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Abstract: Light scattering by a small spherical particle, a central topic for electromagnetic scattering
theory, is here considered. In this short review, some of the basic features of its resonant scattering
behavior are covered. First, a general physical picture is described by a full electrodynamic
perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the
existence of two distinctive types of polarization enhancement: the plasmonic and the dielectric
resonances. The corresponding electrostatic (Rayleigh) picture is analyzed and the polarizability
of a homogeneous spherical inclusion is extracted. This description facilitates the identification of
the first type of resonance, i.e., the localized surface plasmon (plasmonic) resonance, as a function
of the permittivity. Moreover, the electrostatic picture is linked with the plasmon hybridization
model through the case of a step-inhomogeneous structure, i.e., a core–shell sphere. The connections
between the electrostatic and electrodynamic models are reviewed in the small size limit and details on
size-induced aspects, such as the dynamic depolarization and the radiation reaction on a small sphere
are exposed through the newly introduced Mie–Padé approximative perspective. The applicability of
this approximation is further expanded including the second type of resonances, i.e., the dielectric
resonances. For this type of resonances, the Mie–Padé approximation reveals the main character of
the two different cases of resonances of either magnetic or electric origin. A unified picture is therefore
described encompassing both plasmonic and dielectric resonances, and the resonant conditions of
all three different types are extracted as functions of the permittivity and the size of the sphere.
Lastly, the directional scattering behavior of the first two dielectric resonances is exposed in a simple
manner, namely the Kerker conditions for maximum forward and backscattering between the first
magnetic and electric dipole contributions of a dielectric sphere. The presented results address several
prominent functional features, aiming at readers with either theoretical or applied interest for the
scattering aspects of a resonant sphere.
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1. Introduction

Light scattering and absorption by a single sphere, i.e., electromagnetic radiation, is a widely
studied canonical problem encountered in both applied and theoretical sciences, such as material
and optical physics [1–5], chemistry [6,7], nanotechnology [5,8], radio/antenna engineering [9,10],
and applied mathematics [11]. The sphere is one of the few three-dimensional bounded geometrical
shapes that possess a closed-form analytical solution either in the electrostatic or the electrodynamic
domain (Here we assume a small-to-intermediate sized sphere with respect to the incident wavelength.
Treatments of larger spheres in the geometrical optics approximations are beyond the scope of this short
review, see for example [12]). Thus, a sphere can be arguably perceived as an archetype of a scatterer
for the extraction of valuable insights regarding the scattering problem by bounded objects. It is
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commonly used as a reference for any kind of electromagnetic scattering theory [13] and applications,
from the utilization on experimental setups [7] to the benchmarking of computational methods [14,15]
and beyond.

The twentieth century witnessed the birth of many, now-classical, text-books dealing with
light scattering spheres, offering thorough, instructive, and wide discussions on the subject and its
treatments. Workers such as Stratton [16], van de Hulst [17], Kerker [18], and Bohren and Huffman [19]
are only some of the contributors to this tradition, delivering complete and educative perspectives
on this subject. Indeed, the number of books and contributors on this subject is very large. It is
appropriate to acknowledge that this is just an indicative and not comprehensive textbook list. For a
more complete list, one can follow the suggested textbooks and the references therein. An eloquent
historical retrospective for the research up to the 1970s is given by Milton Kerker in his book on
light scattering [18].

Nonetheless, the significance of such a long-standing problem with solidly established theory
resonates up to our modern times, opening new avenues for the understanding of fundamental
scattering and absorptive phenomena. A stark example is the recent identification of Fano interference
line-shapes appearing on the scattering spectrum of a sphere [20–23]. Recent research trends,
such as the metamaterial/metasurfaces paradigm [24–26], and the plasmonic or all-dielectric energy
control/harvesting devices [4,5,8,26–33] enabled the extensive use of a sphere as a fundamental testbed
purposes. Likewise, the conceptual demonstration/realization of single particle devices, such as
sensors [34,35], electromagnetic cloaks [36–40], “super”-scatterers [41], optical force carriers [42],
and optical memory devices [43], are nothing but different perspectives on the scattering response of a
spherical inclusion, and new light control/harvesting functionalities are attributed to the emerging
collective effect of a suspension of spherical scatterers [2,8,25,44]. It is therefore evident that the
spherical scattering particles are in the core of modern electromagnetics and optics research.

In this review, some of the most basic features of its resonant scattering behavior are exposed,
covering the two most prominent features of a resonant sphere: the plasmonic and the dielectric
resonances. To start with, let us assume a sphere of radius r1 subject to an incident monochromatic plane
wave of wavelength λ, as can be seen in Figure 1, where the time-harmonic convention e−iωt is assumed.
The sphere consists of a homogeneous and isotropic material of given permittivity (dielectric constant)
ε1 and permeability µ1, immersed in a host medium with relative parameters (εhost, µhost). Note that all
material parameters are normalized with respect to the permittivity and permeability of vacuum, ε0, µ0.
The electrical size is expressed through the size parameter defined as x = ω

√
εhostε0µhostµ0r1 = 2π

λ r1,
where ω

√
εhostε0µhostµ0 = k is the wavenumber of the host medium. The first, mathematically

rigorous attempts explaining the triggered mechanisms, therefore quantifying the scattering behavior,
were derived by Lord Rayleigh for the case of a very small scatterer (electrostatic case) [45–47].
Almost simultaneously, developments attributed to workers such as Thomson, Love, Lorenz, Debye,
and Mie gave birth to a more complete electrodynamic perspective about this problem, always in
accordance with the Maxwell equations [18,48].

In both aforementioned cases, the mathematical treatment of the problem is similar: assuming
a plane wave excitation and requiring that both outside and inside regions Maxwell’s equations are
satisfied, one can derive a set of electrical and magnetic field expressions, expanded in the spherical
coordinate system [16,49]. These expressions contain a set of unknown amplitude coefficients, the Mie
coefficients [19]. The determination of these coefficients requires the solution of the formulated
boundary value problem, i.e., the continuity of all tangential field components at the interface
(or interfaces if we have multilayered sphere), assuming that the acceptable solutions consist of
properly behaving functions that vanish at infinity and are well behaved in the origin of the sphere.
A complete and systematic analysis for this problem can be found in several text-books [16,18,19].
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Figure 1. Conceptual visualization of the general problem under consideration: plane wave scattering
by a sphere of radius r1 and material ε1, µ1 in a host medium with general material parameters
εhost, µhost. In this review, the host medium is vacuum with εhost = 1, µhost = 1 and the sphere is
magnetically inert, i.e., µ1 = 1. The plane wave is z propagated, Ex polarized.

Here, we will try to unravel the resonant features of the Mie coefficients and analyze their physical
implications. Section 2 conveys a brief discussion on the full-electrodynamic scattering perspective,
the Mie coefficients, where the spectrum of a homogeneous dielectric sphere as a function of the
permittivity and the size parameter is given. The study of the scattering spectrum reveals the existence
of two different resonant features, the localized surface plasmon (LSPR or plasmonic) and the dielectric
resonances, respectively. Plasmonic resonances (LSPRs are generally different from their surface
and volume counterparts, since LSPRs are non-propagating resonances, directly triggered by the
impinging radiation [50]) occur from the coupling between the free electrons (plasma, ε < 0) in metals
with the electromagnetic field [50,51]. This collective effect involves both the electric and kinetic
energy of the free electrons, hence is of primarily electric character and can be observed even for
deeply subwavelength structures [52]. However, the second type of resonances, i.e., the dielectric
resonances, are of either magnetic or electric character, highly dependent on the dielectric contrast of
the sphere. The dielectric resonances exhibit a more complicated field distribution inside the scatterer.
These resonances are also called morphology-dependent resonances (MDR) [53], or Mie resonances [4]
occurring for ε > 0.

In Section 3, a brief description of the electrostatic (Rayleigh) problem is given, exposing the nature
of the plasmonic resonances on a subwavelength sphere. A connection between the Rayleigh picture
and the plasmon hybridization is briefly discussed for the case of a resonant core–shell sphere. Section 4
begins with a revision of the Mie–Taylor approximation, an alternative way to reach the Rayleigh
picture, offering a clear connection between the electrostatic and the Mie theory perspective. A more
complete picture encompassing the resonant features of the Mie coefficients, i.e., size-induced dynamic
characteristics, is obtained by the Mie–Padé approximation. Valuable information regarding these
scattering processes are extracted, and generalized resonant formulae of the resonant magnetic and
electric multipoles are exposed in Section 5. Finally, in Section 6, we expose features regarding
the directive scattering characteristics of a sphere; predictions for the maximum forward and
backscattering, namely the Kerker conditions, are given, followed by concluding remarks for the
light scattering characteristics of a sphere.
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2. Electrodynamic Scattering: Mie Coefficients

As discussed in the introductory section, the scattering problem by a sphere subject to a plane
wave has been rigorously solved by following the aforementioned assumptions. The key concepts are
the Lorenz–Mie (or simply Mie) coefficients that rigorously quantify the material and size contributions
to the overall scattering behavior. These coefficients are described by a set of fractional functions
consisting of spherical Bessel, Hankel, and Riccati–Bessel and Riccati–Hankel functions, viz.,

an =
m2 jn(mx) [xjn(x)]′ − µ1 jn(x) [mxjn(mx)]′

m2 jn(mx)
[

xh(1)n (x)
]′
− µ1h(1)n (x) [mxjn(mx)]′

(1)

bn =
µ1 jn(mx) [xjn(x)]′ − jn(x) [mxjn(mx)]′

µ1 jn(mx)
[

xh(1)n (x)
]′
− h(1)n (x) [mxjn(mx)]′

(2)

where an and bn denote the electric and magnetic coefficients, respectively [19]. The size parameter,
x = ka, is a function of the sphere’s radius a and host medium wavenumber; ε1 and µ1 are the sphere’s
material parameters. Finally, m =

√
ε1µ1√

εhostµhost
is the contrast parameter. Similar expressions are also

available for the case of core–shell structures [54], while iterative relations of the Mie coefficients can be
found for the case of n-layered structures [55]. Likewise, cases of inhomogeneous [56,57] or anisotropic
inclusions [58,59] are available, being, however, beyond the scope of this review.

The Mie coefficients can also describe the energy balance between the different mechanisms
on a sphere: scattering and absorption. A common way for expressing these energies is by looking
the far-field characteristics, i.e., the scattering and extinction (scattering + absorption) efficiencies.
These efficiencies can be expressed as a combination of the Mie coefficients, i.e.,

Qsca =
2
x2

∞

∑
n=1

(2n + 1)
(
|an|2 + |bn|2

)
(3)

and

Qext =
2
x2

∞

∑
n=1

(2n + 1)<{an + bn} (4)

as can be found in text-books [9,18,19]. Figure 2 depicts the scattering efficiency spectrum as a function
of both ε1 and x. We can observe several lines of radiation enhancement in both plasmonic (ε1 < 0) and
dielectric (ε1 > 0) region, respectively. In the computation of Figure 2 the infinite sum of Equation (3)
has been truncated in accordance to the Wiscombe’s criterion, that correlates the sufficient number of
modes with the size parameter of the sphere [60].

The plasmonic region resonances correspond to the enhancement of the electric Mie coefficients, an,
while the dielectric region exhibits both magnetic bn and electric an resonances. This fact is
depicted in Figure 3, where the scattering efficiency and the first three magnetic and electric Mie
coefficients are visible, for a given size parameter (x = 0.75). The inset figures depict the charge
and surface current distribution for the a1, a2, a3 and b1, b2, b3 coefficients, respectively. It is evident
that the magnetic coefficients exhibit pronounced circulating charge distributions, resembling in such
manner the magnetic dipole, quadrupole, and octupole configurations. Actually, this is particularly
interesting phenomenon that enables the magnetic response of a dielectric sphere the optical and
near-infrared regime, where magnetic materials are not traditionally available [61,62]. Likewise, for the
electric coefficients the surface charge accumulates in a dipolar, quadrupolar, and octupolar manner.
Note that both plasmonic and dielectric electric resonances exhibit the same surface strength and
charge distribution.
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Figure 2. The scattering efficiency of a homogeneous sphere (in logarithmic scale), normalized for
better visualization of the results, as a function of the permittivity (lossless case) and the size parameter.
The yellow regions correspond to radiation enhancement regions. Note two different regions, one for
negative (plasmonic region) and for positive (dielectric) permittivity. The inset figure shows an
magnification on the plasmonic region, where the first three electric multipole resonances are visible.
(Adapted with permission from [63], IEEE, 2017).
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Figure 3. The total scattering efficiency (blue line), in logarithmic scale, as a function of the permittivity
(lossless case) for a fixed size parameter x = 0.75. Additionally, the lines a1, a2, and a3 (dashed colorful
lines) depict the absolute value of the first three electric multipoles, while b1, b2, and b3 (dash-dot
colorful lines) illustrate the magnetic dipole, quadrupole, and octupole terms, respectively. The inset
figure (left column) depict the corresponding surface charge distributions for the a1, a2, and a3 electric
multipoles, while the inset figure (top) the corresponding surface electric current distributions for b1,
b2, and b3 magnetic multipoles, respectively. Note that the a multipoles resonate at both plasmonic
(ε < 0) and dielectric (ε > 0) regions, exhibiting an identical charge distribution. The ampitude of an

and bn coefficients is bounded at the [0, 1] interval.
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3. Electrostatic Scattering by a Sphere

A standard way to analyze subwavelength plasmonic resonances is by implementing an
electrostatic scattering picture for the proposed problem. The analysis can be seen as the perturbation
that a spherical object causes on a constant electric field. The formulated model can be expressed as
a boundary value problem for the following quantities: the external potential, Φinc = −E0r cos θ,
the perturbed (scattered) potential Φsca = B0

r2 cos θ and the internal potential Φin = A1r cos θ.
The boundary problem requires the continuity of the tangential field and normal flux density on
the boundary, i.e., Φout(r, θ) = Φin(r, θ), at r = r1 and εhost

∂
∂r Φout(r, θ) = ε1

∂
∂r Φin(r, θ) at r = r1.

The resulted scattering amplitudes, B0 and A0, read

B0 =
ε1 − εhost
ε1 + 2εhost

E0r3
1 (5)

and
A1 = − 3εhost

ε1 + 2εhost
E0 (6)

The proportionality constant of the dipolar scattering amplitude, B0, is commonly recognized as
the normalized polarizability of the inclusion [64], viz.,

α = 3
ε1 − εhost

ε1 + 2εhost
(7)

Its form reveals an interesting property, the field enhancement around the value ε1 = −2εhost,
known as polarization enhancement of Fröhlich frequency [65,66]. A very informative section can be
found in Bohren and Huffman (in [19], Section 12.1). Actually, the general rule describing the resonant
condition of each n-th multipole term, i.e., ε1 = −2εhost (dipole), ε1 = − 3

2 εhost (quadrupole), etc., reads

ε1 = −n + 1
n

εhost (8)

Figure 4 illustrates the scattering efficiency of an extremely small sphere (x = 0.01), where two
main plasmonic resonances are visible. The position of these resonances is described by the condition
found in Equation (8).
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Figure 4. The total scattering efficiency of a deeply subwavelength sphere (x = 0.01) in the plasmonic
region. One main electric dipole resonance is observed at −2, while a second ultra-sharp resonance
at −1.5. The field distribution for the dipolar resonance is characterized by a dipole-like external
field, with a constant field at the inside domain of the sphere. This resonance can be seen in Figure 2
(inset picture).
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Assuming an ideal lossless Drude-like material, i.e., ε(ω) = ε∞ −
ω2

p
ω2 , the resonant condition of a

solid sphere is met when

ω2
− =

ω2
p

ε∞ + 2εhost
(9)

often also called the symmetric (bonding) resonance of a sphere [1]. A realistic Drude-like material

includes also an imaginary damping term, i.e., ε1(ω) = ε∞ −
ω2

p
ω2+iγω

[50,51]. This model gives the
free-electron description inside metals, such as gold or silver [67], and it is extensively used for the
analysis of plasmonic resonances. For this type of materials, negative values for the real part of the
permittivity occur. Hence, the above plasmonic resonance can be captured by the simple electrostatic
model presented above. A very important conclusion is that these resonances can in principle occur
even for deeply subwavelength sizes of the scatterer. This is the reason why plasmonic resonances
are particularly attractive for the localization of energy even far below the diffraction limit [50].
Note that the resonant properties are here studied as a function of the permittivity; for the response of
a sphere comprising a realistic material model, such as Au or Ag, see, for example, [6,14,67], and the
references therein.

The polarizability of a complementary structure, i.e., a spherical cavity of permittivity εhost
surrounded by a material of ε1 permittivity, occurs by the mutual exchange between εhost ↔ ε1 on
Equation (5). As a result, the resonant condition is ε1 = − εhost

2 , or

ω2
+ =

2ω2
p

2ε∞ + εhost
(10)

known also as the antisymmetric (antibonding) resonance [1]. It is interesting to note that all plasmonic
resonances occur at the negative permittivity range, i.e., a necessary condition for the existence of such
resonances [68,69].

The combination of a solid sphere and spherical cavity naturally delivers the case of a core–shell
sphere, as depicted in Figure 5. Following a similar electrostatic analysis as before (see for example [70,71])
the polarizability of a core–shell spherical inclusion reads

B0 =
Cε1(ω)− εhost
Cε1(ω) + 2εhost

r3
1E0 (11)

where
C = −2 + 3

1
1− ε2−ε1

ε2+2ε1
η3

(12)

where η = r2
r1

is the radius ratio. The coefficient C is a function of a the term ε2−ε1
ε2+2ε1

η3, resembling
the polarizability of a solid sphere of permittivity ε2 (core material) immersed into a host medium of
permittivity ε1 (shell material).

This formula suggests the appearance of one additional pole and the creation of a zero to the
overall system response, directly influenced by the volume ratio between the two regions. In Figure 6,
we can observe these effects for both thick (η = 0.1) and thin (η = 0.9) shells. The field distributions
for both symmetric and antisymmetric resonances are presented, illustrating the main character of
the resonances. Obviously, the case ε1 = ε2 leads to C = 1, collapsing to the homogeneous case of
Equation (5). A complete discussion regarding the pole conditions with respect to the core and host
medium can be found in [72].
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Figure 5. Schematic representation of a core–shell sphere subject to a electrostatic field embedded in a
host medium. Region 1 represents the shell region, while region 2 represents the core.
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Figure 6. Electric and magnetic field distribution (amplitude) of the symmetric (top) and antisymmetric
(bottom) plasmonic resonances of a very small (x = 0.01) core–shell sphere occurring for η = 0.1 (left)
and η = 0.9 (right) radius ratio, respectively. The inset figures depict the scattering spectrum (extinction
efficiency) for (a) η = 0.1 and (b) for η = 0.9. The center pictures illustrate the field distribution (electric
and magnetic) of the plasmonic resonance for a solid sphere for comparison.
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Following the same, Drude-like philosophy as before (assuming ε2 = 1), the case of a spherical
hollow core–shell structure, after some calculations, gives the following two resonant conditions

ω2
± =

ω2
p

2

[
1± 1

3

√
1 + 8η3

]
(13)

corresponding to the first two, symmetric and antisymmetric dipolar-like resonances of a hollow
core–shell sphere. A generalization that includes the higher order multipoles can be found in [73]

ω2
n± =

ω2
p

2

[
1± 1

2n + 1

√
1 + 4n (n + 1) η2n+1

]
(14)

where ω2
n+ and ω2

n− is the symmetric and antisymmetric resonances for a given background frequency
(plasma frequency) ωp and a given multipole, i.e., dipole (n = 1), quadrupole (n = 2) and so
on [74]. Note that the multilayered case can be generalized in an analogous manner, as can be readily
found in [70].

It is interesting to observe that Equation (13) reduces to Equation (9) for a solid sphere and
Equation (10) for a spherical cavity. Therefore, the existence of symmetric and antisymmetric
resonances is attributed to a hybridization scheme between the plasmonic resonances appearing
in both structures, the solid sphere and the spherical cavity. A complete physical interpretation behind
this hybridization model can be found in a series of articles by Prodan, Nordlander, and others [1,75,76].
It is remarkable to notice that the plasmonic resonances are extensively useful for a wide range of
applications, such as sensors [34], photovoltaics [2], and more exotic electro-optical applications [29]
where localization of energy is required beyond the diffraction limit.

4. Taylor and Padé Expansions of Mie Coefficients

It is rather obvious that the aforementioned straightforward but complicated Mie coefficients
(Equations (1) and (2)) cannot actually offer direct physical interpretation on the studied problem,
mostly due to their mathematical form. Several remedies have been proposed based on approximative
methods, such as the Taylor expansion of the Mie coefficients [53,60,71,77–81], the Weierstrass
approximation [82], and the Padé approximation [63,83–85]. The main objective of this section is
to review some simple, yet intuitive, expressions regarding the dependencies governing the behavior
of the Mie coefficients by expanding both an and bn in a Taylor (Mie–Taylor) and Padé (Mie–Padé)
manner. A short analysis for the position and width of the resonances, as well as the depolarization
and radiative damping processes will be given as a function of the size parameter for both plasmonic
and dielectric resonances.

We begin by approximating Equations (1) and (2) with a Taylor series expansion for small x, i.e.,

aT
1 ≈ −i

2
3

ε1 − 1
ε1 + 2

x3 − i
1
5

ε2
1(1 + µ1)− 6ε1 + 4

(ε1 + 2)2 x5 + O[x]6 (15)

bT
1 ≈ −i

2
3

µ1 − 1
µ1 + 2

x3 − i
1
5

µ2
1(1 + ε1)− 6µ1 + 4

(µ1 + 2)2 x5 + O[x]6 (16)

A similar type of expressions can be readily found in many textbooks [16,18,19], and are valid for
a general homogeneous sphere possessing both magnetic and dielectric properties. In the case of a
magnetically inert (µ1 = 1) sphere, the above terms reduce to a much simpler form, viz.,

aT
1 ≈ −i

2
3

ε1 − 1
ε1 + 2

x3 − i
2
5
(ε1 − 2)(ε1 − 1)

(ε1 + 2)2 x5 + O[x]6 (17)

bT
1 ≈ −i

1
45

(ε1 − 1)x5 + O[x]7 (18)
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The first term of the electric Mie coefficient represents the extracted polarizability for the
electrostatic problem. Therefore, by truncating the orders higher than x3, we deduce that

aT
1 = −i

2
9

αx3 (19)

implying that the first Mie coefficient contains the same polarization enhancing character as the
electrostatic polarizability.

Although the Taylor expansion delivers a straightforward connection with the electrostatic
problem, and therefore with the plasmonic enhancement, it offers very little insight regarding the
dielectric resonances. This can be explained by the fact that the dielectric resonances asymptotically
occur at extremely large permittivity contrast values for small spheres, as can be seen in Figure 2.
Likewise, Equation (18) does not capture any resonances (poles of a system). Therefore, an alternative
approximation stratagem is necessary to gain these pieces of information. The form of an and bn

suggests the usage of a rational approximation capable in describing all features of the modeled system
(zeros and poles). Such expansions, fulfilling all the above requirements, are the Padé approximants.

The Padé approximants are a special type of rational approximation constructed by expressing
a function in a rational form and expanding each of the rational terms in power series [86,87]. Here,
the Padé expansion that corresponds to the fractional expression of two polynomials P(x)

Q(x) of order xL

and xM, is denoted as [L/M], following the notation of [86]. As an example, a set of Padé approximants
for the spherical Bessel and Hankel functions can be found in Table A1.

Although the application of the Padé approximants for scattering problems was previously
utilized for the Rayleigh regime [83,84], recent studies shed light on the scattering phenomena
in a systematic way, especially with respect to the resonant conditions and other enabled
mechanisms [63,72,85]. In this section, we briefly summarize references [63,72,85] and the results
found therein.

As a first example, the [3/3] Padé expansion for a1 reads

aP
1 ≈ −i

2
3

ε1 − 1
ε1 + 2

x3(
1− 3

5
ε1−2
ε1+2 x2 − i 2

3
ε1−1
ε1+2 x3

) (20)

We note that Equation (20) can be decomposed into three distinctive parts. First, the ε1−1
ε1+2 is the

normalized static polarizability term, similarly with Equation (15). This term contributes a system pole
at ε1 = −2 only for the static case [88]. The second part is ε1−2

ε1+2 x2 that introduces the size effects over the
coefficient and to the overall scattering procedure, and thus it is recognized as the dynamic depolarization
term [89]. Lastly, the imaginary term of order x3 in the denominator is recognized as the radiative
damping part. For the lossless case (ε′′ = 0), this part prevents the coefficient from infinite growth and
represents the intrinsic radiative damping/reaction mechanism of the scattering process [46,49,90].
Ignoring the dynamic depolarization term in Equation (20) and utilizing the expression (19) we
observe that

a[3/3]
1 =

aT
1

1 + aT
1
=
−i 2

9 αx3

1− i 2
9 αx3

(21)

This is an equivalent expression of the polarizability model that includes the induced
radiative reaction on the single subwalength scatterer, as has been repeatedly exposed by many
workers [6,46,89–94].

Expression (20) exhibits a pole (resonance) at ε1 = −2 15i+9ix2−5x3

15i−9ix2+10x3 , which gives, for small x

ε1 = −2− 12
5

x2(1 +
3
5

x2)− 2ix3(1 +
7
5

x2) + ... (22)
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As before, the resonant condition contains a static term (−2), a dynamic depolarization term
(x2), and a radiative damping imaginary term (x3). Note that, for an open resonator, the resonant
frequencies should be generally complex, known as natural frequencies [16]. Again, the real terms of
Equation (22) represent the shift that the position of the resonance exhibits with respect to the size.
However, the imaginary term dictates also both the width of the resonance and the amount of losses
required in order to maximize the absorption. The latter can be seen as a form of a conjugate matching
between the incident wave and the scatterer [20,63,95–97],

Let us now apply the same Padé stratagem for the magnetic coefficient bn. The [5/5] Padé
expansion of the first magnetic dipole coefficient b1 reads

bP
1 ≈ −i

ε1 − 1
45

x5(
1 + 1

21 (5− 2ε1)x2 + [x4]− i 1
45 (ε1 − 1)x5

) (23)

with the truncated term being

[x4] = −
ε2

1 + 100ε1 − 125
2205

x4 (24)

Interestingly, expression (23) gives a resonant condition that yields to the value

ε1 = −2.07 +
10.02

x2 + 1.42x2 − 2ix
(

1.06− 0.77x2
)

(25)

where the accuracy was kept up to the second decimal. The condition (25) predicts, in contrast
to the Taylor–Mie example, a pole for the magnetic dipole coefficients, suggesting a clear intuitive
picture regarding the nature of the magnetic resonances enabled on a dielectric sphere. First, the pole
condition in Equation (25) suggests an inverse square dependence, showing that the magnetic
resonance for small spheres can be reached only for large contrast materials, making the observation
of this kind of resonances for very small spheres practically impossible. Secondly, a constant term
appears, regulating slightly the real part of the pole condition. Lastly, the radiative damping process
(imaginary part) of a magnetic dipole does not follow the same volume dependence (x3) observed in
the previous electric dipole case (Equation (22)), but rather a linear x dependence [85].

At this point, it is obvious that the Padé–Mie approximants of small order give information
regarding the plasmonic and dielectric magnetic resonances. However they do not expose much
of information about the third type of resonance, associated with the dielectric electric multipoles.
Intuitively, Padé approximants of higher order can expose additional poles. Therefore, we next evaluate
higher order approximants for a1. Note that the Padé expressions of these expansions are lengthy, and
full expansions will be omitted.

For instance, the [7/2] expansion of the a1 coefficient gives in total four poles, one corresponding
to the plasmonic case, two non-observable double complex roots, and a fourth yielding the
following expression

ε
[7/2]
1 = −14.5 +

22.5
x2 + i

77.778
x

+ ... (26)

where the superscript indicates the order of the used Padé approximant.
This first pole condition demonstrates the same inverse square size dependence observed in

Equation (25). Here, the radiative damping term is extremely large, an indication that a more accurate,
higher order expansion is needed. To do so we increase the order of the numerator, keeping the
denominator order as low as possible. By this, straightforward, and numerically convenient heuristic
method, we are able to identify more accurately any of the pole conditions. After several iterations,
the [19/2] Padé expansion gives a pole at

ε
[19/2]
1 = −1.99546 +

20.193
x2 − 2.05137x2 + i0.0241962x− i1.91773x3 + ... (27)
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5. Plasmonic and Dielectric Resonances: Summary

We conclude the analysis of Mie coefficients by introducing a set of general rules regarding
the pole conditions of all three type of resonances and summarizing their particular characteristics.
After some extensive heuristic calculations using high order Padé expansion, a pattern can be seen for
all three resonances. This general pattern can be found in Table 1, where formulas up to the first five
(n = 1, 2, 3, 4, 5) magnetic bn coefficients, and the first four electric an coefficients for the dielectric case
with parametric values can be found by combining the values found in Table 2.

Table 1. Rules of the resonances on a homogeneous sphere for n = 1, 2, 3, ....

εbn = − 2
2n−1 +

( cn
x
)2 − i 2

[(2n−1)!!]2
x2n−1

εd
an = − 2

n +
( cn+1

x
)2 − i 2

[n(2n−1)!!]2
x2n+1

ε
p
an = −n+1

n + 2(2n+1)(n+1)
n2(2n−1)(2n+3)x2 − i n+1

[n(2n−1)!!]2
x2n+1

Table 2. Values of uses parameters for the bn and an pole resonances.

n 1 2 3 4 5
cn π 4.4934 5.7634 6.9879 8.1428

The above generalized conditions give the value of the complex permittivity value required for the
system to resonate. These expressions can be readily used as rule-of-thumb design equations. The pole
conditions of the electric resonances, found in Table 1, reveal a similar but not identical imaginary
part; the a1 (dipole resonance) exhibits the same amplitude of the x3 term compared to the plasmonic
case. This difference states that the behavior of the electric resonances in the plasmonic and dielectric
region is close but not completely identical. Similarly, the bn coefficients posses a different radiative
damping term with respect to the electric ones both in amplitude and in the order of x. Note that
the cn coefficients correspond to the first root of the n-th spherical Bessel function of the first kind
(jn(cn) = 0). The dots in Table 2 denote that the higher order tn values can be extracted in a similar
way for resonances above n = 4.

A small homogeneous sphere may exhibit a series of resonances that correspond to the
maximization of each of the Mie coefficients. Figures 2 and 3 revealed the existence of electric and
magnetic multipole resonances as a function of both permittivity and size parameter. One distinctive
category of resonances are the plasmonic resonances; these resonances can occur in deeply
subwavelength spheres exposing an electric multipole character [52]. Increasing either the size or
the material contrast of the scatterer, a second type of resonances occur, i.e., the dielectric resonances,
of either magnetic or electric multipole character. Note that the electric resonances are resonances
due to the an Mie coefficient, siblings to the plasmonic cases, occurring however at a different
permittivity range.

Therefore an obvious question appears: do the electric multipole resonances exhibit any significant
differences on their field distributions? One way to approach this question is by exposing the electric
field distribution near and inside the sphere. In particular, the amplitude of the scattered field for the
first two plasmonic (Figure 7a,b and dielectric Figure 7c,d) electric dipole and quadrupole resonances
for a relatively large sphere (x = 0.75) as can be seen in Figure 7. One observes that although the
external (scattered) field is identical, the inner field distributions reveals difference in the origin of these
resonances. The main differences lie in the fact that the plasmonic resonances exhibit a rather uniform
internal field distribution, while their dielectric counterparts exhibit a spatial variation; dielectric
resonances are effectively large, especially in the inner domain, due to the high permittivity contrast,
while the same does not hold for the plasmonic case.
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(a) Plasmonic electric dipole

(b) Plasmonic electric quadrupole

(c) Dielectric electric dipole

(d) Dielectric electric quadrupole

Figure 7. The amplitude of the scattered electric field distribution for a sphere of x = 0.75 at:
(a) ε1 ≈ −3.5; (b) ε1 ≈ −1.754; (c) ε1 ≈ 32.9; and (d) ε1 ≈ 57.93. These resonances correspond to
the first two plasmonic and dielectric resonances, i.e., (a,c) dipole and (b,d) quadrupole, respectively.

6. Directional Scattering Characteristics: Forward and Backscattering Conditions

The above discussion allows us to extract information about the behavior of the Mie coefficients.
To study the directive nature of the scattering process one should realize that the Mie coefficients
represent the amplitudes of the secondary (scattered) fields produced by the sphere under a plane
wave illumination. This scattered field is decomposed in a set of spherical multipole harmonics,
each of whom contributing to the overall scattering process [16,19]. Different amplitudes result in
different multipole contributions, thus leading to variations in the scattering patterns. Understanding
these scattering characteristics can lead to the actual control of the scattered radiation; this is a
classical but still interesting research challenge for the control of electromagnetic radiation by a single
scatterer [31,98–101], especially in the realm of modern nanotechnology. The following material was
partially presented in [102] and is reproduced here with permission, IEEE, 2018.

6.1. The Asymmetry Factor

An available figure of merit that quantifies the directivity of scattering process is the asymmetry
factor. The asymmetry factor is the ratio of the weighted scattering cross section over the total scattering
cross section [19] and can be calculated in terms of the electric and magnetic coefficients, an and bn, as

g = Qsca < cos θ >=
4
x2

(
∑
n

n(n + 2)
n + 1

<
(
ana∗n+1 + bnb∗n+1

)
+ ∑

n

2n + 1
n(n + 1)

< (anb∗n)

)
(28)

where the Bohren–Huffman notation is used for the averaged cosine [19].
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Physically, this figure quantifies the direction of the scatterer power. For example, for values close
to g/Qsca = 1, all the energy is forward directed/scatterer, while g/Qsca = −1 is the backscattering
case. The g = 0 case denotes a balance between the forward and backward direction, hence a
dipole-like radiation. Actually, for the last case, the scatterer possesses a “symmetric” radiation
pattern, i.e., the dipole pattern [19]. In Figure 8, we can see the normalized asymmetry factor g/Qsca

is as a function of sphere’s permittivity (assuming no losses) and the size parameter. As we can see,
a very vibrant pattern reveals the existence of peaks and valleys of forward and backscattering in the
whole spectrum.

Figure 8. The normalized asymmetry factor, g
Qsca

, as a function of sphere’s permittivity and the size
parameter. Note the existence of peaks and valleys, which is a direct indication of the interference of
resonant multipoles in the studied spectrum.

Let us now analyze the behavior of the asymmetry factor as can be seen in Equation (28).
The multipole coefficients can be written in phasor notation, i.e., an = |an| ejϕn and bn = |bn| ejψn ,
respectively. First, we assume the case of a very small plasmonic scatterer, where the magnetic
multipole terms are bn ≈ 0. It is obvious that the only the electric mulipole terms survive and the
asymmetry factor becomes

g =
4
x2

(
∑
n

n(n + 2)
n + 1

|an| |an+1| cos(ϕn − ϕn+1)

)
(29)

having the following special cases : (a) maximum forward scattering if ϕn − ϕn+1 = 2kπ, k = 0, 1, ...,
(b) maximum backward scattering if ϕn − ϕn+1 = (2k + 1)π, k = 0, 1, ..., and (c) dipole-like scattering
if ϕn − ϕn+1 = l π

2 , l = 1, 2, .... The same results hold also for the case of a magnetic sphere where
an ≈ 0. Alternatively, a forward or backscattering pattern can happen by the constructive (destructive)
interference of two consecutive (or any linear combination) of multipole resonances.

However, the second sum of Equation (28) reveals that the asymmetry factor can be also controlled
by the interaction of between both electric and magnetic multipole terms. For example, assume the
case where only an electric and a magnetic dipole are enabled. In this case, the asymmetry factor reads

g =
6
x2 |a1| |b1| cos(ϕ1 − ψ1) (30)
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leading to a rather important result, first presented in [103]. We summarize the following three
cases where: (a) maximum forward scattering if ϕ1 − ψ1 = 2kπ, k = 0, 1, ..., (b) maximum backward
scattering ϕ1 − ψ1 = (2k + 1)π, k = 0, 1, ..., and (c) dipole-like scattering if ϕ1 − ψ1 = l π

2 , l = 1, 2, ....
For instance, the asymmetry factor of a small sphere (x = 0.5) is illustrated in Figure 9, where the

real and imaginary values of the complex a1 and b1 terms are also plotted. It is clear that a maximum
forward scattering occurs for the case where the imaginary terms are equal implying a zero phase
difference between the coefficients. Similarly, the maximum backscattering happens at the position
where the imaginary parts are equal but with different signs. Interestingly, the lineshape of the b1

coefficient exhibits a Lorentzian-like distribution, as seen in Figure 9. The asymmetry factor exhibits a
Fano-like pattern, occurring by the interference of a1 and b1 distributions [21].

0 10 20 30 40 50 60

-0.5

0

0.5

1

Figure 9. The normalized asymmetry factor for the case of a lossless sphere of size x = 0.5.
The maximum peak (forward scattering) occurs at εMie

F = 30.06 and the minimum valley (maximum
backscattering) at εMie

B = 49.02.

6.2. Directive Scattering Conditions for Dielectric Resonances

The asymmetry factor gives a complete picture about the underlying physics for the directional
scattering characteristics. Since an and bn are complex-valued in general, it is important to explore for
which values of an and bn the described scattering conditions might hold. A more practical form of the
above conditions can be extracted if we re-write the forward and backward scattering efficiencies in
the following manner [18,21],

QB =
1
x2

∣∣∣∣∣∑n
(2n + 1) (−1)n (an − bn)

∣∣∣∣∣
2

(31)

and

QF =
1
x2

∣∣∣∣∣∑n
(2n + 1) (an + bn)

∣∣∣∣∣
2

(32)

A close observation of the above equations reveals that QB and QF can be minimized for certain
an and bn combinations. For the case of the first dipole terms, i.e., a1 and b1, the following conditions
can be satisfied

KF = a1 − b1 = 0, for maximum forward scattering (33)

and
KB = a1 + b1 = 0, for maximum backward scattering (34)
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commonly recognized as the first and second Kerker conditions [103]. However, these are not the only
available conditions, e.g., a minimum backscattering can be also obtained when 3a1 − 5a2 = 0. Here,
we will concentrate only on the case where the first electric and magnetic dipole interfere accordingly,
producing maximum forward or backward scattering for an dielectric sphere. To do so we need to
utilize the aforementioned Padé–Mie heuristic method and apply it to both conditions KF and KB.

Indeed, after some calculations (that are here omitted), the Kerker conditions are satisfied for

εF ≈
(

2.7437
x

)2
(35)

and

εB ≈ −8.766 +
(

3.7263
x

)2
(36)

These expressions were extracted using a [5/25] Padé expansion of Equations (33) and (34),
respectively.

As an illustrative example, we evaluated the required permittivities for maximum forward and
backscattering of an x = 0.5 dielectric (lossless) sphere. In this case, Equations (35) and (36) predict
resonant maxima at εF = 30.11 and εB = 46.78, respectively. A comparison with the the actual values,
i.e., εMie

F = 30.06 and εMie
B = 49.02 (see Figure 9), gives a relative error of 0.2% and 4.5%, respectively.

An easy mnemonic rule can be found for the Equation (35) since Euler number is e ≈ 2.718281.
Therefore , Equation (35) recasts to the simpler approximative form

εF ≈
( e

x

)2
(37)

Finally, we present the radiation patterns and surface field distributions for both cases,
as illustrated in Figure 10. The surface distribution agrees perfectly with the physical picture;
the forward scattering pattern is created by two, spatially aligned dipoles, and the maximum scattering
is a result of two perpendicular ones.

0 20 40 60 80 100 120 140 160 180

-70

-60

-50

-40

-30

-20 E plane

H plane

(b) (c)

(a)

degrees of angle
0 20 40 60 80 100 120 140 160 180

-35

-30

-25

-20

E plane

H plane

(a)

(b)(c)

degrees of angle

Figure 10. The radiation and surface field patterns of maximum forward scattering (left set of images)
and maximum backscattering (right set of images). Left: The central subfigure illustrates the far field
radiation pattern (in dB) of the maximum forward scattering for both perpendicular planes, E and H,
spanning between 0 degrees (backward scattering direction) to 180 degrees of angle (forward scattering
direction). The inset subfigures depict: (a) 3D far-field pattern; (b) the surface electric field; and (c) the
tangential magnetic field. Right: Similarly, the backscattering radiation pattern, i.e.,: (a) 3D far-field
pattern; (b) the surface electric field; and (c) the tangential magnetic field. Note the differences in
direction of the radiation patterns and the differences in the orientation of the magnetic field.
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At this point, a couple of general conclusions can be drawn. First, Equations (35) and (36) exhibit
an inverse-square dependence with respect to the size parameter. This is can be intuitively explained
since a similar dependence has been found either for the magnetic multipoles (Table 1) or for the
electric multipole terms. For a given material dispersion, e.g., Drude-like materials, the obtained
conditions can be used for predicting the optimum size for desired directive scattering. This fact can
lead to inverse material engineering philosophies, where the material dispersion will be adjusted
following the presented forward and backscattering conditions.

Alternatively, Equations (35) and (36) provide a very simple and intuitive rule for the design of
direction selective scattering sources, recently denoted as Huygens sources [4,100,104–109]. A potential
generalization of the above formulas can be done if we assume an arbitrary-shaped dielectric scatterer,
exhibiting its first electric and magnetic resonances. The scattered field can be decomposed in a
set of spherical multipole harmonics [49], and hence the above formulas could be used for a first,
rough estimation of the positions of the forward and backscattering maxima.

7. Summary

In this article, we have reviewed some of the main characteristics of the resonant behavior of a
small sphere. The results are extracted based to the analysis of the Mie coefficients, representing the
amplitude of the scattered fields. Three different types of resonances discussed, i.e., the plasmonic
electric, dielectric magnetic, and dielectric electric multipole resonances. A connection with the
corresponding electrostatic problem (Rayleigh) was described, where the identification of the plasmonic
resonances is possible, as a function of the permittivity.

The same electrostatic picture emerges through the Taylor expansion of the Mie coefficients.
The usage of a recently introduced heuristic Padé–Mie method for the analysis of the resonant
characteristics of small spheres was given. The main focus were dielectric spheres for which both
electric and magnetic dipole resonances occur. This Mie–Padé method allows us to draw a unified
picture for both plasmonic (electrostatic) and dielectric resonances and their resonant conditions
Additionally, the same heuristic method has been used for the generalization of the Kerker conditions
for the case of a dielectric sphere, and a set of new maximum scattering conditions were obtained.
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Appendix A. Simple Padé Expansions of Spherical Bessel, Hankel,
and Riccati–Bessel/Hankel Functions

In this section we give the simple Padé expansions of some necessary functions, such as the
spherical Bessel functions and their derivatives. The terms found in Table A1 can be readily used for a
simple estimation of the a1 and b1 coefficients.

Alternative series expansions for the same functions can be found in classical text-books
(for example in ([16] Ch.7.4) and ([49] (Ch.9)). In these expansion at least one pole and one zero is
visible. In addition, similar expressions were given by Wiscombe [60] as a computationally efficient
way of evaluating the Mie coefficients for small size parameters. Note that the spherical Bessel and
Riccati–Bessel functions are purely real for the approximated terms, while Hankel and Riccati–Hankel
are complex functions. A physical interpretation can be given to the above expressions, since spherical
Bessel functions are real and resemble a standing wave behavior, while Hankel functions are generally
complex, representing traveling waves [16].
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Table A1. Padé approximants of jn(x) and h(1)n (x) and their derivatives.

j1(x) ≈ x

3
(

1 + 1
10 x2

)
h(1)1 (x) ≈

−i− 2
3 x− i 1

2 x2

x2 − i 2
3 x3

j2(x) ≈ x2

15
(

1 + 1
14 x2

)
h(1)2 (x) ≈

−3i− i x2

2
x3

[xj1(x)]′ ≈ 2x

3
(

1 + 1
5 x2
)

[
xh(1)1 (x)

]′
≈

i + 4
3 x− i x2

2 x2

x2 − i 4
3 x3

[xj2(x)]′ ≈ x2

5
(

1 + 5
42 x2

)
[

xh(1)2 (x)
]′
≈ i

6
x3
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