 2D map results in a large number of centroids. This fact is addressed in the literature by combing
a 2D map with another clustering algorithm. A combination of the K-means and the SOM is presented
in Reference [51] on a set of low voltage consumers of a Portuguese utility. The K-means is used to
perform the clustering of the SOM output units and obtain final clusters. Reference [52] proposes
an electricity consumer characterization framework based on knowledge discovery in databases
procedure. The concept of the framework is a combination of unsupervised and supervised techniques.
The unsupervised learning stage consists of a SOM that reduces the dimensionality of the initial data
set and the K-means algorithm which is used to group the weight vectors of SOM and obtain the
final clusters centres. Then, the classification process takes place where the generated clusters are
assigned to the predefined classes of a Portuguese distribution company. These classes are defined by
various indices like the activity type, contracted power, supply voltage level, etc. The framework is
tested on a set of low voltage consumers and the recorded data refer to a six-month period. In [53], the
combination of SOM and K-means is used to cluster the daily load curves of 2 years of the national
system of Algeria. In [54], the authors deal with the extraction of the load profiles of a load data
sample of a utility in Finland. The utility has pre-defined consumer classes and the authors apply two
clustering methods, the combination of a SOM with the hierarchical algorithm run with the complete
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linkage criterion and a SOM with the K-means, in order to compare the existing load profiles and the
estimated by the clustering process. The SOM/K-means combination leads to more robust clustering.
The Hopfield recurrent neural network for clustering load curves is introduced in Reference [55].
The set is composed by medium voltage consumers and the performance is checked by 3 validity
indicators. The combination of SOM and K-means is also used in References [56,57]. In Reference [56],
the scope is to derive representative base load profiles for a set of buildings in Korea for application in
demand response measures. In [57], the data set refers to the total consumption of an industrial park
in Spain. The data cover a period of 3 years. The authors employ different SOM per month.

In Reference [58], the data set consists of 471 non-residential consumers. The FDL is applied to
create several clusters. Next, the authors provide a discussion on tariff design per cluster. The same
algorithm is used in References [59,60]. The authors propose a data representation method using
harmonic components in the frequency-domain and compare variants of the frequency-domain
representation with the conventional time-domain one. In Reference [61] the Competitive Leaky
Algorithm (CLA) is introduced in the load profiling literature. The algorithm bases its operation on
competitive learning. The authors apply it to the daily load curves of active and reactive load of a
high-voltage consumer. The ISODATA algorithm is employed in Reference [62] for clustering the load
curves of 660 hourly metered consumers. The results are compared with the existing load profiles
classes of a Finnish utility.

The 2nd type of papers includes a comparison among algorithms in order to define the
most suitable algorithm for a specific data set. Early analyses are found in References [63–65].
In Reference [63], the comparison includes two versions of hierarchical agglomerative clustering,
namely, Ward and average linkage, FCM, K-means FDL and SOM. The comparison is held via
4 adequacy measures, namely the Mean Index Adequacy (MIA), Similarity Matrix Indicator (SMI),
Clustering Dispersion Indicator (CDI) and Davies-Bouldin Index (DBI). The algorithms are executed for
10 to 20 clusters. According to MIA and CDI, the FDL wins the competition but SMI and DBI indicate
that the superior algorithm is the K-means. In [64], the hierarchical clustering and FCM are compared
only in terms of the shapes of the load profiles that lead to. It should be noted, that an algorithm is
more efficient than the others only for specific number of clusters. This is evident in [65]. Utilizing the
CDI, the FDL leads to lower errors for large number of clusters (i.e., above 22) while average linkage
hierarchical clustering is more efficient for small number. The analysis of [63] is enriched in [66] by
adding 2 measures, namely the Scatter Index (SI) and the Variance Ratio Criterion (VRC). Again, the
extraction of the optimal algorithm is a matter of the selection of the validity indicator. In order to
address the problem of the strong dependence of the K-means in the selection of initial centroids,
2 modified versions of the algorithm have been proposed in [27,28,67]. The modified versions seek
to extract the optimal combination of 2 calibrated parameters that define the initial cluster centroids.
With this approach, the initial centroids of the K-means are chosen based on the best results of each
one of 6 adequacy measures. The proposed versions of the K-means present better performance when
compared with the FCM, the family of hierarchical algorithms, 1D and 2D SOM and the adaptive
learning quantization algorithm.

References [68–71] propose two initialization methods in order to enhance the performance of
the K-means. The first approach is the Weighted Fuzzy Average (WFA) K-means. First, there is a
random initialization of the starting centroids. Each input feature is assigned to cluster based on
the distance from the cluster’s centroid. Afterwards, the WFA of each cluster is calculated and there
is a new distribution of the features based this time on the distance from the WFA. The authors
also propose an advanced version of the previous algorithm, namely the Improved Weight Fuzzy
Average (IWFA) K-means. The centroids are not chosen randomly but with the initialization method
of [27,28,67], where the calibrated parameters are chosen based on the optimal values of the adequacy
measures. Next, the features are classified and there is a new calculation of the centroids, where they
are actually the WFAs of the clusters. The authors demonstrated that the IWFA K-means surpass the
performance of other algorithms. The authors of [73] propose a combination of the Hopfield neural
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network and the K-means. A comparison with other algorithms in taken place and the analysis is
applied on a set of medium voltage consumers. Ref. [74] introduces 3 variants of Renyi entropy-based
clustering procedures which show comparative performance with the common clustering algorithms
in the most adequacy measures. The authors conclude that Renyi entropy-based clustering is suitable
especially for large number of clusters. The authors of [75] introduce the Support Vector Clustering
(SVC) and present a comparison with algorithms like the K-means, FCM, the modified FDL, the SOM
and the hierarchical algorithms. They consider the classical K-means and they demonstrate the better
performance of SVC over the other algorithms. In [76] the K-means is a part of a comparative analysis
between several algorithms. The K-means shows comparable results with the other algorithms but
its speed superiority is concluded. In [77] the K-medoids algorithm is introduced. The comparison
includes the K-means and 7 hierarchical agglomerative algorithms. The K-medoids leads to lower
errors in all validity indicators. The FCM is similar to K-means in regard to the initialization phase.
The initial centroids are selected in a random manner. To overcome this limitation, an improved version
of the FCM is proposed in [78] as a part of a demand side management methodology to manage the
consumption of high voltage industrial consumers. The algorithms are compared with 4 validity
indicators and in all cases, the improved version results in lower errors. The data set refers to the daily
load curves of 2 high-voltage industrial consumers. The minCEntropy algorithm is introduced in [79].
This leads to lower errors compared to K-means, FCM, SOM and hierarchical clustering. In [80] the
Iterative Refinement Clustering (IRC) is introduced. The authors discuss some limitations of FDL
and hierarchical clustering. The authors compare IRC with 2 hierarchical algorithms, FCM, FDL and
K-means. According to the results, IRC is ranked in the 3rd place after average linkage hierarchical
algorithm and FDL. In [81], the authors employ K-means, K-medoids and SOM to a set of households.
After the extraction of the load profiles, the households’ characteristics such as dwelling type, occupant
behaviour and others are correlated with the load profiles. SOM results in better clustering compared
to the K-means and K-medoids, according to the validity indicator used, namely the DBI. In [82],
the K-means and hierarchical clustering are compared using a newly defined distance, namely the
k-Sliding distance.

Based on the above survey, the main conclusions can be summarized in the following:

(1) A considerable number of different algorithms have been employed in different sets ranging from
residential consumers to distribution feeders and aggregate system loads. This fact highlights the
importance of efficient clustering. The comparison between algorithms is favoured over the sole
application since it leads to more reliable results.

(2) In the majority of cases, the conclusions drawn from the comparison are influenced by the type
of the validity indicator. Each indicator measures either the compactness, the separation or both
of the formulated clusters.

(3) Apart from validity indicators, no study provides further criteria to strengthen the conclusions
on algorithm selection.

The contributions of the present paper to the load profiling literature are described in
the following:

(1) In the present study, a comparison of the most common algorithms of the literature takes place.
More specifically, 30 clustering algorithms are compared using 12 validity indicators. To the best
of the authors’ knowledge, this is the first study that considers this number of algorithms and
validity indicators. The scope is to gather the majority of the algorithms under a common analysis
in order to discuss their advantages and disadvantages and provide the interested parties a guide
on algorithm validation and selection.

(2) All the studies of the literature that include a comparison use only strictly mathematical criteria.
In this study, additional 5 criteria are introduced. This is justified by the increase of smart meter
installations across the globe. This fact will lead to the collection of vast amount of Big Data;
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an efficient algorithm should not only lead to robust clusterings, as measured by the validity
indicators but should correspond to low complexity in terms of input parameters requirements
and execution speed.

(3) The TOPSIS method is implemented in order to reach safe conclusions regarding the selection of
an algorithm that satisfies a number of contradicting criteria.

It should be noted that apart from extracting information about demand patterns, load profiling
is an important tool that has been employed in various applications such as load forecasting, retailer
profit maximization, scenarios generation for optimization problems, demand side management
implementation, load dispatching and others [78,83–88]. The combination of clustering and forecasting
system is a promising approach [84]. This paper considers a feedforward back propagation neural
network. While back propagation models have been widely used in forecasting problems, the
forecasting results can be different when the number of epochs of back propagation training is
changed, a fact that is discussed in [89]. To address this problem a novel time series forecasting
approach is introduced in [89] where a series of deep belief networks generate different forecasts and
they are combined through the application of support vector regression model. Thus, the potential of
implementing the clustering tool within the methodology presented in the aforementioned study is
high. Another promising approach in load forecasting is introduced in [90]. A least square classifier
is utilized with a random forest method. The proposed method outperforms other models such as
random forest, feedforward neural network, support vector regression considering load forecasting
tasks for five states in Australia. Due to the diversity load profiling potential applications, an imperative
need to define the optimal algorithm rises. In the following sections a short description of the
algorithms is provided together with the validation framework. Also, a detailed discussion of the
results is included.

2. Load Profiling Mathematical Background

2.1. Demand Representation

Demand representation refers to the method followed to express the load curves. The most
common representation is to express the load curve in time domain as D-dimensional vectors.
Each element of the vector corresponds to the mean active load curve in a specific time interval.
In the present work, a commercial consumer is regarded. The data set of a consumer is denoted as
X = {xn, n = 1, . . . , N}, where N indicates the number of patterns of the consumer. The term “pattern”
refers to the vector that expresses the load curve, xn = [x1, . . . , xD]., Clustering tracks similarities
among patterns. The magnitude of the data may influence this tracking. Thus, a scaling of the data in
[0,1] range of values is needed using the following equation:

yn
m =

xn
m − xmin

xmax − xmin (1)

where xmin and xmax are the minimum and maximum values of set X, respectively. The newly obtained
set of normalized patterns is denoted as Y = {yn, n = 1, . . . , N}. The set Y will feed the clustering
algorithms. The outputs of clustering are the clusters’ centroids and the clustering composition.
The centroid refers to the average of all patterns of the same cluster:

ck =
1

Nk

N

∑
n = 1

xm
n ∈ Ck

xm
n (2)

where Nk denotes the number of patterns of X that belongs to cluster Ck. The set of clusters is denoted
as Ck = {ck, k = 1, . . . , K}, where K is the number of clusters.
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2.2. Clustering Algorithms

2.2.1. Partitional Clustering Algorithms

Partitional clustering aims to find the optimal segmentation of data for a pre-defined number
of clusters. Partitional algorithms base their operation on the minimization of a cost function that
is a measurement of the distances between the patterns and the centroids of the clusters that they
belong to. The minimization is accomplished through a series of observations. According to the load
profiling related literature, K-means is the most commonly utilized algorithm. Also, the algorithm
has been proposed to address clustering problems in a wide variety of fields such as colour image
segmentation, speech recognition, bioinformatics, etc. [91]. The algorithm tends to minimize the
within-cluster sum-of-squares function OK:

OK =
N

∑
n=1

K

∑
k=1

I(yn ∈ Ck)(yn − ck)(yn − ck)
T (3)

where the binary variable I(yn ∈ Ck) equals to 1 if the pattern yn ∈ Ck and equals 0 otherwise.
The following restrictions apply:

K
∑

k=1
I(yn ∈ Ck) = 1, 1 ≤ n ≤ N

I(yn ∈ Ck) ∈ {0, 1}, 1 ≤ n ≤ N, 1 ≤ k ≤ K
(4)

The operation of the algorithm includes the following steps:

Step#1. Initialization. A random selection of k patterns from set Y is held to serve as the initial centroids.
Step#2. Clustering. For each iteration t = 1, . . . , T, where T is the number of total iterations of the

algorithm and ∀n = 1, ..., N, the pattern yn is distributed to cluster ck, where k is selected so
that ‖x(t)n − c(t)k ‖ = min

1≤l≤K
‖x(t)m − c(l)k ‖.

Step#3. Centroids update. A re-calculation of centroids is made according to (2).
Step#4. Termination. The algorithm terminates either when the maximum number of iterations T

is met or when the improvement of OK between two subsequent iterations is lower than a
pre-defined threshold ε, i.e., OK(t)−OK(t + 1) ≤ ε.

The main drawback of the algorithm is its strong dependence on the selection of the initial centroids.
To overcome this problem, various researchers have proposed modified versions of the algorithm.
In [27,28,67], the selection of the initial kth centroid is done according to the following formula:

ck = a + b
k− 1
K− 1

(5)

where the coefficients a and b are selected so that a = {0.10, 0.11, ..., 0.45} and a + b = {0.54, 0.55, ..., 0.90}.
We refer to this version of the K-means as “Modified K-means 1.” Another initialization is proposed
in [27,28,67]:

cki = ai + bi ·
k− 1
K− 1

(6)

where the coefficients ai and bi are selected so that ai = xmin
nd and bi = xmax

nd , where xmin
nd and xmax

nd are
the minimum and maximum values of the consumer xn of the element d = 1, . . . ,D. We refer to this
version of the K-means as “Modified K-means 2.”

In [69], a new method of centroid update is proposed and is referred as WFA. The WFA K-means
includes the same steps with the conventional edition of the algorithm apart from two elements:
(a) The calculation of the distances of Step#2 is held with a new distance metric, i.e., the WFA and
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(b) the centroid update involves the product of patterns with the WFA. The WFA of the kth cluster at
iteration t is given by:

w(t)
kd = exp

−(xnd − x(t)nd,mean)

2σ2 (7)

where x(t)nd,mean is the average of patterns of element d of xn of the kth cluster at iteration t. The centroid
update at iteration t = t + 1 is given by:

c(t+1)
kd =

d

∑
j=1

w(t)
kd xnd (8)

In [70], the formula of (5) is used to address the problem of the random initialization of the WFA
K-means. We refer to this improved version of the algorithm WFA K-means as “IWFA K-means.”

The authors of [73], propose the combination of Hopfield neural network with K-means. In the
Hopfield network, all neurons are connected with each other via weights. The Hopfield network is
used to extract initial centroids for K-means.

In [28], 2 novel modified forms of the K-means are proposed in order to address the problem of
the random selection of the initial centroids, namely K-means_A and K-means_B.

In [77,81], the K-medoids is used to cluster a set of consumers of different type. K-medoids are
built upon the concept of medoid or median. This refers to real patterns of a set contrary to the centroid
that is the average. K-medoids are not influenced by outliers.

The minCEntropy is proposed in [79]. This algorithm considers a conditional entropy criterion as
an objective function. Let W be the space of all partitions (i.e., different clusterings) of X. The task is to
find a partition W* in W, which minimizes the conditional entropy between X and W:

CE(W) =
K

∑
k=1

∑xs ,xt∈wt exp
{
−d2(xs ,xt)

4σ2

}
Nk

(9)

where σ is the Gaussian kernel width parameter. The CE is a measure of the quality within a
cluster. The minimum conditional entropy criterion aims to maximize the weighted sum average of
intra-cluster similarity, i.e., the pairwise distances between the members of the same cluster.

2.2.2. Hierarchical Clustering Algorithms

Hierarchical agglomerative clustering is not based on objective function minimization. Initially, all
patterns are treated as singleton clusters, i.e., clusters with 1 pattern member. Through a continuous
process of merging similar clusters, a hierarchical algorithm terminates until 1 cluster remains
that contains all patterns. A dendrogram is created that is an illustration of clusters arrangement.
The clustering accuracy is calculated by “cutting” the dendrogram in a selected “height.” This cutting,
is determined by the user and refers to the termination of the continuous merging process. The family
of agglomerative algorithms includes 7 algorithms that differ in terms of the form of the distance metric
used to measure the similarity of clusters to be merged. The starting condition of hierarchical clustering
considers N singleton clusters and the formation of an N × N proximity matrix. The minimum distance
between 2 clusters is calculated and these clusters are merged. The general form of the distance metric
is given by:

dmetric(Cl , (Ci, Cj)) = aidmetric(Cl , Ci) + ajdmetric(Cl , Cj) + βdmetric(Ci, Cj) + γ
∣∣dmetric(Cl , Ci)− dmetric(Cl , Cj)

∣∣ (10)

where Cl , Ci and Cj are clusters that belong to the set Ck and ai, aj, β and γ are coefficients of the
distance metric function dmetric. Table 1 presents the values of the coefficients that apply to each
hierarchical algorithm. The parameters Nl , Ni and Nj are the populations of clusters Cl , Ci and Cj,
respectively [92].
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Table 1. Coefficients of the hierarchical agglomerative algorithms.

Algorithm ai aj β γ

Single Linkage (SL) 0.50 0.50 0 0.50
Complete Linkage (CL) 0.50 0.50 0 0.50

Unweighted Pair Group Method Average (UPGMA) 0.50
Nj

Ni+Nj
0 0

Weighted Pair Group Method Average (WPGMA) 0.50 0.50 0 0
Weighted Pair Group Method Centroid (WPGMC) 0.50 0.50 −0.25 0

Unweighted Pair Group Method Centroid (UPGMC) Ni
Ni+Nj

Nj
Ni+Nj

Ni Nj

(Ni+Nj)
2 0

Minimum Variance Method (MVM) or the Ward’s method Ni+Nl
Ni+Nj+Nl

Nj+Nl
Ni+Nj+Nl

−Nj
Ni+Nj+Nl

0

2.2.3. Fuzzy Clustering Algorithms

Fuzzy clustering assigns all patterns in clusters through partial membership. The FCM is an
iteration based cost minimization algorithm. FCM’s objective function is given by [93]:

J(U, c1, ..., ck) =
K

∑
k=1

Jk =
K

∑
k=1

[
N

∑
n=1

uq
nkd2

euclnk

]
(11)

where q∈ [1,∞) is the fuzziness parameter, deucl is the Euclidean distance metric and U is the partition
matrix. The latter contains the membership degrees u of the patterns to the k clusters. The centroid
of the kth cluster and the membership degree of the nth pattern to the kth cluster are respectively
given by:

ck =

N
∑

n=1
uq

nkym
n

N
∑

n=1
uq

nk

(12)

unk =
1

K
∑

k=1

( deucljk
deuclnk

) 2
q−1

(13)

Note that the sum of the k membership degrees u is 1. As in the case of the K-means, FCM
starts by the random selection of the initial centroids. The Improved FCM (IFCM) is introduced
in [78] to address the aforementioned problem. The IFCM includes the execution of the K-means in its
starting phase in order to cluster the set Y in k clusters and hence, the initial ck centroids are obtained.
The calculation of the Euclidean distances between every pattern of Y and ck is conducted. Next, each
calculated distance deucljk is divided by the sum of all distances sum(deucljk). The membership degree
unk is calculated as:

unk =
deuclnk

sum(deuclnk)
(14)

According to (14) all unk lie within (0,1) range.

2.2.4. Neural Network-Based Clustering Algorithms

The artificial neural networks used in clustering are based on the concept of competitive learning
or on energy function minimization. The latter is employed in Hopfield Neural network, which is a
recurrent neural network with full weight connection among the neurons [57,73]. When an input is
presented in the network, the weights are re-arranged in order to reach the minimum energy state.
The weights represent the distances between patterns and centroids. The competitive learning operates
differently. The competition refers to the neurons response to the input pattern. The neurons have
the capability of affecting positively or negatively, or even not affecting at all, the other neurons.
The neuron that wins the competition has the highest activation value. The weight update is held
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in a way that includes the addition of the input vector. The neural network that is based on the
Adaptive Vector Quantization (AVQ) algorithm is composed by an input layer and an output layer [27].
A D-dimensional input yn is presented in the input layer. The winning neural is activated by receiving
the value “1” while the rest receive the value “0” [94]. The weight update wk of the winning neuron k
at iteration t is given by:

wk(n + 1) = wk(n) + η(t)(yn − wk(n))zk (15)

where n is the number of patterns that have been presented in the input layer during iteration t, wk(n)
is the weight of the kth neuron at iteration t, η is the learning rate that is a decreasing function of time
and depends of the following parameters: Initial value η0 and total number of epochs T. The parameter
zk corresponds to the output of the kth neuron and is given by:

zk =

{
1 if deucl(yn, wk(n)) ≤ deucl(yn, ws(n)), s = 1, ..., K

0 otherwise
(16)

The SOM is the most commonly used unsupervised machine learning neural network. The input
patterns are arranged on a surface based on their similarity. Each neuron is connected with weights
with the input layer and receives a complete copy of the input pattern [95]. A neuron positively affects
the neighbouring neurons and negatively the most distant ones. A competition takes place among the
neurons in response of the input pattern. The weight update wk of the winning neuron k at iteration t
is given by:

wk(t + 1) = wk(n) + a(t)h(k)c (yn(t)− wk(t)) (17)

where a is the learning rate and h(k)c is the neighbourhood kernel around the winning neuron k.

2.2.5. Other Clustering Algorithms

This category refers to algorithms that do not belong to the aforementioned categories. One such
algorithm is the Modified FDL, which does not require the initial determination of the number of
clusters [58]. The algorithm is iterative, clusters are created in the first iteration and in the rest of
the iterations the number of clusters is kept constant and the shifting of patterns to clusters takes
place. The number of clusters is determined indirectly by a distance threshold that sets a limit to
the maximum distance between patterns and clusters. In the iterations following the 1st, for each
pattern, the modified Euclidean distance is calculated between it and the centroid of the cluster that
belongs to. If the distance is greater than the threshold, then the pattern is shifted to the cluster with
the minimum distance. The iterative process is terminated when the maximum number of iterations is
completed or when there are no shifts of patterns. First, a pattern is selected from the set that defines
the original centroid and then compares the distances and the threshold. In addition to the threshold,
what determines the function of the algorithm is the choice of the original pattern.

In [62], the Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA) is applied to
group a large set of load curves. ISODATA is an extension of the K-means, which contains heuristic
methods for automatically selecting the number of clusters. The function of the algorithm includes a
set of parameters that must be suitably selected, such as the minimum number of members within
the cluster, the desired maximum number of clusters, the mean distance between the patterns and the
centroid of the cluster and the sum of the largest square distance between the patterns and the centroid
of the cluster that they belong to.

In [74], the authors propose the application of 3 algorithms that are structured upon the
between cluster Renyi entropy distance metric. The algorithms are based on a multi-step hierarchical
agglomerative operation. Initially, the patterns are treated as singleton clusters. The 3 algorithms differ
in terms of the distance metric that is used to measure the similarity. The most similar patterns are
merged until 1 cluster that contains all patterns remains.
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The SVC is proposed in [75]. The patterns with dimension D are projected into a higher dimension
space, according to a non-linear transformation, where a Gaussian core is proposed. The new space
creates a spherical topology that includes the patterns. Patterns are either within or outside the
sphere, or on its surface. Patterns outside the sphere are extreme values, they are isolated from the
rest and are considered as the initial centroids. Then, through a process that compares distances
between the patterns and centroids, the patterns are split into existing clusters and newly creating ones.
The algorithm depends on a parameter that controls the number of extreme values located outside the
sphere and from the distance threshold that regulates the distribution of patterns to clusters or the
creation of new ones.

The IRC algorithm is a variant of the modified FDL [80]. In the 1st step, each pattern is considered
a centroid. At the 1st iteration, Euclidean distances and correlation coefficients between the patterns
are calculated. The patterns are sorted in ascending order based on correlation coefficients and the
ratio of correlation coefficients to distances is calculated. In the subsequent iterations and after the
number of clusters has been determined, the patterns are shifted to clusters.

The Competitive Leaky Algorithm (CLA) is a generalization of the basic competitive learning
algorithm [61]. Contrary to the basic competitive learning, the weight update is held for all neurons,
i.e., the winning neuron and all the rest.

2.3. Clustering Evaluation

The validity indicators are measures of similarity of patterns. The term “compactness” refers to
the similarities between the patterns of the same cluster and between the patterns and the centroids.
The term “separation” refers to the similarities between the centroid of the different clusters. Let ys

n
and yt

n be 2 patterns ys
n, yt

n ∈ Y. The following metrics are defined:

• The Euclidean distance between ys
n and yt

n :

deucl(ys
n, yt

n) =

√√√√ 1
D

D

∑
d=1

(
ys

nd − yt
nd
)2 (18)

• The subset of Y that belongs to the cluster Ck is denoted as Sk. The Euclidean distance between the
centroid ck of the kth cluster and the subset Sk is the mean of the Euclidean distances deucl(ck, Sk)
between ck and each member yk

n of Sk:

deucl(ck, Sk) =

√√√√√ Nk
∑

n=1
d2

eucl
(
ck, yk

n
)

Nk
(19)

• The mean of the inner-distances between the patterns yk
n and yl

n members of the subset Sk is:

d̂eucl(Sk) =

√√√√ 1
2Nk

D

∑
d=1

d2
eucl
(
yk

nd, yt
nd
)

(20)

The following validity indicators are considered [17]:

• The Mean Square Error J, which refers to the sum of distances between the patterns and the
clusters that belong to:

J =
1
N

N

∑
n = 1

yn ∈ Sk

d2
eucl(yn, ck) (21)
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• The Mean Index Adequacy (MIA), which refers to the average of the distances of the clusters:

MIA =

√√√√ 1
K

K

∑
k=1

d2
eucl(ck, Sk) (22)

• The Clustering Dispersion Indicator (CDI), which refers to the ratio of the mean intra-set distance
between the patterns in the same cluster and the inter-set distance between the clusters centroids:

CDI =

√
1
K

K
∑

k=1
d2

eucl(Sk)√
1

2K

K
∑

K=1
d2

eucl(ck, Ck)

(23)

• The ratio of Within Cluster Sum of Squares to Between Cluster Variation (WCBCR), which
corresponds to the ratio of the distance of each pattern from its cluster centroid and the sum of
distances of the set Ck:

WCBCR =

K
∑

k=1

N
∑

n=1
d2

eucl(ck, yn)

N
∑

1≤s<t
d2

eucl(ys, yt)

(24)

• The Similarity Matrix Indicator (SMI), which takes into account the maximum of the
centroid distances:

SMI = max
s>t

{(
1− 1

ln[deucl(cs, ct]

)−1
}

: s, t = 1, ..., K (25)

• The Similarity Matrix Indicator 2 (SMI2), which takes into account the root of maximum of the
centroid distances:

SMI2 =

√√√√max
s>t

{(
1− 1

ln[deucl(cs, ct]

)−1
}

: s, t = 1, ..., K (26)

• The Davies-Bouldin Index (DBI), which relates the mean distance of each cluster with the distance
to the closest cluster:

DBI =
1
K

K

∑
s,t=1

max
s 6=t

{
d̂eucl(Cs) + d̂eucl(Ct)

deucl(cs, ct)

}
(27)

• The Modified Dunn Index (MDI), which takes into the minimum of the centroid distances:

MDI = max
1≤q≤K

{d̂(Cq)}(min
s 6=t
{d(cs, ct})−1 (28)

• The Intra Cluster Index (IAI), which corresponds to the overall sum of the distances between
patterns and centroids:

IAI =
N

∑
n=1

d2
eucl(yn, ck) (29)
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• The Inter Cluster Index (IEI), which corresponds to the sum of distances between the cluster
centroids and the arithmetic mean:

IEI =
K

∑
k=1

Nk · deucl(ck, p) (30)

where p is the arithmetic mean of set X.
• The Calinski index (CH) or Minimum Variance Criterion (VRC), which refers to the ratio of the

separation among the different clusters and the separation within the same cluster:

CH =
N − K
K− 1

· IEI
IAI

(31)

• The Scatter Index (SI), which corresponds to the ratio of distances between the patterns and the
arithmetic mean to the distances between the centroids and the arithmetic mean:

SI =

N
∑

n=1
d2

eucl(yn, p)

K
∑

k=1
d2

eucl(ck, p)
(32)

Some indices measure the compactness, others the separation or both of these cluster qualities.

3. TOPSIS

MCDA is applied to tasks where the decisions are taken in order to fulfil often contradictory
criteria, e.g., minimum cost and minimum required time to deliver a project. The decision is a product
of a systematic approach that partially or fully satisfies the conditions or limitations that each criterion
places. The criteria may refer to technical and economic constrains, risk related factors, environmental
restrictions and others. Basic tools of MCDA are the Analytical Hierarchical Process (AHP) and TOPSIS.
During the last years, MCDA has witnessed a vast variety of applications [96]. In TOPSIS method,
the solutions refer to the available alternative approaches for addressing the problem. In the present
paper, the problem is the selection of the clustering algorithm that optimally clusters a given set of
load data. The solutions are the clustering algorithms themselves and the criteria that need to be
taken into account are “Criterion#1,” . . . , “Criterion#6.” Also, 2 solutions need to be defined, namely
the “ideal” and the “anti-ideal.” The distances of each solution from the ideal and the anti-ideal ones
are calculated. The selected solution should have minimum distance from the ideal and maximum
distance from the anti-ideal solutions. Let Ai, i = 1, ..., r be the alternative solutions and zj, j = 1, .., p
the criteria. The steps that construct the TOPSIS method are [19,97]:

Step#1. Build the decision matrix Dmatrix with i alternatives and j solutions:

z1 z2 · · · zj

Dmatrix =

A1

A2
...

Ai


z11 z12 · · · z1j
z21 z22 · · · z2j

...
...

...
zi1 zi2 · · · zij

 (33)

Step#2. Construct the normalized Dmatrix denoted as R with elements according to the
following equation:

rij =
zij√
r
∑

i=1
z2

ij

(34)
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Step#3. Construct the weighted matrix R denoted as V according to:

V =


v11 v12 · · · v1j
v21 v22 · · · v2j

...
...

...
vi1 vi2 · · · vij

 (35)

where vij = wijrij and wij is the weight that solution Ai is connected with criterion zj.
It should be noted that the weights are fixed by the decision maker. The weights are
user-centric and their values influence the results of the decision making. This fact is an
inherent characteristic of TOPSIS method. Thus, TOPSIS offers a framework for the decision
maker to include its expertise on a decision problem by setting the weights and reach into a
solution that is in accordance to his/hers needs.

Step#4. Calculate the ideal V+ and the anti-ideal solution V− according to:

V+ =

{
(max

i
vij
∣∣j ∈ J), (min

i
vij
∣∣j ∈ J′)

}
V− =

{
(min

i
vij
∣∣j ∈ J), (max

i
vij
∣∣j ∈ J′)

} (36)

where J and J′ are the positive and negative impact, respectively. More specifically, the ideal
solution refers to is the maximum value for the positive impact and the minimum value for
the negative impact in each column. Similarly, the anti-ideal solution, is the minimum and
the maximum values for the positive and the negative impacts in each column, respectively.

Step#5. Calculate the distances between each solution and the ideal and anti-ideal solutions:

S+
i =

√
r

∑
i=1

(vij −V+)2 (37)

S−i =

√
r

∑
i=1

(vij −V−)2 (38)

Step#6. Calculate the mean distance between each solution and anti-ideal solution as:

Bi =
S−i

S−i + S+
i

(39)

Step#7. Sort the solutions according to the Bi value.

4. Results

4.1. Algorithms Comparison

The data set under study correspond to a small industrial consumer and cover a period of
a complete year. The dimension of patterns is D = 24, i.e., hourly measurements of active load
are available. The data are normalized according to (1) and the set Y is obtained. Criterion#1 and
Criterion#2 are indicators of algorithms’ complexity. Apart from the number of clusters that are needed
to be obtained by an algorithm, other parameters may be needed such as number of iterations, threshold
values and others. The fact that an algorithm demands many parameters leads to extra effort from
the user to carefully select the parameters. These parameters may be extracted after experimentation
or defined directly from the user, based on expertise and previous experience. Tables 2–6 present the
parameters that partitional, hierarchical, fuzzy, neural-network based and other algorithms need prior
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to their execution, respectively. K-means requires 3 parameters, namely the maximum number of
iterations, the initial centroids and the threshold of the objective function. The initial centroids are
optional, i.e., the conventional edition of the algorithm selects automatically the centroids in a random
manner. All partitional algorithms, apart from the number of clusters, require 3 parameters. It should
be noted, that while all algorithms require 3 parameters, in many cases the required calibration time
differs. This fact will be shown in Criterion#4. For example, while K-means and Modified K-means#1
need the same number of parameters, it is a more demanding effort to extract the optimal coefficients
{a, b} compared to the initial centroids. According to Criterion#1 (i.e., minimum number of parameters
that need to be specified), all partitional algorithms are similar in terms of complexity.

Table 2. Parameters of the partitional algorithms.

Algorithm Parameters for Determination

K-means
1. Maximum number of iterations
2. Initial centroids (optional)
3. Minimum objective function improvement threshold

Modified K-means#1
1. Maximum number of iterations
2. Optimal coefficients {a, b}
3. Minimum objective function improvement threshold

Modified K-means#2
1. Maximum number of iterations
2. Coefficients {ai, bi}
3. Minimum objective function improvement threshold

WFA K-means
1. Maximum number of iterations
2. Initial centroids (optional)
3. Minimum objective function improvement threshold

IWFA K-means
1. Maximum number of iterations
2. Optimal coefficients {a, b}
3. Minimum objective function improvement threshold

Hopfield K-means
1. Maximum number of iterations for Hopfield ANN
2. Maximum number of iterations K-means
3. Minimum objective function improvement threshold

minCEntropy
1. Maximum number of iterations
2. Parameter σ
3. Minimum objective function improvement threshold

K-means_A 1. Maximum number of iterations
2.Minimum objective function improvement threshold

K-means_B 1. Maximum number of iterations
2.Minimum objective function improvement threshold

K-medoids
1. Maximum number of iterations
2. Initial centroids (optional)
3.Minimum objective function improvement threshold

Table 3. Parameters of the hierarchical algorithms.

Algorithm Parameters for Determination

SL Merging stopping criterion
CL Merging stopping criterion

UPGMA Merging stopping criterion
WPGMA Merging stopping criterion
WPGMC Merging stopping criterion
UPGMC Merging stopping criterion

MVM Merging stopping criterion
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Table 4. Parameters of the fuzzy algorithms.

Algorithm Parameters for Determination

FCM

1. Maximum number of iterations
2. Initial centroids (optional)
3. Minimum objective function improvement
4. Fuzzy parameter q
5. Initial values of matrix U

IFCM

1. Maximum number of iterations for the K-means
2. Maximum number of iterations for the FCM
3. Initial centroids for the K-means (optional)
4.Minimum objective function improvement threshold for the K-means
5.Minimum objective function improvement threshold for the FCM
6. Fuzzy parameter q

Table 5. Parameters of the neural network-based algorithms.

Algorithm Parameters for Determination

AVQ 1. Maximum number of iterations
2. Constant parameter of the learning rate

SOM

1. Dimension (1D or 2D)
2. Map shape
3. Map size
4. Weights initialization
5. Learning method
6.Learning function (type, initial learning rate, training epochs)
7.Neighborhood function (type, initial neighbourhood radius)

Hopfield Maximum number of iterations

Moreover, hierarchical algorithms only need 1 parameter, the merging stopping criterion, which
is indirectly related with the number of clusters. Regarding the fuzzy algorithms, the IFCM is more
complex compared to the FCM. The IFCM is a hybrid algorithm that includes a clustering algorithm
to extract the initial matrix U. According to [78], any clustering algorithm can be used for matrix
initialization and thus, the input parameter requirements can be reduced if another algorithm is
used. Hopfield ANN requires only the maximum number of iterations, a fact that makes it the
most suitable neural-network based algorithm according to Criterion#1. The SOM needs many
parameters, a fact that may lead to limitations in clustering applications with vast amount of metered
load data where complexity and execution time are critical factors. The proper calibration of the
SOM parameters, i.e., the dimension of the map, the type of learning function, the learning rate, the
type of neighbourhood function, the number of epochs during training, etc. is a subject of detailed
analysis. Regarding the algorithms of the rest category, ISODATA requires the most parameters.
Between-Cluster Entropy-based Clustering #1 (BCEC1), Between-Cluster Entropy-based Clustering #2
(BCEC2) and Centroid Similarity-based Clustering (CSC) are hierarchical algorithms and thus only the
merging stopping criterion is needed.

Criterion#2 is closely related with Criterion#1. It applies only if clusterings with different number
of clusters are needed. Ideally, the execution of the algorithm for different number of clusters demands
only the number of clusters itself. All the other parameters should remain constant and equal to
their optimal values. The level of updating (i.e., periodically, prior to each execution, etc.) of the
other parameters for different number of clusters, such as threshold values, number of iterations,
etc., depends on the user preferences. The FDL, ISODATA, SVC and IRC do not require the number
of clusters since this is indirectly defined from other parameters such as the parameter ρ in the
FDL. Therefore, prior to each execution the parameters of the aforementioned algorithms should be
re-defined. According to the paper’s experiments, FDL and ISODATA require a time demanding
process to set the parameters in order for these algorithms to provide specific number of clusters.
Table 7 shows the parameters that need to be updated.
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Table 6. Parameters of the rest algorithms.

Algorithm Parameters for Determination

FDL
1. Maximum number of iterations
2. Initial centroids (optional)
3. Parameter ρ

ISODATA

1. Maximum number of clusters
2. Maximum number of clusters for merging
3. Maximum number of iterations
4. Threshold of number of patterns in a cluster
5. Threshold of distance for cluster merging
6. Threshold of standard deviation for cluster split
7. Minimum distance between patterns and centroid

BCEC1 Merging stopping criterion

BCEC2 Merging stopping criterion

CSC Merging stopping criterion

SVC

1.Parameter that controls the number of outliers
2. Scale parameter of the Gaussian kernel
3. Minimum distance
4. Cluster formation threshold

IRC 1. Maximum number of iterations
2. Parameter ρ

CLA

1. Maximum number of iterations
2. Initial centroids (optional)
3. Constant term of learning rate (winner neuron)
4. Constant term of learning rate (rest neurons)

Criterion#3 refers to the comparison via the validity indicators. The comparison per algorithm
category is shown in Figures 1–10. In the present paper, no information about the number of clusters is
available, therefore this number should be determined by the validity indicator. The algorithms are
executed for 2 to 30 clusters and for each number the score of the validity indicator is checked. Each
algorithm is applied separately to the data set of the consumer. In the present paper, the maximum
number of 30 is near the 10% of the patterns population, N = 365.

The superiority of an algorithm over the others is indicated when it leads, depending on the
indicator, to lower or higher values in most of the clusters if not all. In some cases, an algorithm is
more robust for certain number of clusters but it is surpassed by another for other number of clusters.
Therefore, the general behaviour of an algorithm over a validity indicator should be examined.

Table 7. Parameters updating requirements.

Algorithm Parameter

K-means -
Modified K-means#1 -
Modified K-means#2 -

WFA K-means -
IWFA K-means -

Hopfield K-means -
minCEntropy -
K-means_A -
K-means_B -
K-medoids -

SL -
CL -

UPGMA -
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Table 7. Cont.

Algorithm Parameter

WPGMA -
WPGMC -
UPGMC -

MVM -
FCM -
IFCM -
SOM -
AVQ -

Hopfield -
FDL Parameter ρ
CLA -
IRC Parameter ρ

BCEC1 -
BCEC2 -

CSC -

SVC 1. Minimum distance
2. Cluster formation threshold

ISODATA

1. Maximum number of clusters
2. Maximum number of clusters for merging
3. Maximum number of iterations
4. Threshold of number of patterns in a cluster
5. Threshold of distance for cluster merging
6. Threshold of standard deviation for cluster split
7.Minimum distance between patterns and centroid

The comparison of the partitional algorithms per validity indicator is illustrated in Figures 1 and 2.
The number of pair of values of the coefficients {a, b} for the Modified K-means#1 and IWFA K-means
are 1295. This means that 1295 clustering are generated from each algorithm. Only the one that leads
to the lowest error is kept. In Figures 1 and 2 the term “optimal” refers to the pair of values with
lower error and the term “average” refer to the average value of the 1295 clusterings. For each validity
indicator, different optimal pair of values is obtained. It can be noticed that there is no algorithm
that wins the competition in all indicators, a finding that confirms the conclusions of the literature in
algorithms comparison.

The graphs of J, MIA, CDI, WCBCR, SI and IAI display decreasing tendency while the number
of clusters is increasing. The most efficient algorithm should lead to lower values of these indicators.
This is also the case for DBI, SMI, SMI2 and MDI; these indicators display an unstable curve. In the IEI
and CH the algorithm that wins the competition results in higher values. The J indicator expresses
the sum of Euclidean distances among the patterns and the centroids. It is a measure of clusters’
compactness. The minCEntropy leads to lower errors followed by Modified Kmeans#1, K-medoids
and K-means_B. Like the J indicator, MIA is a measure of compactness. Here the IWFA K-means is the
most efficient followed by Modified Kmeans#2, minCEntropy and k-medoids.
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Figure 1. Comparison of the partitional algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI, (f) SMI2. Figure 1. Comparison of the partitional algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI,

(f) SMI2.



Appl. Sci. 2018, 8, 237 22 of 42
Appl. Sci. 2018, 8, 237 22 of 43 

 
Figure 2. Comparison of the partitional algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI. 

The CDI and WCBCR both measure the compactness and separation. For the CDI, the ranking 
is minCEntropy, Modified K-means#2, K-medoids και Modified K-means#1. For the WCBCR, is 
Modified K-means#1, Modified K-means#2, ΙWFA K-means and minCEntropy. For the SMI and 
SMI2, the most robust are the Modified K-means#1, ΙWFA K-means, K-medoids and minCEntropy. 
The K-medoids and ΙWFA K-means win the competition according to DBI and MDI, respectively.  

Figure 2. Comparison of the partitional algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH,
(f) SI.

The CDI and WCBCR both measure the compactness and separation. For the CDI, the ranking is
minCEntropy, Modified K-means#2, K-medoids και Modified K-means#1. For the WCBCR, is Modified
K-means#1, Modified K-means#2, IWFA K-means and minCEntropy. For the SMI and SMI2, the most
robust are the Modified K-means#1, IWFA K-means, K-medoids and minCEntropy. The K-medoids
and IWFA K-means win the competition according to DBI and MDI, respectively.
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Figure 3. Comparison of the hierarchical algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) 
SMI, (f) SMI2. 

IAI is a modification of the J indicator; the same conclusions with J apply. Considering IEI, the 
algorithms ranking is ΙWFA K-means, Modified K-means#1, Modified K-means#2 and K-medoids. 
The CH indicator is the ratio of IAI and IEI. Therefore, it measures compactness and separation. Here 
the Modified K-means#1 is superior followed by the ΙWFA K-means, Modified K-means#1 and 
minCEntropy. Finally, SI measures the compactness of clusters. The algorithms ranking is the same 
with CH. After the comparison of the partitional algorithms, in general terms Modified K-means#1 
and ΙWFA K-means are the most robust algorithms. Next, minCEntropy and K-medoids reach into 
the 3rd and 4th place in algorithms ranking. 

Figure 3. Comparison of the hierarchical algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI,
(f) SMI2.

IAI is a modification of the J indicator; the same conclusions with J apply. Considering IEI, the
algorithms ranking is IWFA K-means, Modified K-means#1, Modified K-means#2 and K-medoids.
The CH indicator is the ratio of IAI and IEI. Therefore, it measures compactness and separation.
Here the Modified K-means#1 is superior followed by the IWFA K-means, Modified K-means#1 and
minCEntropy. Finally, SI measures the compactness of clusters. The algorithms ranking is the same
with CH. After the comparison of the partitional algorithms, in general terms Modified K-means#1
and IWFA K-means are the most robust algorithms. Next, minCEntropy and K-medoids reach into the
3rd and 4th place in algorithms ranking.
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Figure 4. Comparison of the hierarchical algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI. 

Hierarchical agglomerative algorithms are characterized by the simplicity of their operation. The 
user should define the merging stopping criterion, which is actually the height that the dendrogram 
is cut. In respect to the algorithms of other categories, hierarchical clustering does not lead to clusters 
with zero number of members, i.e. empty clusters. Different executions always produce the same 
cluster. There is no need for a series of successive executions corresponding to different 
initializations.  

Figure 4. Comparison of the hierarchical algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI.

Hierarchical agglomerative algorithms are characterized by the simplicity of their operation.
The user should define the merging stopping criterion, which is actually the height that the dendrogram
is cut. In respect to the algorithms of other categories, hierarchical clustering does not lead to clusters
with zero number of members, i.e., empty clusters. Different executions always produce the same
cluster. There is no need for a series of successive executions corresponding to different initializations.
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Figure 5. Comparison of the fuzzy algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI, (f) SMI2. 

The MVM is more efficient according to J and ΙΑΙ followed by CL, WPGMA and UPGMA. In 
MIA indicator the ranking is SL, UPGMC, UPGMA and WPGMC, while in CDI it is MVM, WPGMA, 
UPGMA and UPGMC. This comparison shows that MVM leads to lower errors in 6 indicators, 
namely at J, CDI, SMI, SMI2, MDI, IAI and CH. Next, the SL wins the competition according to ΜΙΑ, 
WCBCR, DBI, IEI and SI. Apart from these algorithms, robust performance is displayed by UPGMC 
and UPGMA. 

Figure 5. Comparison of the fuzzy algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI,
(f) SMI2.

The MVM is more efficient according to J and IAI followed by CL, WPGMA and UPGMA. In MIA
indicator the ranking is SL, UPGMC, UPGMA and WPGMC, while in CDI it is MVM, WPGMA,
UPGMA and UPGMC. This comparison shows that MVM leads to lower errors in 6 indicators,
namely at J, CDI, SMI, SMI2, MDI, IAI and CH. Next, the SL wins the competition according to MIA,
WCBCR, DBI, IEI and SI. Apart from these algorithms, robust performance is displayed by UPGMC
and UPGMA.
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Figure 6. Comparison of the fuzzy algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI. 

Fuzzy algorithms are iterative and their operation present similarities with the K-means. The 
difference lies in the fact that they assign the patterns to all clusters. The fuzziness parameter defines 
the clusters’ composition. The increment of fuzziness parameter leads to more crisp clustering. After 
a parametric analysis, it is set to q = 2.70. The maximum number of iterations (i.e. epochs) of both the 
FCM and IFCM is set to 500. Also, the same number of iterations is set for the K-means that is used 
for the initialization of the IFCM. The IFCM results in lower errors according to J, MIA, CDI, WCBCR, 
DBI, MDI, IAI, IEI, CH and SI. In the cases of SMI and SMI2, the fuzzy algorithms have comparative 
performance.  

Figure 6. Comparison of the fuzzy algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI.

Fuzzy algorithms are iterative and their operation present similarities with the K-means.
The difference lies in the fact that they assign the patterns to all clusters. The fuzziness parameter
defines the clusters’ composition. The increment of fuzziness parameter leads to more crisp clustering.
After a parametric analysis, it is set to q = 2.70. The maximum number of iterations (i.e., epochs) of
both the FCM and IFCM is set to 500. Also, the same number of iterations is set for the K-means that
is used for the initialization of the IFCM. The IFCM results in lower errors according to J, MIA, CDI,
WCBCR, DBI, MDI, IAI, IEI, CH and SI. In the cases of SMI and SMI2, the fuzzy algorithms have
comparative performance.
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Figure 7. Comparison of the neural network-based algorithms using: (a) J, (b) MIA, (c) CDI, (d) 
WCBCR, (e) SMI, (f) SMI2. 

Neural network-based algorithms need a proper parameter calibration analysis. For the AVQ, 
these are the initial learning rate η o  and maximum number of iterations maxT . The following ranges 
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of experiments for the AVQ, the optimal values are drawn. For the J, MIA, CDI, WCBCR, SMI, SMI2, 
DBI, MDI, IAI, IEI, CH and SI indicators the optimal values are: {0.65, 100}, {0.90, 200}, {0.90, 100}, 
{0.90, 100}, {0.10, 300}, {0.60, 300}, {0.60, 100}, {0.65, 100}, {0.40, 100}, {0.10, 400} and {0.90, 400}, 
respectively.  

Figure 7. Comparison of the neural network-based algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR,
(e) SMI, (f) SMI2.

Neural network-based algorithms need a proper parameter calibration analysis. For the AVQ,
these are the initial learning rate ηo and maximum number of iterations Tmax. The following ranges of
values are considered: ηo = {0.05, 0.01, 0.15, ..., 0.90} and Tmax = {100, 200, 300, 400, 500}. After a set of
experiments for the AVQ, the optimal values are drawn. For the J, MIA, CDI, WCBCR, SMI, SMI2, DBI,
MDI, IAI, IEI, CH and SI indicators the optimal values are: {0.65, 100}, {0.90, 200}, {0.90, 100}, {0.90, 100},
{0.10, 300}, {0.60, 300}, {0.60, 100}, {0.65, 100}, {0.40, 100}, {0.10, 400} and {0.90, 400}, respectively.
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Figure 8. Comparison of the neural network-based algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, 
(e) CH, (f) SI. 

The number of iterations for the Hopfield ANN is set to 50. According to results presented in 
Figures 7 and 8, the Hopfield ANN leads to lower errors in MIA, WCBCR, DBI, IEI, SI, SMI and SMI2. 
In the cases of DBI and IEI, the difference among the algorithms is more visible. In the SI, for large 
number of clusters, SOM approaches the performance of Hopfield. In SMI and SMI2 for number of 
clusters above 18, the AVQ and Hopfield present similar behaviour. The SOM wins the competition 
in J and CDI. As for the MDI, special attention is needed to reach into safe conclusions for the 
algorithms comparison.  

Figure 8. Comparison of the neural network-based algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI,
(e) CH, (f) SI.

The number of iterations for the Hopfield ANN is set to 50. According to results presented in
Figures 7 and 8, the Hopfield ANN leads to lower errors in MIA, WCBCR, DBI, IEI, SI, SMI and
SMI2. In the cases of DBI and IEI, the difference among the algorithms is more visible. In the SI,
for large number of clusters, SOM approaches the performance of Hopfield. In SMI and SMI2 for
number of clusters above 18, the AVQ and Hopfield present similar behaviour. The SOM wins the
competition in J and CDI. As for the MDI, special attention is needed to reach into safe conclusions for
the algorithms comparison.
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Figure 9. Comparison of the rest algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI, (f) SMI2. 

For CLA, 3 different normalization techniques are considered, namely N1, N2 and N3. The N1 
performs a random selection of k patterns from the smallest hyper-rectangular that contains all 
vectors of Y. In the N2, a random selection of k patterns is held. Finally, in N3 the k most dissimilar 
patterns are selected. After a parametric analysis, the learning rates are set to 0 70η = .  and 

0 00025η = .l  for all validity indicators. The maximum number of iterations is set to 500. The same 
number is set both for IRC and FDL. 

Figure 9. Comparison of the rest algorithms using: (a) J, (b) MIA, (c) CDI, (d) WCBCR, (e) SMI, (f) SMI2.

For CLA, 3 different normalization techniques are considered, namely N1, N2 and N3. The N1
performs a random selection of k patterns from the smallest hyper-rectangular that contains all vectors
of Y. In the N2, a random selection of k patterns is held. Finally, in N3 the k most dissimilar patterns
are selected. After a parametric analysis, the learning rates are set to η = 0.70 and ηl = 0.00025 for all
validity indicators. The maximum number of iterations is set to 500. The same number is set both for
IRC and FDL.
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Figure 10. Comparison of the rest algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI. 

For the SVC, the parameters are set to C = 1 and q = 1. For the ISODATA, the following values 
are selected: Threshold of number of patterns in a cluster is equal to 15, the threshold of distance for 
cluster merging equals 10 and the maximum number of iterations is also 10. From comparing the 
algorithms, it is shown that CLA leads to lower scores in J, IAI, SMI and SMI2. The most superior 
operation in CDI and CH is observed from FDL. In the case of the CDI, the difference between FDL 
and CLA is not large. In the cases of MIA and WCBCR, IRC is more efficient than the rest. Finally, 
CSC outmatches the rest in DBI and MDI and SVC in IEI and SI. From the comparison of the 
algorithms of the rest category, CLA is recommended. 

Table 8 presents the algorithms ranking per validity indicator. The minCEntropy ranks 1st 
according to J, IAI and CDI. K-medoids ranks 1st in DBI and 4th in CDI. The Modified K-means#1 is 

Figure 10. Comparison of the rest algorithms using: (a) DBI, (b) MDI, (c) IAI, (d) IEI, (e) CH, (f) SI.

For the SVC, the parameters are set to C = 1 and q = 1. For the ISODATA, the following values
are selected: Threshold of number of patterns in a cluster is equal to 15, the threshold of distance for
cluster merging equals 10 and the maximum number of iterations is also 10. From comparing the
algorithms, it is shown that CLA leads to lower scores in J, IAI, SMI and SMI2. The most superior
operation in CDI and CH is observed from FDL. In the case of the CDI, the difference between FDL
and CLA is not large. In the cases of MIA and WCBCR, IRC is more efficient than the rest. Finally, CSC
outmatches the rest in DBI and MDI and SVC in IEI and SI. From the comparison of the algorithms of
the rest category, CLA is recommended.
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Table 8 presents the algorithms ranking per validity indicator. The minCEntropy ranks 1st
according to J, IAI and CDI. K-medoids ranks 1st in DBI and 4th in CDI. The Modified K-means#1
is present in 10 indices. According to Criterion#3, in general terms, it is the most efficient algorithm.
IWFA K-means is the 2nd best. Also, minCEntropy ranks high in the lists. The results indicate that
the partitional algorithms present better performance followed by hierarchical ones. Among the
latter, SL is the most robust while MVM and UPGMC have satisfactory performance. No fuzzy and
neural-network based algorithms are present. Among the algorithms of the rest category, IRC and
CLA provide adequate clusterings.

Table 8. Algorithms ranking per validity indicator.

Validity Indicator Algorithms’ Ranking Validity Indicator Algorithms’ Ranking

J

1. minCEntropy
2. Modified K-means#1
3. MVM
4. K-means_A

MDI

1. IRC
2. IWFA K-means
3. Modified K-means#1
4. BCEC2

MIA

1. SL
2. IWFA K-means
3. UPGMC
4. UPGMA

IAI

1. minCEntropy
2. Modified K-means#1
3. MVM
4. K-means_A

CDI

1. minCEntropy
2. Modified K-means#1
3. MVM
4. K-medoids

IEI

1. IWFA K-means
2. Modified K-means#1
3. SVC
4. IRC

WCBCR

1. SL
2. UPGMC
3. Modified K-means#1
4. UPGMA

CH

1. Modified K-means#1
2. IWFA K-means
3. minCEntropy
4. MVM

SMI

1. Modified K-means#1
2. CLA (N3)
3. MVM
4. CLA (N2)

SI

1. IWFA K-means
2. Modified K-means#1
3. SL
4. UPGMC

SMI2

1. Modified K-means#1
2. CLA (N3)
3. MVM
4. CLA (N2)

DBI

1. K-medoids
2. SL
3. UPGMC
4. UPGMA

Criterion#4 is important in applications with vast amount of data. Table 9 presents the execution
time per algorithm as measured in 2.20 GHz Pentium® B960 Dual Core™ with 8 GB RAM system.
The time refers only to the execution of the algorithm for 2 to 30 clusters excluding the calculation
of the validity indicators value. Furthermore, the time of parametric analyses for proper parameter
calibration is not included. The last column in the Table corresponds to the ratio of the required time
of an algorithm to the required time of the K-means. All algorithms are executed considering their
optimal parameters. It can be observed that hierarchical algorithms are the fastest. SOM and AVQ
have considerably longer execution times, making these algorithms not appropriate for real-time
applications. The required time for FDL and ISODATA cannot actually take part in the comparison
since many different executions are needed by changing their parameters in order to provide clusterings
with specific number of clusters.

Criterion#5 is application dependent. It refers to the potential of an algorithm to fit into the
special requirements of an application. In the present paper, Criterion#5 considers the following
attributes: Empty clusters generation and outlier detection. The results are presented in Table 10.
The concept of “empty clusters” refers to the fact that an algorithm leads to lower number of clusters
than the one it is requested. The concept “outlier detection” refers to the fact that an algorithm has
the potential to track and isolate atypical patterns. Partitional algorithms do not result in empty
clusters formation. However, they tend to produce clusters with almost similar number of members.
On the contrary, hierarchical algorithms such as the SL and the CL algorithms can identify outliers.
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Therefore, hierarchical algorithms are suitable in data filtering, i.e., in cases that atypical data need to
be excluded from the data set. Also, atypical data may refer to the load of holidays, working days close
to holidays and other days with special attributes. The potential of tracking special days is suitable in
load profiling applications.

Table 9. Required execution time per algorithm.

Algorithm Execution Time (s) Ratio

K-means 8.31 1
Modified K-means# 1 978.81 117.78

Modified K-means#2 2 15.93 1.91
WFA K-means 8.44 1.01

IWFA K-means 1 713.80 85.89
Hopfield K-means 49.53 5.96

minCEntropy 691.73 83.24
K-means_A 8.27 0.99
K-means_B 8.16 0.98
K-medoids 9.22 1.10

SL 3.59 0.43
CL 3.69 0.44

UPGMA 3.67 0.44
WPGMA 3.68 0.44
WPGMC 3.71 0.44
UPGMC 3.73 0.44

MVM 3.70 0.44
FCM 10.91 1.31
IFCM 13.32 1.60

SOM (1D) 1148 138.14
AVQ 3 1244.70 149.78

Hopfield 44.69 5.37
FDL >>0 >>1

CLA 4 848.97 102.16
IRC 6.41 0.77

BCEC1 5 6.83 0.82
BCEC2 5 6.61 0.79

CSC 5 6.53 0.78
SVC 27.54 3.31

ISODATA >>0 >>1
1 The calculation of the optimal pair of values {a, b} is not included. 2 The calculation of the pair of values {ai , bi}
is not included. 3 The optimal parameters of the WCBCR are regarded. 4 The N1 normalization is regarded.
5 The calculation of the entropy matrix is not included.

Table 10. Algorithms comparison in terms of empty clusters formation and outliers tracking.

Algorithm Empty Clusters Outliers Tracking

K-means No No
Modified K-means#1 No No
Modified K-means#2 No No

WFA K-means No No
IWFA K-means No No

Hopfield K-means No No
minCEntropy No No
K-means_A No No
K-means_B No No
K-medoids No No

SL No Yes
CL No Yes

UPGMA No Yes
WPGMA No Yes
WPGMC No Yes
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Table 10. Cont.

Algorithm Empty Clusters Outliers Tracking

UPGMC No Yes
MVM No Yes
FCM Yes No
IFCM Yes No
SOM No No
AVQ Yes No

Hopfield No No
FDL No Yes
CLA Yes No
IRC No Yes

BCEC1 No Yes
BCEC2 No Yes

CSC No Yes
SVC No Yes

ISODATA Yes No

Criterion#6 refers to software availability of the algorithms. Table 11 presents the software
packages that include implementation of the algorithms. It can be noticed that most algorithms are
available under commercial license or freely. In the cases of the K-means, K-medoids and hierarchical
algorithms the Table presents the most common software. According to Table 11, there are lots of
alternatives to implement these algorithms. The term “Matlab 3rd party code” refers to unofficial
Matlab code freely provided by the authors. The term “In-house software” refers to code developed by
the authors of the respective paper and is not officially distributed.

Table 11. Software availability per algorithm [98–103].

Algorithm Availability

K-means

1. Matlab
2. Mathematica
3. SPSS
4. SAS
5. R
6. Weka
7. C++/C#
8. Python
9. Matlab 3rd party code

Modified K-means#1 In-house software

Modified K-means#2 In-house software

WFA K-means In-house software

IWFA K-means In-house software

Hopfield K-means In-house software

minCEntropy Matlab 3rd party code

K-means_A In-house software

K-means_B In-house software

K-medoids

1. Matlab
2. Mathematica
3. SPSS
4. SAS
5. R
6. Weka
7. C++/C#
8. Python
9. Matlab 3rd party code
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Table 11. Cont.

Algorithm Availability

Hierarchical algorithms

1. Matlab
2. Mathematica
3. SPSS
4. SAS
5. R
6. Weka
7. C++/C#
8. Python
9. Matlab 3rd party code

FCM

1. Matlab
2. Mathematica
3. R
4. C++/C#
5. Python
6. Matlab 3rd party code

IFCM In-house software

SOM

1. Matlab
2. R
3. Weka
4. C++/C#
5. Python
6. Matlab 3rd party code

AVQ
1. Matlab
2. Weka
3. Python

Hopfield

1. Matlab
2. R
3. C++/C#
4. Python
5. Matlab 3rd party code

FDL In-house software

CLA Matlab 3rd party code

IRC In-house software

BCEC1 In-house software

BCEC2 In-house software

CSC In-house software

SVC

1. R
2. Python
2. Matlab 3rd party code
3. In-house software

ISODATA

1. R
2. Python
2. Matlab 3rd party code
3. In-house software

4.2. Algorithms Selection

The selection of the most proper algorithm for a given application is done using TOPSIS. The scope
is to select an algorithm that maximizes the clustering benefit, i.e., the optimal segmentation of a given
load data set. The initial phase of TOPSIS is the setting of the weights of each criterion. The sum of
weights equals 1. The higher the weight of a criterion, the higher the importance this criterion has in the
overall decision. While only clustering validity indicators are regarded in the load profiling literature,
the weight of Criterion#3 is set with the higher value. Also, since smart metering installations and load
data collections continue to increase, Criterion#4 has the next highest value. All the other criteria are
equally valued. More specifically, let wCR(i) be the value of the ith criterion, I = 1, . . . , 6. The weights
that are set to criteria are: wCR(1) = 0.10, wCR(2) = 0.10, wCR(3) = 0.40, wCR(4) = 0.20, wCR(5) = 0.10 and
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wCR(6) = 0.10. Let C#i, I = 1, . . . , 6 the indicator of criterion. Regarding the scores of the solution,
the scale presented in Table 12 is taken into account. The decision matrix is shown in Table 13.
Criterion#1, Criterion#2 and Criterion#4 need to be “minimized.” This means that an algorithm should
score as less as possible. The ideal value is 1. This concept is reversed in Criterion#3, Criterion#5 and
Criterion#6. In these cases, the ideal value is 9. In order to provide objective scores in Criterion#1, the
actual number of parameters are set as scores. In Criterion#2, score “1” is matched to no requirements
for parameter updating and score “2” is matched to 1 parameter. Additionally, scores “3” and “7”
correspond to the actual numbers of parameters. Regarding Criterion#3, the following scores are
taken under consideration: No presence in the ranking of Table 8→ 1, 1 presence in the ranking of
Table 8 → 3, more than 1 presence in the ranking of Table 8 → 5, 1 presence and 1 higher rank in
the ranking of Table 8→ 7 and more than 1 presence and more than 1 higher ranks in the ranking of
Table 8→ 9. In Criterion#4, the actual execution durations in seconds are regarded. It should be noted
that in TOPSIS, real numbers can also be considered as scores that do lie outside to the ordinary [1,2, . . . ,9]
scale. According to the results presented in Table 9, the FDL and ISODATA algorithm require large
time that is considerable larger than the other algorithms. In order to express it in scale terms, they
are considered to demand twice the time of the slowest algorithm, i.e., the AVQ. With reference to
Criterion#5, the following scores are placed in {Empty clusters, Outlier tracking} pair: {Yes, No}→ 1,
{Yes, Yes}→ 2, {No, No}→ 3 and {No, Yes}→ 4. Regarding Criterion#6, the “In-house software” is
scored as “1” since in this case the algorithm is not available. All the other scores actually refer to real
number of software packages that implement the algorithm. If the algorithm is available as a Matlab
3rd party code it scores 2.

The ideal solution is V+ = [0.0056, 0.0104, 0.1606, 0.022, 0.030] and the anti-deal solution is
V− = [0.0398, 0.0729, 0.0178, 0.1175, 0.0055, 0.0033]. Table 14 presents the results of the application
of the TOPSIS method. The last column of the matrix shows the ranking. The comparison of the
algorithms indicate that SL is the most efficient followed by the K-medoids. In all criteria, the SL scores
sufficiently. Also, the hierarchical algorithms UPGMA, UPGMC and MVM are highly ranked.

Table 12. Evaluation scores.

Scale Linguistic Term in Positive Impact Linguistic Term in Negative Impact

1 Poor Extremely strong
2 Intermediate value Intermediate value
3 Moderate Very strong
4 Intermediate value Intermediate value
5 Strong Strong
6 Intermediate value Intermediate value
7 Very strong Moderate
8 Intermediate value Intermediate value
9 Extremely strong Poor

Table 13. Decision matrix.

Algorithm C#1 C#2 C#3 C#4 C#5 C#6

K-means 3 1 1 8.31 3 9
Modified K-means#1 3 1 9 978.81 3 1
Modified K-means#2 3 1 1 15.93 3 1

WFA K-means 3 1 1 8.44 3 1
IWFA K-means 3 1 9 713.80 3 1

Hopfield K-means 3 1 1 49.53 3 1
minCEntropy 3 1 9 691.73 3 2

K-means A 3 1 5 8.27 3 1
K-means B 3 1 1 8.16 3 1
K-medoids 3 1 7 9.22 3 9

SL 1 1 7 3.59 4 9
CL 1 1 1 3.69 4 9

UPGMA 1 1 5 3.67 4 9
WPGMA 1 1 1 3.68 4 9



Appl. Sci. 2018, 8, 237 36 of 42

Table 13. Cont.

Algorithm C#1 C#2 C#3 C#4 C#5 C#6

WPGMC 1 1 1 3.71 4 9
UPGMC 1 1 5 3.73 4 9

MVM 1 1 5 3.70 4 9
FCM 5 1 1 10.91 1 6
IFCM 6 1 1 13.32 1 1

SOM (1D) 7 1 1 1148 3 6
AVQ 2 1 1 1244.70 1 3

Hopfield 1 1 1 44.69 3 5
FDL 3 2 1 2489.40 4 1
CLA 4 1 5 848.97 1 2
IRC 2 2 3 6.41 4 1

BCEC1 1 1 1 6.83 4 1
BCEC2 1 1 1 6.61 4 1

CSC 1 1 1 6.53 4 1
SVC 4 3 3 27.54 4 3

ISODATA 7 7 1 2489.40 1 3

Table 14. Algorithms ranking.

Algorithm S−i S+i Bi Rank

K-means 0.24 0.16 0.60 14
Modified K-means#1 0.31 0.09 0.78 8
Modified K-means#2 0.21 0.19 0.53 23

WFA K-means 0.21 0.19 0.53 22
IWFA K-means 0.32 0.08 0.81 7

Hopfield K-means 0.21 0.19 0.53 24
minCEntropy 0.33 0.07 0.82 6
K-means_A 0.29 0.12 0.71 9
K-means_B 0.21 0.19 0.53 21
K-medoids 0.34 0.06 0.86 2

SL 0.36 0.04 0.91 1
CL 0.26 0.14 0.64 11

UPGMA 0.33 0.07 0.82 3
WPGMA 0.26 0.14 0.64 10
WPGMC 0.26 0.14 0.64 12
UPGMC 0.33 0.07 0.82 5

MVM 0.33 0.07 0.82 4
FCM 0.21 0.19 0.52 25
IFCM 0.19 0.22 0.46 26
SOM 0.15 0.25 0.38 28
AVQ 0.16 0.24 0.39 27

Hopfield 0.24 0.16 0.59 15
FDL 0.09 0.31 0.23 29
CLA 0.23 0.17 0.58 24
IRC 0.25 0.15 0.62 13

BCEC1 0.23 0.17 0.58 20
BCEC2 0.23 0.17 0.58 19

CSC 0.23 0.17 0.58 18
SVC 0.23 0.17 0.58 16

ISODATA 0.01 0.39 0.02 30

By comparing the algorithms’ categories, hierarchical algorithms are more suitable. The 2nd
place belongs to partitional algorithms and the 3rd place to the algorithms of the rest category.
Although Hopfield ANN ranks in the middle of the list, in general terms, the neural-network
based algorithms is the category that ranks last. FDL and ISODATA are the least efficient
algorithms. This is mainly due to the large time that is needed to extract a certain number of
clusters. Therefore, it is recommended to select an algorithm that is directly fed with the number of
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clusters as an input parameter rather than defining the number of clusters through other parameters,
e.g., distance threshold. According to Table 8, partitional algorithms lead to lowest errors than the
rest. However, Modified K-means#1 and IWFA K-means#2 are complex in terms of required execution
time. Overall, hierarchical clustering has 3 main advantages: Minimum input parameter requirements,
speed and software availability.

5. Conclusions

Modern power system community has recognized the need to upgrade the role of the consumer in
competitive energy market. The installation of smart metering is supported by the current legislative
framework of European Union. The ideal case is that every consumer operates a smart meter.
However, when the techno-economic barriers are present, alternative approaches should be considered to
derive the typical demand patterns of the consumers. In many electricity networks, high-level consumer
macro-categorization like residential, industrial and others is not robust. More detailed categorization
is needed. The term “load profiling” refers to set of processes that lead to the characterization of the
demand patterns of various consumers’ categories. Load profiling is a flexible tool that can aid in the
formulation of the typical patterns for single consumers or group of consumers. The load curves are
grouped together based on their similarity. Usually, no other parameters are needed apart from the load
data. The importance of efficient load profiling is evident in a wide range of contemporary research
topics like demand side management, tariff design, load forecasting and others.

Load profiling has gathered the attention of researchers in the recent years. This led to proposing
many algorithms for clustering various load data sets. In the majority of the papers, the performance
of the algorithms is tested only with quantitative criteria, namely the adequacy measures or clustering
validity indicators. In spite of the large number of researches, no single study has provided a framework
capable of indicating the benefits and limitations of the algorithms through a detailed comparison.
In the present paper, a systematic procedure is proposed to rank the majority of the algorithms
proposed in literature. The comparison includes 30 algorithms using 6 validation criteria. Apart from
the validity indicators of the literature, the criteria involve factors that refer to the complexity of an
algorithm and its availability. The main conclusions of the paper are summarized in the following:

• Partitional algorithms are ranked 1st if only validity indicators are used. In 10 indicators,
a partitional algorithm ranks 1st. The most robust partitional algorithm is Modified K-means#1.
It ranks 1st in 3 indicators and 2nd in 5. The minCEntropy follows as it ranks 1st in 3 indicators
also. No fuzzy and neural-network based algorithms are present in the lists of Table 8. From the
algorithms of the rest category, IRC, CLA, SVC and BCEC2 are present. The CLA is the most
robust algorithm from this category.

• Computational time is an important factor. In this comparison, hierarchical clustering outclasses the
other categories. SOM, AVQ, FDL and ISODATA are not recommended due to high time requirements.

• ISODATA and SOM are not recommended in problems where low complexity in terms of input
parameter requirements is crucial. In this case, hierarchical algorithms are preferred.

• Software implementation availability is significant in cases of lack of programing skills, need
for tested and verified codes or other factors. According to this criterion, hierarchical clustering,
K-means, K-medoids and FCM are available in commercial and freely distributed packages.

The present paper can serve as a guide for further algorithms comparisons and testing.
Potential expansions of the developed framework may include further criteria and MCDA methods
for evaluation. Also, the analysis will be applied in other data sets.
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