
applied  
sciences

Article

Impregnation of Wood with Microencapsulated
Bio-Based Phase Change Materials for High Thermal
Mass Engineered Wood Flooring

Damien Mathis 1,* , Pierre Blanchet 1 , Véronic Landry 1 and Philippe Lagière 2

1 Wood and Forest Science, University Laval, Quebec City, QC G1V 0A6, Canada;
Pierre.blanchet@sbf.ulaval.ca (P.B.); Veronic.landry@sbf.ulaval.ca (V.L.)

2 Engineering and Mechanic Institute, University of Bordeaux, Bordeaux 33076, France;
philippe.lagiere@u-bordeaux.fr

* Correspondence: damien.mathis.1@ulaval.ca; Tel.: +33-768-144-329

Received: 7 December 2018; Accepted: 14 December 2018; Published: 19 December 2018
����������
�������

Featured Application: High thermal mass engineered wood flooring.

Abstract: Wood is a porous material that can be impregnated and have enhanced properties. Two
species of hardwood, red oak (Quercus rubra L.) and sugar maple (Acer saccharum Marsh.), were
impregnated in a reactor with a microencapsulated phase change material. The objective was to
enhance the thermal mass of wood boards used as surface layers for engineered wood flooring
manufacturing. Preliminary experiments were conducted on small samples in order to define suitable
impregnation parameters, based on the Bethell cycle. Thin wood boards were impregnated with a
microencapsulated phase change material dispersed into distilled water. Several cycles of pressure
were applied. Heating storage of the impregnated wood boards was determined using a dynamic
heat flow meter apparatus method. A latent heat storage of 7.6 J/g over 3 ◦C was measured for
impregnated red oak samples. This corresponds to a heat storage enhancement of 77.0%. Sugar maple
was found to be harder to impregnate and thus his thermal enhancement was lower. Impregnated
samples were observed by reflective optical microscopy. Microcapsules were found mainly in the
large vessels of red oak, forming aggregates. Pull-off tests were conducted on varnished samples
to assess the influence of an impregnation on varnish adhesion and no significant influence was
revealed. Engineered wood flooring manufactured with impregnated boards such as characterized in
this study could store solar energy and thus improve buildings energy efficiency. Although wood is a
material with a low-conductivity, the thermal exchange between the PCM and the building air could
be good enough as the microcapsules are positioned in the surface layer. Furthermore, flooring is an
area with frequent sunrays exposure. Such high thermal mass EWF could lead to energy savings and
to an enhancement of occupant’s thermal comfort. This study aimed to characterize the potential of
impregnation with MPCM of two wood species in order to make high thermal mass EWF.

Keywords: PCM; wood flooring; engineered wood flooring; thermal mass; microcapsules

1. Introduction

Wood is a widely used material in several industries such as construction and furniture. Its
renewable nature, ease of transformation, and mechanical properties tend to make it the material of
choice for several architects and designers. As wood is a porous material, it is possible to enhance its
properties by impregnation or by the application of a coating. In recent decades, several treatments
were applied on wood to enhance its durability [1], reduce its flammability [2], or increase its
mechanical properties [3]. Such treatments can be opaque or translucent and can induce physical
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and/or chemical modifications within the wood. Impregnation can be achieved with pressure in a
reactor. Several techniques were developed, such as Lowry, Rüping, or Bethell [4], and consist of
different pressure cycles of pressure and/or vacuum.

Phase change materials (PCMs) are able to store a high amount of latent heat in a small material
volume. Most of the time, this is achieved by a solid/liquid transition. Historically, paraffinic PCMs
have been widely used [5,6]. Recently, multiple studies are focused on organic bio-based PCMs, for
their better fire resistance [7], great chemical stability [8], and possibly low environmental impact [9].
Several studies found out that PCMs can increase the thermal mass of buildings and thus lead to a
higher energy efficiency [10]. During the heating season, such materials are able to store solar energy
within the day. This energy is then released at night, reducing the need of heating [11]. During the
hot season, the PCMs can store the heat overflow and thus reduce the building’s overheating [12].
With proper night conditions, the PCM can solidify and act again the next day. Implementing a PCM
within a building is complex and multiple factors need to be considered, such as the climate, building
architecture, and users’ behavior. A good understanding of the melting and solidification dynamics is
required to predict the PCMs behavior in buildings. Several studies are focusing on this point [13,14].
PCMs integrated in walls have already demonstrated potential benefits through multiple experimental
studies [15,16].

In order to be protected from the environment, PCMs need to be encapsulated. This also
prevent any leakage when the PCM is in the liquid state. There are several ways to protect the
PCM such as macroencapsulation, microencapsulation, or directly by molding a shape-stabilized
material [8]. Microencapsulation has become a common way to protect the PCMs and thus to
incorporate it in various components. Several techniques are used to manufacture microcapsules
such as coacervation [17], interfacial polymerization [18], or spray-drying [19,20]. Capsules have
to be strong enough to sustain the stress that is generated according to the volumetric change
during the phase change process [21]. Urea–formaldehyde (UF) resin, melamine–formaldehyde
(MF) resin, and polymers such as polyurethane (PU) are the most common shell materials for PCM
microencapsulation [22].

There are a few trials of PCM composites using wood as a substrate. Jeong et al., proposed in
2012 to add microencapsulated PCMs (MPCMs) in a wood adhesive to enhance wood flooring thermal
mass [23]. Bonding strength remained good, but thermal mass enhancement was low, due to the small
quantity of MPCMs added in the glue (maximum 10% of the glue mass). In 2016, Guo et al. shaped
wood plastic composites by mixing microcapsules of dodecanol with wood flour and high-density
polyethylene [24]. Their composites have shown a modulus of elasticity between 0.9 and 2.2 GPa, and
20.3 J/g of latent heat. Increasing the ratio of MPCP would reduce the mechanical properties of the
composite. In 2018, Mathis et al. prepared a decorative wood panel loaded with bio-based PCMs
macroencapsulated in a polyethylene bag [25]. They obtained a panel with a maximum heat storage
of 57.1 J/g. In 2016, Li et al., impregnated green fir wood (Pseudotsuga menziesii) with polyethylene
glycol (PEG). PEG was dissolved into water and impregnation was achieved by soaking the samples
into the solution at atmospheric pressure. They obtained a composite with a melting point of 26.74 ◦C
and a latent heat of 73.59 J/g. They applied a surface coating to retain the PCM within the wood and
conducted leaching tests. About 15% of the initial PEG content leached out after being immersed in
water for two weeks [26]. In 2017, Barreneche et al. impregnated wood with paraffinic PCMs RT-21
and RT-27 from Rubitherm® [27]. They measured a latent heat of 20.62 J/g for a weight proportion
of PCM of 29.9%. They applied a polystyrene solution in organic solvent to prevent the composite
from any leakage when the PCM is in the liquid state. Sealing wood as they did can be hazardous
as wood is a material that can undergo dimensional changes. In 2017, Vasco et al., conducted a
kinematic characterization of the pressure-dependent PCM impregnation process for radiata pine
wood samples [28]. They used octadecane, a paraffinic PCM. The impregnation of wood was achieved
without applying any vacuum; the octadecane was forced deep into the wood under high pressure.
They obtained a composite with a final PCM content of maximum 65.5%. Composite stability was not
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assessed. It is highly possible that the PCM will leach out from the composite when in liquid state. In
order to avoid this phenomena, PCM could be microencapsulated before the wood impregnation. Not
any experiment of wood impregnation with PCM microcapsules seems to be referenced in literacy.

Engineered wood flooring (EWF) is a widely used floor covering solution. It can have different
shapes but in most cases EWF is made of two parts: the lamella and the substrate. The substrate role is
to ensure the mechanical strength of the assembly. It is also the thickest part; therefore it is usually
made with a lower cost material than the lamella. The substrate can be made of MDF, HDF, plywood,
particleboard, or solid wood. The lamella is the aesthetic face layer of the wood that is visible when
installed, it is usually a sawn piece of timber. Sometimes a third layer is added; the counterbalancing
layer that will enhance the mechanical properties of the assembly, specifically in order to avoid the
bending. For this article, only the lamella was considered for impregnation, it is made from sawn
timber. Thus, its porous microstructure could make possible the impregnation. Furthermore, it is the
layer facing the interior air of the house, directly receiving the solar radiation for a maximum heat
transfer. As if wood has a low thermal conductivity and can sometimes be considered as an insulation
material, such an assembly with a PCM integrated in the innermost layer of the floor could higher the
floor thermal mass and allow a sufficient thermal exchange.

Within a house, the floor receives a high quantity of solar energy. However, wood is a material
often used as a flooring solution and embodies a limited thermal mass. In 1999, two-thirds of floor
covering made of wood in Europe was EWF [29]. Consequently, impregnating EWF with PCM could
enhance buildings’ thermal mass and lead to energy efficiency and thermal comfort enhancements.
This study aims on assessing the potential of impregnating wood with PCMs in order to make high
thermal mass EWF.

2. Materials and Methods

2.1. Materials

2.1.1. Phase Change Materials

MPCMs Nextek29 were purchased from Microtek (Torrance, CA, USA). Nextek®29 are
microcapsules filled with Puretemp®29 (Puretemp®, Plymouth, MN, USA). Puretemp® PCMs are
USDA certified 100% bio-based produced from agricultural sources. Exact composition is not known
as these products are under patent protection. The shell of the microcapsule is, according to Microtek
specs, a highly cross-linked MF-based resin with exact composition also under patent protection.
Nextek®29 was bought in a wet cake form. It was composed by 69.61% of microcapsules and 30.39%
of water.

2.1.2. EWF Surface Layer

Two wood species were selected, because of their large utilization in North America EWF market:
red oak (Quercus rubra Marsh.) and sugar maple (Acer saccharum L.). Red oak is a porous species with
a 0.52–0.61 green density [30], where sugar maple is a diffuse species with a 0.52 green density [30].
These different wood properties can lead to different impregnation abilities. Wood lamellas were
provided by a wood flooring manufacturer. They were produced using a frame saw, avoiding the need
of sandblasting, and had a thickness of 3.5 ± 0.3 mm.

In practice, pieces of wood composing the EWF can have different widths, depending on the
manufacturer and the customer’s preferences. A thickness of 3.5 mm was chosen as it is a common in
EWF industry for high-end products.
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2.2. Methodology

2.2.1. Wood and MPCM Morphology

The two woods species were characterized by optical microscopy (Leica, Wetzlar, Germany). Wood
slices were cut using a microtome and colored with safranin. Vessels size was measured using the
software Wincell. The diameter of the MPCM was also evaluated by optical microscopy. Microcapsules
were dispersed in water and dropped between two glass lamellas. Mean diameter measurement was
conducted over 288 microcapsules. After impregnation, microcapsules were observed within the wood
by optical reflective microscopy, with an Axio Imager M.2 (Zeiss, Oberkochen, Germany).

2.2.2. Wood Impregnation

Impregnation was achieved using Nektek©29 microcapsules dispersed into distilled water. The
microcapsules were beforehand dispersed by mechanical stirring in water for 30 min at 50 ◦C. Various
microcapsules concentrations were experimented (from 10 to 50 wt.%). Before impregnation, each
wood sample was kept stabilized in a room with a controlled humidity of 42% and a temperature of
20 ◦C. At the conditions the wood theoretically has an equilibrium moisture content of 8%. After each
impregnation, samples were replaced in the same room until constant weight was reached. Even if the
samples were stabilized in the same room before and after impregnation, it is not possible to assess
that they had the same relative humidity at each step. Indeed, the moisture content of wood is subject
to an hysteresis when raised and then reduced [31]. The moisture content of the re-stabilized sample
will likely be higher. In order to characterize the weight gain that is due to the PCM deposit within
wood, reference samples were impregnated with pure distilled water. The moisture content hysteresis
was determined. Therefore, weight gain of the samples is presented in the results section and was
adjusted after this weight hysteresis, due to remaining water within wood.

Preliminary experiments were conducted on samples sized 10 × 50 × 4 mm within a 2 L reactor
(Paar, Ashland, VA, USA) in order to determine suitable impregnation parameters. Several parameters
were varied, such as pressure, temperature and microcapsules concentration into water. Larger scale
wood boards sized 210 × 70 × 4 mm were impregnated with 18.9 L reactor (Paar, Ashland, VA, USA).

2.2.3. Heat Storage

Heat storage measurements were conducted on the wood boards with a dynamic heat flow meter
apparatus (DHFMA) according to ASTM C1784. Measurements were conducted with a Lasercomp
Fox FX314 (TA instruments, New Castle, DE, USA), from 18 ◦C to 40.5 ◦C with a temperature step of
1.5 ◦C. The methodology used was similar than the one used by Damien et al. in 2018 [25], but with
higher temperature steps, as the thickness of the samples allowed a 1.5 ◦C step without saturation.
According to the Fox FX314 requirements, measurements were conducted on 255 × 250 × 4 mm
surfaces. Each surface of test was constituted by three large wood boards as described previously,
which were assembled side-by-side with PVA adhesive, as shown in Figure 1.

2.2.4. Pull-Off Adhesion Tests

As some microcapsules will fill the wood, it is important to ensure whether if a varnish could still
be applied to the wood and have a good adhesion. For this purpose, pin-pull tests were conducted in
the spirit of the ASTM test method D4541 standard test method for pull-off strength of coatings using
portable adhesion testers. Impregnated and control samples were coated with a UV-curable high solids
acrylate coatings from CANLAK© (Daveluyville, QC, Canada). Control samples were of two types:
either wood without any treatment, either wood impregnated with water only. This methodology
allows to study the influence of water impregnation on varnish adhesion. The pull-off tests were only
conducted with the red oak samples as the sugar maple did not show a great potential of impregnation.
Coating was applied using a roller coater. Seven coating layers of around 15 microns were applied.
Between each paths, polymerization was induced using a UV-oven. A light sandblasting with P220
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paper was applied before the last layer. Final coating thickness was of 0.11 ± 0.03 mm. Bi-compound
epoxy glue from the company Lepage (Don Mills, ON, Canada) was applied to fix the pins, with a
curing time of 24 h. Tests were conducted with a 5K Newton universal testing machine with a rate of
pull of 10 mm/min. The adhesive strength values were measured to characterize the varnish adhesion
on the different samples. Tests were achieved with 28 repetitions of standard red oak, 28 repetitions of
red oak impregnated with water only, and 28 repetitions of red oak impregnated with water and PCM.
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3. Results

3.1. Morphology of the Components

3.1.1. Wood Morphology

A cross section of red oak and sugar maple are shown in Figure 2a. Red oak is a porous wood with
initial wood vessels substantially larger than in final wood. Small vessels have an average diameter of
66.6 microns with a minimum of 42.9 microns. Big vessels have an average diameter of 286.7 microns
with a minimum of 237.2 microns. A cross section of sugar maple is shown in Figure 2b. Sugar maple
is a wood with diffuse pores. They have an average diameter of 58.1 microns with a minimum of
26.9 microns. Sometimes, the vessels are grouped, leading to smaller diameter vessels.

3.1.2. PCM Microcapsules

A micrograph of Nextek29 is shown in Figure 3. First observation is that microcapsules tend to
form aggregates.

PCM microcapsules Nextek29© had an average size of 8.4 microns with a standard deviation of
6.1 microns. Size repartition is shown in Figure 4.

The average size of the vessels was 66.6 microns and 58.1 microns for red oak and sugar maple
respectively. According to these results, the microcapsules are smaller and could be able to fill the
vessels of both wood species.

3.2. Impregnation of Small Samples

Weight enhancement after impregnation of small samples was assessed for impregnations with
several PCM concentrations. Results for both species are shown in Figure 5.
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Figure 5. Weight enhancement for several microcapsules ratios.

Increasing the PCM concentration into water increases the weight gain after impregnation. A
maximum of 5.4 ± 1.4% of weight gain was measured for a 50% mass ratio of microcapsules into water.
Weight enhancement after impregnation of small samples was measured for several pressures and
several concentration into water. Results for both species are shown in Figure 6.
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3.3. Impregnation of Wood Boards

3.3.1. Morphology

Micrographs of red oak impregnated with MCPMs are shown in Figure 7. Microcapsules are
clearly visible, filling some initial wood big vessels, as shown in A. The microcapsules seems to merge
in aggregates in some of the vessels. Sometimes there is also a small quantity of MPCM at the periphery
of a big vessel, as shown in B.

Most of the small vessels of red oak were not containing any microcapsules, as visible in Figure 8a,
in C. However, a few vessels were containing a small quantity of microcapsules, as visible in Figure 8b,
in E. Some microcapsules were also observed over red oak fibers, as shown in D. Cutting the samples
for observation could have displaced some microcapsules. The small vessels were mostly empty, as if
the microcapsules size (8.4 microns) is, in average, widely inferior than the final wood small vessels
average size (66.6 microns).
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Figure 8. Impregnated red oak microscopy. (a) Small late wood vessels are mostly empty; (b) Some
small vessels are filled with a few microcapsules.

Only some of the big vessels are filled with the MPCM. As no other study of wood impregnation
with microcapsules was found in literature, there is not any other results to compare with and help
understand this phenomenon. Yet, red oak big vessels are sometimes clogged by tyloses. The tyloses
could block the progression of microcapsules, and as a consequence, some of the vessels would stay
empty. In this case, dissolving the tyloses before impregnation could lead to a larger quantity of filled
vessels. In 2018, Jiang et al., improved poplar sapwood permeability by autohydrolyze coupled with
a sodium hydroxide treatment [32]. They found a partial dissolution of tyloses while the skeletal
structure of the fiber and vessel cell walls remained intact. This could be an efficient way to remove
red oak tyloses. However, such treatment could lead to wood degradation. As making wood flooring
required a wood of good appearance, this could be a limit. Yet, further experiments would be required
to have a better understanding of microcapsules distribution within red oak.

Micrographs of the sugar maple impregnated with MCPMs are shown in Figure 9. Only a few
vessels were containing microcapsules, as visible in F.

For both woods, only a few small vessels were containing microcapsules. Still, these vessels are,
in average, much larger than the capsules and should be able to be filled. An explanation could from
the poor dispersion of the microcapsules in the impregnation liquid. As observed by microscopy, the
capsules tend to form aggregates. These aggregates could be too big to fill the small vessels, explaining
the small amount of capsules in it.

The impregnated wood boards were cut and observed at several locations within the treated
volume. Microcapsules were found in each zone. It indicates that the microcapsules are able to fill
the central part of the wood boards. Indeed, the boards are cut so the vessels are oriented according
to the length direction. Thus it may have been difficult for the microcapsules to reach the middle of
the boards. Still, it is difficult to quantify how much microcapsules are filling the different parts of
the samples.
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3.3.2. Heat Storage

Average heating storage capacity of impregnated and control red oak boards is shown in Figure 10.



Appl. Sci. 2018, 8, 2696 11 of 14

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 15 

the central part of the wood boards. Indeed, the boards are cut so the vessels are oriented according 
to the length direction. Thus it may have been difficult for the microcapsules to reach the middle of 
the boards. Still, it is difficult to quantify how much microcapsules are filling the different parts of 
the samples. 

3.3.2. Heat Storage 

Average heating storage capacity of impregnated and control red oak boards is shown in Figure 
10. 

 
Figure 10. Heat storage capacity of red oak, melting cycle. 

Between 28.5 °C and 31.5 °C, the total heat storage of red oak is of 7.6 J/g. This corresponds to a 
thermal mass enhancement of 77%. A second observation is that the specific heat (CP) of red oak is 
higher for the impregnated wood. The first reason could be that the microcapsules densify the wood 
and thus contribute to its specific heat. In addition, as described earlier, the impregnated samples 
have a moisture content higher than the control samples, due to an hysteresis phenomenon [31]. 
These two phenomena can enhance the impregnated wood specific heat.  

A comparison of melting and solidification cycles of red oak is shown in Figure 11. 

 
Figure 11. Comparison of impregnated red oak melting and solidification. 

0
5

10
15
20
25
30
35
40
45

20 25 30 35 40

To
ta

l h
ea

t s
to

ra
ge

 (J
/g

)

Temperature (°C)
Impregnated red oak melting Impregnated red oak solidification

Figure 10. Heat storage capacity of red oak, melting cycle.

Between 28.5 ◦C and 31.5 ◦C, the total heat storage of red oak is of 7.6 J/g. This corresponds to a
thermal mass enhancement of 77%. A second observation is that the specific heat (CP) of red oak is
higher for the impregnated wood. The first reason could be that the microcapsules densify the wood
and thus contribute to its specific heat. In addition, as described earlier, the impregnated samples have
a moisture content higher than the control samples, due to an hysteresis phenomenon [31]. These two
phenomena can enhance the impregnated wood specific heat.

A comparison of melting and solidification cycles of red oak is shown in Figure 11.
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Figure 11. Comparison of impregnated red oak melting and solidification.

A first observation is that the MPCM is subject to supercooling. This is an usual observation
for organic phase change materials [6]. Another observation is that the melting heat is a little bit
higher than the solidification heat. The same phenomena was observed by wood/PCM samples in
2018 by Mathis et al. When the melting cycle begins, the sample is first stabilized at 20 ◦C and heated
to a maximum of 40 ◦C. In addition, dry air is flowing through the test chamber in order to avoid
the moisture to condensate on the sensors. Heating the samples may reduce their moisture content.
Some samples were weighted before and after a melting test to stud this phenomena and an average
difference of weight of 1.5% was measured. It is possible that the moisture vaporization during the
melting cycle contributes to the total heat measured. This could explain the higher total heat storage of
the wood for the solidification cycle.

Heating storage capacity of impregnated and control sugar maple boards is shown in Figure 12.
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Figure 12. Heat storage capacity of sugar maple, melting cycle.

First observation is that the latent heat storage of impregnated sugar maple is low around 29 ◦C.
Between 28.5 ◦C and 31.5 ◦C, the total heat storage is of 4.5 J/g. This corresponds to a thermal mass
enhancement of 7.1%. This results confirms the preliminary tests and goes along the reflective optical
microscopy observations for this wood.

3.3.3. Adhesion of a UV-Curable Coating Formulation

Results of pull-off adhesion tests are shown in Figure 13.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 15 

 
Figure 13. Average coating adhesive strengths for different samples. 

4. Conclusions 

Phase change materials can enhance buildings thermal mass and thus lead to energy savings. 
This study aimed on assessing the potential of two wood species for impregnation with MPCMs in 
order to make high thermal mass EWF. Red oak and sugar maple samples were impregnated with 
PCM microcapsules Nextek©29 using water as a solvent. 

Heat storage of impregnated red oak samples was measured by DHFMA and was of 7.6 J/g over 
3 °C. This corresponds to an enhancement of 77% in comparison with untreated wood. Microcapsules 
were observed within the impregnated samples by optical reflective microscopy. They were mainly 
found in the large initial wood vessels of red oak. A small quantity of microcapsules was also found 
in the small final wood vessels. Sugar maple was found to be harder to impregnate and its heat 
storage enhancement was negligible. Some microcapsules were found in the small vessels of sugar 
maple but the quantity was insufficient to affect the heating storage of this species. In both species, 
fibers were too small to contain microcapsules. Vessel size seems to be the determinant so the 
microcapsules can fill the wood. A limiting factor could be that the microcapsules tend to form 
aggregates. Some of these aggregates could be too large to fill the small vessels and so, only the large 
red oak vessels contain a high quantity of MPCM. Enhancing the MCPM dispersion could improve 
the efficiency of such an impregnation.  

Red oak was varnished with a 100% UV solid wood coating and submitted to pull-off adhesion 
tests. These tests did not reveal any significant effect of an impregnation on the varnish adherence. 

The results presented above suggests that red oak heat storage can be enhanced by filling the 
wood with MPCM. Water was here used as a solvent but next trials could be conducted with a fluid 
easier to evaporate, to reduce the drying cost. Another fluid could also have a better affinity with the 
microcapsules or a higher viscosity and thus deposit a higher percentage of capsule within the wood. 
Another possibility could be to manufacture a shape-stabilized wood/PCM composite with a polymer 
that would not require microencapsulation of the PCM. 

Author Contributions: D.M., P.B., V.L. and P.L. conceptualized the work and defined the methodology; D.M. 
did the data curation, the formal analysis, the investigation and wrote the original draft. P.B. operated the 
funding acquisition and the project administration. P.B., V.L. and P.L. contributed to the resources/supervision/ 
validation. 

Funding: This research was funded by Natural Sciences and Engineering Research Council of Canada IRC and 
CRD grant IRCPJ 461745-12 and RDCPJ 445200-12. 

Acknowledgments: The authors are grateful to Natural Sciences and Engineering Research Council of Canada 
for the financial support through its ICP and CRD programs (IRCPJ 461745-12 and RDCPJ 445200-12) as well as 
the industrial partners of the NSERC industrial chair on eco-responsible wood construction (CIRCERB). 

Conflicts of Interest: The authors declare no conflict of interest. 

0

0.5

1

1.5

2

Ul
tim

at
e 

st
re

ng
ht

 (σ
m

ax
)

Control samples Water Impregnation Water + PCM impregnation

Figure 13. Average coating adhesive strengths for different samples.

Average ultimate strength of control, water impregnated, and water + PCM impregnated samples
were of 1.55, 1.50, and 1.58 MPa respectively. According to these results, either water impregnation of
water + PCM impregnation did not seem to have any significant effect on the varnish adherence.

4. Conclusions

Phase change materials can enhance buildings thermal mass and thus lead to energy savings.
This study aimed on assessing the potential of two wood species for impregnation with MPCMs in
order to make high thermal mass EWF. Red oak and sugar maple samples were impregnated with
PCM microcapsules Nextek©29 using water as a solvent.

Heat storage of impregnated red oak samples was measured by DHFMA and was of 7.6 J/g over
3 ◦C. This corresponds to an enhancement of 77% in comparison with untreated wood. Microcapsules
were observed within the impregnated samples by optical reflective microscopy. They were mainly
found in the large initial wood vessels of red oak. A small quantity of microcapsules was also found in
the small final wood vessels. Sugar maple was found to be harder to impregnate and its heat storage
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enhancement was negligible. Some microcapsules were found in the small vessels of sugar maple
but the quantity was insufficient to affect the heating storage of this species. In both species, fibers
were too small to contain microcapsules. Vessel size seems to be the determinant so the microcapsules
can fill the wood. A limiting factor could be that the microcapsules tend to form aggregates. Some
of these aggregates could be too large to fill the small vessels and so, only the large red oak vessels
contain a high quantity of MPCM. Enhancing the MCPM dispersion could improve the efficiency of
such an impregnation.

Red oak was varnished with a 100% UV solid wood coating and submitted to pull-off adhesion
tests. These tests did not reveal any significant effect of an impregnation on the varnish adherence.

The results presented above suggests that red oak heat storage can be enhanced by filling the
wood with MPCM. Water was here used as a solvent but next trials could be conducted with a fluid
easier to evaporate, to reduce the drying cost. Another fluid could also have a better affinity with the
microcapsules or a higher viscosity and thus deposit a higher percentage of capsule within the wood.
Another possibility could be to manufacture a shape-stabilized wood/PCM composite with a polymer
that would not require microencapsulation of the PCM.
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7. Kośny, J.; Yarbrough, D.W.; Riazzi, T.; Leuthold, D.; Smith, J.B.; Bianchi, M. Development and testing of
ignition resistant microencapsulated phase change material. Proc. Effstock 2009.
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