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Featured Application: The full-process analyzing method for low-velocity impact damage and
residual strength proposed in this paper can be used to simulate the failure and residual strength
after low-velocity impact of stitched composites.

Abstract: The failure and residual strength after low-velocity impact of stitched composites are very
important in their service and maintenance phases. In order to capture the failure and residual
strength more accurately, a full-process numerical analyzing method was developed in this paper.
The full-process numerical analyzing method includes two parts: (1) Part 1 is the progressive
low-velocity impact damage prediction method for stitched composites; (2) Part 2 is the progressive
residual strength prediction method by introducing all types of damage that are caused by the
low-velocity impact as the analysis presuppositions. Subsequently, the failure and residual strength of
G0827/QY9512 stitched composites were simulated by the full-process numerical analyzing method.
When compared with experiments, it is found that: (1) the maximum error of low-velocity impact
damage areas was 17.8%, and their damage modes were similar; (2) the maximum error of residual
strength was 8.9%. At last, the influence rules of stitched density and stitching thread thickness were
analyzed. The simulation results showed that, if there is no suture breakage failure, stitched density
affects the mechanical properties of the stitched composites, while stitching thread thickness has little
effect on it; otherwise, both factors have a significant effect on the mechanical properties.

Keywords: stitched composites; low-velocity impact; residual strength; full-process analysis method;
failure mode

1. Introduction

Stitched composites, which can be fabricated by inserting high-strength threads in through
thickness direction into the preforms prior to resin consolidation process, have been widely used
in various engineering fields, especially in aerospace, marine, motor sport, military, and specialist
construction, due to their excellent impact resistance and compression-after impact strength [1]. By now,
there is a great deal of studies that are related to the mechanical properties of stitched composites,
which are fundamentally important in design phases. Heß proposed a finite element based unit cell
model to simulate the in-plane and out-of-plane properties of the stitched composite laminates [2,3].
Two modes of fracture toughness of laminates stitched with a one-sided stitching technique were
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plain experimentally studied [4]. Yudhanto experimentally studied the damage mechanisms of the
stitched composites, which include tensile and compressive properties [1,5,6]. Vallons investigated
the influence of the stitching pattern on the mechanical properties of glass fiber non-crimp fabric
composites [7].

During their service, it is common that the stitched composite structures subjected to multiple
forms of low-velocity impact loading conditions, such as objects falling down on composites and
a flying fragment with low-velocity impact on composites, which will result in the immeasurable
impact damage inside the material and reduce its service safety. Therefore, the failure and residual
strength after low-velocity impact of stitched composites are very important in their service and
maintenance phases.

During the past several years, there are many studies on the response behavior of the stitched
composites that suffered low-velocity impact. Mei analyzed the effects of stitched density on
low-velocity impact damage of cross-woven carbon fiber reinforced silicon carbide composites
(two-dimensional (2D) C/SiCs) [8]. Ravandi explored the effects of through-the-thickness on the
Mode I inter-laminar fracture toughness and the performance of low-velocity of flax/epoxy composite
laminates [9–11]. Lascoup studied the impact response of the three-dimensional (3D) stitched sandwich
composite [12]. Tan studied the impact damage and subsequent damage propagation problems, and
the effects of stitch density and stitch thread thickness of the stitched composites [13–17]. Mao
experimentally investigated the stitched laminates that were subjected to low-velocity impact and
the consequent compression behaviors [18]. Aktaş studied the impact and post impact behavior of
stitched woven–knit hybrid composites by experiments [19]. Francesconi used a Finite Element model
that was based on the use of progressive damage schemes to simulate the effect of stitching on the
delamination resistance of laminated composites subjected to low-velocity impact [20]. Mao proposed
a 3D dynamic finite-element model to simulate the damage development process and the influence
factors of stitched laminates that were subjected to low-velocity impact [21]. However, the studies on
the residual strength after low-velocity impact of stitched composites are still immature. Normally,
there are three main equivalent methods used to predict the residual strength after low-velocity impact
of composites. The first equivalent method is the softening inclusion method [22], in which the impact
damage is equivalent to softening inclusion before the analysis of residual strength. The second
equivalent method is the sub-layer buckling method [23], in which the impact damage is treated as the
buckling of multiple sub-layers before the analysis of residual strength. The third equivalent method
is the opening equivalence method [24], in which the impact damage is equivalent to the elliptical
orifice panel before the analysis of residual strength. The above three equivalent methods are used
widely due to their simplexes. However, due to the equivalent damage based on simplified hypothesis
being different from the actual damage type and the damage degree of the composite structure after
impact, the accuracy of the residual strength prediction model is affected. In this paper, a full-process
analyzing method for low-velocity impact damage and residual strength was proposed and used to
simulate the failure and residual strength after low-velocity impact of stitched composites.

The remainder of this paper can be summarized, as follows. In Section 2, a full-process numerical
analyzing method for low-velocity impact damage and residual strength of stitched composites was
developed in detail. In Section 3, the full-process numerical analyzing method was used to simulate the
failure and residual strength after low-velocity impact at the different impact energy of G0827/QY9512
stitched composites. In Section 4, the effects of stitched density and stitching thread thickness were
discussed. In Section 5, some key conclusions of this work were summarized.

2. Development of Full-Process Numerical Analyzing Method

In this section, a full-process numerical analyzing method was established, which took the actual
damage situation of the composite structure after impact directly as a prerequisite for predicting
the residual strength after impact. Consequently, this method not only avoided the measurement of
impact-induced damage states but it also improved the accuracy of the residual strength prediction.
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The full-process numerical analyzing method includes two parts: (1) Part 1 is the progressive
low-velocity impact damage prediction method for stitched composites; (2) Part 2 is the progressive
residual strength prediction method by introducing all types of damage caused by the low-velocity
impact as the analysis presuppositions.

2.1. Development of the Progressive Low-Velocity Impact Damage Prediction Method

2.1.1. Transient Stress Analysis

Figure 1 shows the transient analysis model of laminate and punch. At the t moment,
the equilibrium equation can be deduced as:

σt
ij,j = ρt ..

ui + µt .
ui (1)

where, ρt and µt are the density and dynamic friction coefficient of laminate at t moment, respectively.
.
ui and

..
ui are the first and second derivative of the displacement to the time respectively.
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At this moment, boundary conditions of the load are:

(σt
ij)nj − Tt

i = 0 (on Sσ) (2)

where, Sσ represents the stress boundary.
The equivalent integration of the equilibrium equation and the load boundary condition can be

expressed, as follows:∫
V

δui

(
σt

ij,j − ρt ..
ui − µt .

ui

)
dV −

∫
Sσ

δui

(
(σt

ij)nj − Tt
i

)
dS = 0 (3)

As there will be geometric nonlinearity during the deformation of composites under the
low-velocity impact load, strain tensor at t moment can be expressed, as follows:

εt
ij = Bi jUt

j =
1
2

(
ut

i,j + ut
j,i + ut

k,iu
t
k,j

)
(i, j, k = x, y, z) (4)

Decompose the above equation into linear and nonlinear terms

ε = εL + εNL (5)

There is the following relationship of σt
ij and εt

kl at t moment.

σt
ij = Qt−∆t

ijkl εt
kl (6)
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where Qt−∆t
ijkl represents material elasticity matrix at t − ∆t moment, and it can be obtained by

coordinate transformation. [
Qt−∆t

ijkl

]
= [T]

[
Qt−∆t

]
[T]T (7)

Figure 2 shows the included angle θ between the direction of fiber and the global coordinate
system, the transition matrix [T] can be expressed, as follows:

T =



cos2 θ sin2 θ 0 0 0 −2 sin θ cos θ

sin2 θ cos2 θ 0 0 0 2 sin θ cos θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

sin θ cos θ − sin θ cos θ 0 0 0 cos2 θ − sin2 θ


(8)
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According to Equations (3) and (6), the stress equilibrium equation at each moment can finally be
deduced as:∫

V
(δεijQ

t−∆t
ijkl εkl + δuiρ

t ..
ui + δuiµ

t .
ui)dV +

∫
Vn−1

σn−1
ij δ(∆ηij)dV =

∫
Sσ

Tn
i δuidS (9)

where, Tt
i and Tn

i are the surface force at t moment and n-th step in numerical analysis respectively;
δεij represents the strain at t moment; and, ∆ηij is the nonlinear term of strain increment.

Equation (9) can be solved by finite element method (FEM). It should be noted that when damage
occurs, the stiffness matrix of the damaged area should be degraded and updated; the stress and strain
fields will redistribute and need to be recalculated with an updated stiffness matrix.

2.1.2. Failure Criteria of Low-Velocity Impact

In the failure criteria of the elements, six damage modes were considered based on Modified
Hou’s failure criteria [25,26], which are listed in Table 1.
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Table 1. Expression of six damage modes for low-velocity impact.

Damage Modes Expression

Fiber tension failure (FTF)
(

σ1
XT

)2
+
(

σ12
S f

)2
+
(

σ13
S f

)2
≥ 1 (σ1 ≥ 0)

Fiber compression failure (FCF)
(

σ1
XC

)2
+
(

σ12
S f

)2
+
(

σ13
S f

)2
≥ 1 (σ1 < 0)

Matrix tension failure (MTF)
(

σ2
YT

)2
+
(

σ12
S12

)2
+
(

σ23
S23

)2
≥ 1 (σ2 > 0)

Matrix compression failure (MCF) 1
4

(
σ2
S12

)2
+
(

σ12
S12

)2
+ YC

2σ2
4S2

12YC
− σ2

YC
≥ 1 (σ2 < 0)

Delamination failure (DF)


(

σ1+σ2+σ3
XTM

)2
+

τ2
12

S2
12m

+
τ2

13
S2

13m
+

τ2
23

S2
23m
≥ 1 (σ11 + σ22 + σ33 > 0)(

σ1+σ2+σ3
XCM

)2
+

τ2
12

S2
12m

+
τ2

13
S2

13m
+

τ2
23

S2
23m
≥ 1 (σ11 + σ22 + σ33 < 0)

Suture breakage failure (SBF)
(

σst
1

Xst
t

)2
≥ 1

Where σij is the stress component of the volume element in the principal direction; XT, YT, XC,
and YC are the tensile and compressive strengths of the laminate in the longitudinal and transverse
directions, respectively; Sf is the shear strength considering fiber failure; Sij is the shear strength in the
principal direction of the laminate; σst

1 and Xst
t are respectively the tensile stress and strength of the

stitch; XTM and XCM are the tensile and compressive strength of matrix; and, Sijm is the shear strength
of matrix.

2.1.3. Degradation Method of Material Performance of Impact Damage

After an impact failure occurs in a localized area of the laminate, the bearing capacity of the
localized area will be decreased. As an important part of progressive damage analysis, the specific of
partial degradation is to update the material stiffness matrices of the elements according to the types
of failure. According to the References [21,25,27], the material property degradation rules with regard
to different failure modes during the impact numerical analysis process are assumed, as follows:

(1) Fiber tension failure: all the material parameters are reduced to 0.07 of the original;
(2) Fiber compression failure: all the material parameters are reduced to 0.14 of the original;
(3) Matrix tension failure: E2, G12, G13 are reduced to 0.2 of the original;
(4) Matrix compression failure: E2, G12, G13 are reduced to 0.4 of the original;
(5) Delamination failure: E3, G12, G13, ν12, ν13 are reduced to 0.01 of the original; and,
(6) Suture breakage failure: The stiffness of the stitches degenerates to 100 Pa.
Where E2 and E3 are respectively transverse and normal tensile modulus; G12 and G13 are in-plane

and out-plane shear modulus respectively; and, ν12 and ν13 are in-plane and out-plane Poisson’s
ratio, respectively.

Different damage types are allowed to be coupled in the numerical calculation due to the coupling
of it in the actual situation. If there are many kinds of damage in the numerical calculation, the material
coefficient will be degraded correspondingly many times.

2.2. Development of the Progressive Residual Strength Prediction Method

2.2.1. Stress Analysis of Composite of Residual Strength

Consider the composite laminates have been loaded incrementally up to the nth step. By only
considering thermal stress and external load, the equilibrium equation at the current load pn can be
expressed, as follows:

σn
ij,j = 0 (i, j = 1, 2, 3; in Vn−1) (10)
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The force boundary condition can be written, as follows:

(σn
ij,j)n

n
j − Tn

i = 0(on Sσ) (11)

According to the incremental virtual displacement principle, transforming the Equations (10)
and (11) as ∫

Vn−1

σn
ijδ
(
∆εij

)
dV −

∫
Sσ

Tn
i δ(∆ui)dS = 0 (12)

where σn
ij is mechanical stress in each material principal direction at step n, Vn−1 is the configuration

of the body at step n, and ∆εij and ∆ui are the increment of strain and displacement between the
(n − 1)-th and n-th load step, respectively.

The total stresses σn
ij can be expressed by the sum of previous stresses and the stress tensor

increments, as follows:
σn

ij = σn−1
ij + ∆σn

ij (13)

Substituting Equation (13) into Equation (12), the following expression can be obtained:∫
Vn−1

∆σn
ijδ
(
∆εij

)
dV =

∫
Sσ

Tn
i δ(∆ui)dS−

∫
Vn−1

σn−1
ij δ

(
∆εij

)
dV (14)

Moreover, the increment of strain ∆εij in the loading process can be expressed as:

∆εij = ∆eij + ∆ηij, (15)

where ∆eij and ∆ηij are the linear and quadratic term, respectively. Assuming that the increment of the
external load is small enough, the stress-strain relationship between any two adjacent load steps can
be considered linear, i.e.,

∆σn
ij = Qn−1

ijlk ∆εkl (16)

where Qn−1
ijlk is the reduced material stiffness matrix element at step n − 1.

Subsequently, substituting Equations (15) and (16) into Equation (14) and omitting high-order
items, one obtains∫

Vn−1

Qn−1
ijlk ∆εklδ

(
∆eij

)
dV +

∫
Vn−1

σn−1
ij δ

(
∆ηij

)
dV =

∫
Sσ

Tn
i δ(∆ui)dS−

∫
Vn−1

σn−1
ij δ

(
∆eij

)
dV (17)

Since the material properties, Qn−1
ijlk , depend on the current stresses and strains, Equation (17) has

to be solved by a finite element discrete method combined with the Newton–Raphson iteration scheme.
It should be noted that when damage appears, the stiffness matrix of the damaged area should be
degraded and updated; the stress and strain fields will redistribute and need to be recalculated with
the updated stiffness matrix.

2.2.2. Failure Criteria of Residual Strength

The continuous increase of external load leads to gradual expansion of the initial damage, Hashin’s
failure criteria [28] is used to determine different types of damage in this process, as shown in Table 2.
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Table 2. Expression of six damage modes for residual strength.

Damage Modes Expression

Fiber tension failure (FTF)
(

σ1
XT

)2
+ α
(

σ12
S12

)2
+ α
(

σ13
S12

)2
≥ 1 (σ1 > 0)

Fiber compression failure (FCF)
(

σ1
XC

)2
≥ 1 (σ1 < 0)

Matrix tension failure (MTF)
(

σ2
YT

)2
+ α
(

σ12
S12

)2
+
(

σ23
S23

)2
≥ 1 (σ2 > 0)

Matrix compression failure (MCF)
(

σ2
YC

)2
+ α
(

σ12
S12

)2
+
(

σ23
S23

)2
≥ 1 (σ2 < 0)

Delamination failure (DF)


(

σ1+σ2+σ3
XTM

)2
+

τ2
12

S2
12m

+
τ2

13
S2

13m
+

τ2
23

S2
23m
≥ 1 (σ11 + σ22 + σ33 > 0)(

σ1+σ2+σ3
XCM

)2
+

τ2
12

S2
12m

+
τ2

13
S2

13m
+

τ2
23

S2
23m
≥ 1 (σ11 + σ22 + σ33 < 0)

Suture breakage failure (SBF)
(

σst
1

Xst
t

)2
≥ 1

Fiber-matrix shear failure (FMSF)
(

σ1
XC

)2
+ α
(

σ12
S12

)2
+ α
(

σ13
S13

)2
≥ 1

Where α is the contribution factor of shear stress in fiber failure mode, α ∈ (0, 1).

2.2.3. Degradation Method of Material Performance of Residual Strength

In the numerical analysis of residual strength, the mechanical properties of failure elements will
be degraded, which corresponds to the decrease of the bearing capacity of the laminate in the actual
situation. According to the Reference [29], the material property degradation rules with regard to
different failure modes during the residual strength numerical analysis process are assumed, as follows:

(1) Fiber tension failure: all the material parameters are reduced to 0.002 of the original;
(2) Fiber compression failure: all the material parameters are reduced to 0.002 of the original;
(3) Matrix tension failure: E2 is reduced to 0.2 of the original;
(4) Matrix compression failure: E2 is reduced to 0.008 of the original;
(5) Delamination failure: E3, G12, G13, ν12, ν13 are reduced to 0; and,
(6) Suture breakage failure: The stiffness of the stitches degenerates to 100 Pa.
The ultimate failure criterion of composite laminates used in this paper is: when the fiber failure

extends perpendicularly to the load direction to the boundary of the laminate, it is considered that the
whole panel is destroyed.

2.3. Analysis Procedure of Impact Damage and Residual Strength

Based on stress analysis of composite laminate, failure criteria, and the stiffness degradation
model, combined with the finite element method, an integrated finite element model is developed
to simulate low-velocity impact damage and to predict the residual strength of stitched composite
laminates. Figure 3 shows the simulation procedure in detail. In order to conduct failure analysis
based on an element-by-element scheme, the constitutive equations formulated and the failure criteria
and the degradation model were implemented with APDL language.
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3. Application of Full-Process Analyzing Method

In this section, the full-process numerical analyzing method was applied to simulate the failure
and residual strength of G0827/QY9512 stitched composites presented in Reference [18], which was
stitched with Kevlar29 (1500 deniers) and formed by the resin film infusion (RFI) molding process.
The mechanical properties of G0827/QY9512 are listed in Table 3. Modified lock stitches were used
in the 60 mm × 40 mm laminate with stacking sequence of [45/0/-45/90]4s. In Reference [18],
the low-velocity impact resistance and the residual strength of G0827/QY9512 stitched composites
were studied experimentally.

Table 3. The mechanical properties of G0827/QY9512 stitched composite laminate.

Stitched
composite
laminate

E11 (GPa) E22 (GPa) E33 (GPa) G12 (GPa) ν12 ρ (kg/m3)

128 9.93 9.93 5.53 0.33 1530

XT (MPa) XC (MPa) YT (MPa) YC (MPa) S12 (MPa)

1740 1175 69 231 106

Suture
E11 (GPa) XT (GPa) ρ (kg/m3)

60 2.9 1440
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3.1. Numerical Simulations of Low-Velocity Impact Behavior

3.1.1. Finite Element Model and Boundary Conditions

Figure 4 shows the finite element model of the composite laminate with a stitched density of
5 mm × 5 mm. In this model, element LINK167 was selected to establish the elements of stitching
threads, element SOLID164 was selected to establish the elements of composite laminates and interfaces.
The thickness of interfaces was only one-tenth of the layers to the laminate, which was about 0.0167 mm.
The total number of elements was 81,018. The properties of interface elements were the same as the
actual laminate elements, but the interface elements were only used to judge the delamination damage.
Moreover, rigid-body balls were used to simulate experimental punch and counterweights. The type
of contact between the punch and the stitched laminate was defined as ASTS, namely the automatic
face-to-face contact. The degree of freedom of the joints around the laminate should be limited.
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Figure 4. Finite element model of the stitched laminate.

3.1.2. Numerical Simulation Results

Table 4 shows the numerical simulation results and the errors of the damage projection areas
between experiments [18] and simulation results after the impact energies of 11.0 J, 16.8 J, 23.4 J. As seen
from Table 4, the maximum error is 17.8%. Figure 5 shows the progressive damage process of the
laminate and the projection diagrams of experimental and simulation damage after the impact of
16.8 J. As can be seen from it, at 0.1 ms, the punch contacted the laminate, but the laminate was not
damaged; at 0.2 ms, the upper layers of the laminate were damaged by the mode of the delamination
failure (DF); at 0.4 ms, the fiber compression failure (FCF) was found on the center of the laminate;
at 0.6 ms, the fiber tension failure (FTF) was found at lower layers of the laminate for the first time; at
0.8 ms, the FTF and FCF were extended, but the DF was not extended; at 1.1 ms, the damage inside
the laminate no longer expanded with the time increase, and the damage area reached the maximum.
The damage modes from the center to the outside are orderly FTF, FCF, and DF. The images that
were obtained by the experiment are similar to the impact damage results that were obtained by the
simulation. Therefore, the simulation results are consistent with the experimental results, which prove
the rationality of the full-process analyzing method that was developed in this paper.

Table 4. Comparison between experiment and simulation for the damage projection area.

Impact Energy (J) Experiment [18] (mm2) Simulation (mm2) Error (%)

11.0 522 477.8 8.5
16.8 770 633.5 17.8
23.4 1415 1241.7 12.3
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Figure 5. Progressive damage process of the laminate and the damage projection diagrams obtained by
experiment [18] and simulation after the impact of 16.8 J. Note: (1) DF: delamination failure; (2) FTF:
fiber tensile failure; (3) FCF: fiber compressive failure; (4) MTF: matrix tensile failure; (5) MCF: matrix
compressive failure; (6) FMSF: fiber-matrix shear failure; and, (7) SBF: suture breakage failure.

Throughout the process of impact, Figure 6 shows the final failure of each layer. When the punch
impacts the laminate, the laminate undergoes concave deformation, which results in the compressive
phenomenon in the upper layers and the tensile phenomenon in the lower layers. Therefore, on the
upper layers of the laminate, the damage modes are mainly the FCF and MCF, but on the lower layers
of the laminate, the damage modes are mainly the FTF and matrix tension failure (MTF). Figure 7
shows the final failure of each interface. The DF is found in every interface of the laminate. From the
view of the damage area of the DF, the distribution of the area shows the shape of a Pyramid, namely,
from the upper layers of the laminate to the lower layers, the damage areas of the DF are changed from
small to large, which means that the effect of compressive stress is greater than that of tensile stress.
Moreover, the SBF cannot be found in the whole process of the impact.
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3.2. Numerical Simulations of Residual Strength

3.2.1. Finite Element Model and Boundary Conditions

Figure 8 shows the finite element model of the stitched laminate for the analysis of residual
strength. In this model, element LINK180 was selected to establish the elements of stitching threads
and element SOLID185 was selected to establish the elements of composite laminates and interfaces.
The total number of elements was 81,081. Moreover, the impact damage results were imported into
the model as its initial conditions. The compressive load is applied to the model as an initial load of
180 MPa with an increase of 5 MPa for each step. If there is any damage, then the corresponding load
will be maintained and the degradation of stiffness matrix will be executed for 20 cycles. If there is no
damage, the load will continue to increase until the damage extends to the boundary of the laminate.
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3.2.2. Numerical Simulation Results

Table 5 shows the comparisons of residual strengths between experiments [18] and numerical
simulation results after the impacts of 11.0 J, 16.8 J, and 23.4 J. The maximum error for residual strength
between experiment and simulation is 8.9%, which indicates the accuracy of the simulation results and
the rationality of the full-process analysis method for residual strength.

Table 5. Comparison between the experiment and simulation for residual strength.

Impact Energy (J) Experiment [18] (MPa) Simulation (MPa) Error (%)

11.0 311 330 6.1
16.8 301 315 4.65
23.4 280 255 −8.9

Figure 9 shows progressive damage process of the laminate after impact of 16.8 J. At 310 MPa, the
damage modes of the FTF, FCF, and DF are found in the laminate. At 315 MPa, the FMSF and FCF
extend to the boundary, leading to the final failure of the laminate.
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4. Discussion

The parameters of stitched density and stitching thread thickness are two main factors affecting
the mechanical behaviors of stitched composites. In this section, the influence rules of these parameters
are discussed by simulations.

4.1. Effect of Stitched Density

In order to analyze the effect of stitched density on the failure and residual strengths of the
laminates after impact, laminates with three stitched densities, namely 2 mm × 2 mm, 5 mm × 5 mm,
and 10 mm × 10 mm (2 × 2, 5 × 5 and 10 × 10 laminates), and the stitching thread thickness of 1500d,
were investigated after the impact of 10 J.

Figure 10 shows the full-processes of low-velocity impact damage and residual strength for
stitched composite laminates with different stitched densities. In the simulation process of low-velocity
impact damage, four kinds of damage modes, i.e., FTF, MTF, FCF, and DF, were found. The rules of
the damage expansion are similar, e.g., the DF occurs firstly, then the FCF occurs and the FTF occurs at
last. The impact time of the stitched (2 × 2, 5 × 5 and 10 × 10) composite laminates are 1.3 ms, 1.4 ms
and 1.4 ms, respectively. This change of the impact time is mainly caused by the difference of stiffness
between laminates that are associated with the different stitched densities. The initial impact damage
of 2 × 2 laminate is slightly larger than others, which means that there is no obvious association
between the initial impact damage and the final impact damage. Compared with the 10 × 10 laminate,
the final impact damage areas for the 5 × 5 and 2 × 2 laminates are reduced by about 10% and 28.1%,
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respectively. However, no matter how large the stitched density is, the shapes of the final damaged
areas are always the spindle-shaped.

In the simulation processes of residual strength, stitched density has a significant effect on
the damage mode. The stitched composites with different stitched densities have different failure
modes. For example, the FMSF and MCF are found in the 10 × 10 laminate, whereas the 2 × 2 and
5 × 5 laminates extend the damage with the FTF and FTF+FCF, respectively. Moreover, the greater the
stitched density of the stitched composites, the less the damage mode and the smaller the damaged area
are found in final damage, as shown in Figure 10. When compared with the 10 × 10 laminate, the final
damage area of the 2 × 2 laminate is smaller, and only the FTF mode is found on its boundary, whereas
the damage modes of the FTF, FCF, MTF, and FMSF are found on the boundary of the 10 × 10 laminate.
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Figure 10. Full-process of low-velocity impact damage and residual strength for laminates with
different stitched densities.

As shown in Figure 11, the damage area of the DF is the largest and the area of the FTF is the
smallest. With the increase of the number of layers, the damage area of the MTF decreases firstly and
then increases; and, the FCF occurs in the first four layers and the area of damage shows a tendency
to decrease; the FTF only occurs in the 7th and 8th layers and is not found in the stitched (2 × 2)
composites; the DF occurs in all layers and the damage area increases significantly. It also can be seen
that, the greater the stitched density of the stitched composites, the less the damage mode, the smaller
the damaged area, and the fewer the damaged layers after impact.

Figure 12 shows the predicted residual strengths of the laminates with three stitched densities.
It is observed that stitched density has a significant effect on residual strength after impact. When
compared with the 10 × 10 laminate, the residual strengths for the 5 × 5 and 2 × 2 laminates are
increased by 20% and 30.9%, respectively. This means that the greater the stitched density of the
stitched composites, the greater the residual strength. The experimental data of literature [30] further
confirms this finding.
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4.2. Effect of Stitching Thread Thickness

In order to analyze the effect of stitching thread thickness on failure and the residual strengths of
the stitched composites after impact, the 5 × 5 laminates with three stitching thread thickness, namely
500d, 1500d and 3000d (500d, 1500d, and 3000d laminates), were investigated after the impact of 10 J.
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Figure 13 shows the failure of stitching thread in stitched composites with three different stitching
thread thicknesses after the impact of 10 J. It is observed that the SBF is only found in the 500d stitched
composite, while no SBF occurred in the 1500d and 3000d stitched composites due to the maximum
stresses of stitching elements being lower than the strength of the stitch.

Figure 14 shows the progressive damage processes of stitched composite laminates with different
stitching thread thicknesses after impact of 10 J. Due to the SBF occurring in the 500d laminate, its
damage modes and damage area are significantly different from the 1500d and 3000d laminates.
As shown in Figure 15, the final damage modes and damage areas of the 1500d and 3000d laminates
are similar. However, the final damage area of the 500d laminate is far larger than the other two
laminates and its final damage mode contains a large number of fiber failures (FTF + FCF), especially
given that the FTF is much more serious than the other two. With the increase of the number of layers,
the damage area of the MTF decreases firstly and then increases, the FCF occurs in the first three
layers and the damage area decreases rapidly, the FTF only occurs in the 6th~8th layers and it is rarely
found in the stitched (1500d and 3000d) composites, moreover, the damage area of the DF shows a
significant increase.
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Figure 16 shows the predicted residual strengths of the laminates with three stitching thread
thicknesses. When compared with the 500d laminate, the residual strengths of the 1500d and 3000d
laminates are increased by 43.5% and 47.8%, respectively. It indicates that the greater the stitching
thread thickness of the stitched composites, the greater the residual strength. This is consistent with the
conclusion of literature [30]. However, the gap between the 1500d and 3000d laminates is 3%. It means
that if there is no SBF, the stitching thread thickness will have little effect on the residual strength, but
if it does, there will be a significant effect, which is not reflected in the literature [30].
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5. Conclusions

In this paper, a full-process numerical analyzing method for low-velocity impact damage and
residual strength of stitched composites was proposed and used to simulate the failure and residual
strength of stitched composites in Reference [18]. By using the full-process numerical analyzing
method, the effects of stitched density and stitching thread thickness on the failure and residual
strength of stitched composites were discussed. Some key conclusions of this work can be summarized,
as follows:

(1) The maximum error of low-velocity impact damage areas between the numerical simulation
results and experiments was 17.8%, and the damage projection diagrams between them were similar.
The maximum error of residual strength after impact between the simulation results and experiments
was 8.9%. Therefore, the full-process analyzing method that is developed in this paper is reasonable
and effective.

(2) The greater the stitched density of the stitched composites, the less the damage mode, the
smaller the damaged area, the fewer the damaged layers, and the higher the residual strength.

(3) If there is no SBF, then stitching thread thickness has little effect on the damage mode, damage
area, and residual strength; but if it does, there is a significant effect. The mechanical properties of
stitched composites without SBF are much better than those with SBF.
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Abbreviations and Nomenclature

ρt the density of laminate at t moment
µt the dynamic friction coefficient at t moment
.
ui the first derivative of the displacement to the time
..
ui the second derivative of the displacement to the time
σt

ij the stress at t moment
σn−1

ij the stress in each material principal at (n − 1)th step
σn

ij the stress in each material principal direction at step n
Sσ the stress boundary
Tt

i the surface force at t moment
Tn

i the surface force at n-th step in numerical analysis
δεij the strain at t moment

Qt−∆t
ijkl

material elasticity matrix of the last moment which depends on the current stresses and
strains

∆ηij the nonlinear term of strain increment
pn the load at nth step
∆εij strain increment between step n and step n − 1
∆ui displacement increment between step n and step n − 1
∆eij the linear term of strain increment
Vn−1 the configuration of the body at step n
Qn−1

ijlk the reduced material stiffness matrix element at step n − 1
XT the tensile strength of the laminate in the longitudinal direction
XC the compressive strength of the laminate in the longitudinal direction
YT the tensile strength of the laminate in the transverse direction
YC the compressive strength of the laminate in the transverse direction;
XTM the tensile strength of matrix
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XCM the compressive strength of matrix
Sf the shear strength considering fiber failure
Sij the shear strength in the principal direction of the laminate
Sijm the shear strength of matrix
σst

1 the tensile stress of the stitch
Xst

t the tensile strength of the stitch
Sijm the shear strength of matrix
E2 the transverse tensile modulus
E3 the normal tensile modulus
G12 the in-plane shear modulus
G13 the out-plane shear modulus
ν12 the in-plane Poisson’s ratio
ν13 the out-plane Poisson’s ratio
FTF fiber tension failure
FCF fiber compression failure
MTF matrix tension failure
MCF matrix compression failure
DF delamination failure
SBF suture breakage failure
FMSF fiber-matrix shear failure
RFI resin film infusion
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