
applied
sciences

Article

Hybrid Genetic Simulated Annealing Algorithm
for Improved Flow Shop Scheduling with
Makespan Criterion

Hongjing Wei 1,2 , Shaobo Li 3,4,* , Houmin Jiang 5 , Jie Hu 6 and Jianjun Hu 3,7,*
1 Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University,

Guiyang 550025, China; hongjingwei@126.com
2 School of Mechanical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
3 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
4 Guizhou Provincial Key Laboratory of Public Big Data (Guizhou University), Guiyang 550025, China
5 College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;

jhmhehe@gmail.com
6 College of Big Data Statistics, GuiZhou University of Finance and Economics, Guiyang 550025, China;

jason.houu@gmail.com
7 Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
* Correspondence: lishaobo@gzu.edu.cn (S.L.); jianjunh@cse.sc.edu (J.H.)

Received: 11 October 2018; Accepted: 5 December 2018; Published: 14 December 2018
����������
�������

Abstract: Flow shop scheduling problems have a wide range of real-world applications in intelligent
manufacturing. Since they are known to be NP-hard for more than two machines, we propose a
hybrid genetic simulated annealing (HGSA) algorithm for flow shop scheduling problems. In the
HGSA algorithm, in order to obtain high-quality initial solutions, an MME algorithm, combined
with the MinMax (MM) and Nawaz–Enscore–Ham (NEH) algorithms, was used to generate the
initial population. Meanwhile, a hormone regulation mechanism for a simulated annealing (SA)
schedule was introduced as a cooling scheme. Using MME initialization, random crossover and
mutation, and the cooling scheme, we improved the algorithm’s quality and performance. Extensive
experiments have been carried out to verify the effectiveness of the combination approach of MME
initialization, random crossover and mutation, and the cooling scheme for SA. The result on the
Taillard benchmark showed that our HGSA algorithm achieved better performance relative to the
best-known upper bounds on the makespan compared with five state-of-the-art algorithms in the
literature. Ultimately, 109 out of 120 problem instances were further improved on makespan criterion.

Keywords: flow shop scheduling; makespan; hybrid algorithm; genetic algorithms; simulated
annealing

1. Introduction

The flow shop scheduling problem (FSSP) was first proposed by Johnson in 1954 [1]. Due to
its extensive production applications in industries such as food processing, steel manufacturing,
plastics production, and chemical manufacturing, the problem has received much attention since
it was introduced. Researchers from all over the world have conducted in-depth research on this
issue, and in the literature [2,3], they have developed branch-and-bound algorithms to solve the
flow shop scheduling problem. However, these exact solution algorithms are only suitable for
small-sized scheduling problems, as the calculation time increases exponentially with the problem
size. As FSSP has proved to be an NP-hard problem [4], exact algorithms have not been suitable for
large-scale scheduling problems. After that, several heuristic algorithms were proposed. Among them,

Appl. Sci. 2018, 8, 2621; doi:10.3390/app8122621 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9293-940X
https://orcid.org/0000-0003-4759-6000
https://orcid.org/0000-0001-6198-2579
https://orcid.org/0000-0002-3893-1594
https://orcid.org/0000-0002-8725-6660
http://www.mdpi.com/2076-3417/8/12/2621?type=check_update&version=1
http://dx.doi.org/10.3390/app8122621
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 2621 2 of 20

the Nawaz–Enscore–Ham (NEH) heuristic algorithm [5], proposed by Nawaz et al., was used to solve
an FFSP with n workpieces and m machines. The comparison between NEH and 15 other algorithms
showed that it can quickly obtain better solutions and is suitable for solving large-scale flow shop
scheduling problems. However, the quality of the feasible solutions obtained by the NEH algorithm is
not high [6]. After the NEH algorithm was proposed, many researchers combined NEH with other
optimization algorithms to achieve better results. Marichelvam et al. [7] combined NEH with the
cuckoo search algorithm to form an improved cuckoo search algorithm (ICS), which proved to be
more effective at achieving optimal solutions than the other algorithms in the literature. Qi et al. [6]
proposed an improved variable neighborhood search algorithm and proved that the NEH heuristic
algorithm could generate better initial solutions. Burdett and Kozan [8] addressed the representation
and construction of accurate train schedules by a hybrid job shop approach and proposed a constructive
algorithm to construct a schedule using NEH insertion, backtracking, and dynamic route selection
mechanisms. The experiment results showed the constructive algorithm required less CPU time and
obtained better solutions.

Rathinam [9] used the decision tree (DT) algorithm to minimize the makespan of the FSSP.
In addition, Govindan et al. [10] provided a hybrid algorithm (ADE) that combined a scatter search
algorithm with decision tree which exceeded other existing hybrid algorithms. The main disadvantage
is that the tree size of the ADE and DT algorithms increases with the number of jobs and machines
in large-scale FSSPs. In [11], three kinds of hybrid discrete artificial bee colony (ABC) algorithm
(hDABC1, hDABC2, and hDABC3), with the initial solution generated by MME-A and MME-B and
new solutions generated by the adaptation strategy and distribution estimation, were proposed. Pan
and Huang [12] developed a hybrid genetic algorithm (GA) based on two different local search
strategies (insertion search and the insertion search repair and cut) and an orthogonal-array-based
crossover. Gao et al. [13] proposed two Bertollisi heuristics [14], which were based on a job pair
comparison approach, to generate a sequence of jobs and constructive heuristics combined with
standard deviation heuristics. The algorithms integrated with local search strategies to improve the
quality of the solution. The results showed the effectiveness of the proposed algorithm, especially
for large-scale FSSPs. Nowicki and Smutnicki [15] proposed an approximation algorithm based on
a tabu search technique with a specific neighborhood definition to solve a permutation flow shop
problem. Sayoti et al. [16] proposed an adaptation of a new approach called the golden ball algorithm
(GBA), which was inspired by concepts and strategies for soccer playing. The result showed GBA
was able to find the optimal schedule rapidly for the small-scale flow shop schedule problem. In [17],
a genetic algorithm integrated with a Hopfield network was proposed and proved to be an effective
method to solve NP-hard problems. Although researchers have developed many algorithms to solve
FSSPs, there still exist some shortcomings in these algorithms, such as local optimization and high
computational cost, especially when solving large-scale problems. Table 1 summarizes some of the
algorithms proposed for FSSPs in the literature. Most of these studies demonstrate that combinational
heuristic and metaheuristic approaches which include advantages of more than one algorithm are very
useful for solving flow shop problems. For instance, Tseng et al. [18] studied a hybrid genetic algorithm
for a no-wait flow shop problem. Ding et al. [19] presented an improved iterated greedy algorithm with
a tabu-based reconstruction strategy. An iterated greedy algorithm in [20], a high-performing memetic
algorithm in [21], and a discrete self-organizing migrating algorithm in [22] have been used for flow
shop problems with the minimum makespan criterion and obtained better results. Eddaly et.al [23]
proposed a hybrid combinatorial particle swarm optimization (HCPSO) algorithm as a resolution
technique for solving this problem. Burdett and Kozans [24] proposed a new multiparent operator
which could greatly improve the performance of a GA search.

The GA and the simulated annealing (SA) algorithm are well-known metaheuristics that have
been successfully used in flow shop problems. The genetic algorithm has the advantages of strong
global optimization ability, fast speed, strong versatility, and easy implementation. However, it has the
drawback of poor local search ability, which decreases search efficiency, especially in the late period of

Appl. Sci. 2018, 8, 2621 3 of 20

optimization. On the other hand, the simulated annealing algorithm has strong local search capabilities
to make up the shortcomings of the genetic algorithm. GA + SA has been used to solve job shop [25],
open shop [26], and flexible flow shop problems [27]. However, to the best of our knowledge, there
are no reports on its application in flow shop scheduling, especially with improved crossover and
mutation operators and adaptive simulated annealing.

Therefore, we propose a hybrid genetic simulated annealing (HGSA) algorithm to solve flow shop
scheduling problems. The main contributions of this paper include the following:

(1) We propose the novel HGSA algorithm to solve FSSPs. It is characterized by an operational coding
in GA and a hormone regulation mechanism in the simulated annealing part of the algorithm.
The MME [28] algorithm, combined with the NEH [5] and MinMax (MM) [29] heuristic algorithms,
is used for initialization of the population. We use location-based intersection and two-point
intersection for crossover operations with either one of these two being randomly selected. In the
mutation process, twors mutation or inversion mutation [30] is randomly employed to mutate
the population. After the crossover and mutation operation is completed, the best individuals are
retained, and the simulated annealing operation is performed on these solutions.

(2) Using the widely adopted Taillard benchmark FSSPs, we conducted extensive experiments and
showed that our HGSA algorithm achieved better results than the baseline algorithms to which
it was compared in our study. We showed that our HGSA algorithm’s high performance for
FSSPs is based on its hybrid search strategy, twors/inversion mutation, location-based/two-point
crossovers, and their combination with the MME heuristic algorithm for population initialization.

The rest of this paper is organized as follows: Section 2 introduces the definition of the problem
and mathematical model of the flow shop scheduling problem, Section 3 describes the HGSA, Section 4
shows the experimental results of HGSA, and Section 5 provides conclusions and future works.

Table 1. Survey of algorithms for solving the flow shop scheduling problem (FSSP).

Author, Year,
and Reference Algorithm Optimization

Criteria Benchmarks Summary

Koulamas
(2001) [31]

Heuristics with
ratio performance

guarantees (HRPG)
Makespan

- Analyzed the worst-case absolute
bound for a heuristic based on
compact vector
summation techniques

- Pointed out that the heuristic
becomes asymptotically optimal
with a large number of jobs

Chang et al.
(2002) [32]

Gradual-priority
weighting (GPW)

Makespan, total
flowtime, total

tardiness

- GPW approach is proposed to
search the Pareto optimal solution

Andreas et al.
(2003) [33] Metaheuristics Total flowtime Taillard

- The application of different kinds of
metaheuristics from a practical
point of view

- Examined the trade-off between
running time and solution quality
as well as the knowledge and
efforts needed to implement and
calibrate the algorithms

Wang et al.
(2005) [34]

Polynomial
algorithm

Makespan, total
flowtime

- Proposed a polynomial algorithm
- Demonstrated that the classical

Johnson’s rule is not the optimal
solution for two-machine flow
shop scheduling

Appl. Sci. 2018, 8, 2621 4 of 20

Table 1. Cont.

Author, Year,
and Reference Algorithm Optimization

Criteria Benchmarks Summary

Agarwal (2006) [35]
Improvement

heuristic
approach (IHA)

Taillard,
Carlier, Heller

- A weight parameter is used to
perturb the data of the original
problem to obtain
improved solutions.

Rajendran
(2007) [36]

Proposed ant
colony algorithms

Makespan, total
flowtime Taillard

- PACO is evaluated by considering
the benchmark problems and upper
bound values for makespan

- Minimizing total flowtime
compared with the best
heuristic solutions

Yagmahan et al.
(2008) [37]

Ant colony
optimization

(ACO)

Makespan, total
flow time, total

machine idle time
Reeves

- Proposed that ACO algorithm can
be applied for single or multiple
objective cases considering other
criteria such as mean flow time,
total tardiness,
and maximum tardiness

Zhang et al.
(2009) [38]

Hybrid particle
swam optimization

(PSO) algorithm

Makespan,
maximal machine

workload

- A PSO algorithm and a tabu search
(TS) algorithm are combined to
solve the multiobjective FJSP with
several conflicting and
incommensurable objectives

Sayadi et al.
(2010) [39]

Firefly
metaheuristic

(FMH)
Makespan Demirkol

- Presented a new discrete firefly
metaheuristic to minimize
the makespan

Pan et al.
(2011) [40]

Discrete artificial
bee colony

(DABC) algorithm

Total weighted
earliness and

tardiness penalties

- DABC algorithm is proposed to
solve the lot-streaming flow shop
scheduling problem with the
criterion of total weighted earliness
and tardiness penalties under both
the idling and no-idling cases

Deng et al.
(2012) [41]

Hybrid discrete
differential
evolution

(HDDE) algorithm

Makespan Ruiz

- Novel speed-up method based on
network representation is proposed
to evaluate the whole insert
neighborhood of a job permutation
and employed in HDDE

Li et al. (2013) [42]

Cuckoo search
(CS)-based

memetic
algorithm (HCS)

Makespan, total
flow time Car, Rec

- A largest-ranked-value
(LRV)-rule-based random key is
used to convert the continuous
position in CS into a discrete
job permutation

Xie et al. (2014) [43]

Hybrid
teaching–learning-
based optimization
(HTLBO) algorithm

Makespan,
maximum lateness

Carlier’s,
Reeves

Yamada’s

- Combines a novel
teaching–learning-based
optimization algorithm for solution
evolution and a variable
neighborhood search (VNS) for fast
solution improvement

Lin et al. (2015) [44]

Hybrid
backtracking

search algorithm
(HBSA)

Makespan Civicioglu

- HBSA is proposed for Permutation
Flow-shop Scheduling Problem
(PFSP) with the objective to
minimize the makespan.

- Crossover and mutation strategies
as well as a simulated annealing
(SA) mechanism are used to avoid
premature and random insertion
local search

Appl. Sci. 2018, 8, 2621 5 of 20

Table 1. Cont.

Author, Year,
and Reference Algorithm Optimization

Criteria Benchmarks Summary

Lin et al. (2016) [45]

Hybrid
biogeography-based

optimization
(HBBO) algorithm

Makespan Hatami

- The path relinking heuristic is
employed in the migration phase as
a product local search strategy to
optimize the assembly sequence

- An insertion-based heuristic is used
in the mutation phase

Deng et al.
(2017) [46]

Competitive
memetic

algorithm (CMA)

Makespan, total
tardiness Taillard

- Some objective-specific operators
are designed for each population

- A special interaction mechanism
between two populations
is designed

Peng et al.
(2017) [47]

Hybrid
backtracking

search (HBSA)

Makespan, energy
consumption Car

- In HBSA, the SA is a hybrid with
original backtracking search to
update the population

Bewoor et al.
(2017) [48]

Hybrid particle
swarm

optimization
(PHPSO) algorithm

Total flow time Taillard

- The random key representation rule
for converting the continuous
position information values of
particles to a discrete
job permutation

Sun et al.
(2017) [49]

Hybrid estimation
of the distribution

algorithm and
cuckoo search
(HEDA_CS)

Total Tardiness Ruiz

- Designed some objective-specific
operators and a special
interaction mechanism

- A competition mechanism is
proposed to adaptively adjust the
selection rates

Meng et al.
(2018) [50]

Improved
migrating birds

optimization
(IMMBO)

Makespan Randomly
generated

- Harmony-search-based scheme is
designed to construct neighborhood
of solutions

- A leaping mechanism is introduced
to avoid being trapped in the
local optimum

2. Flow Shop Scheduling Problem Description

The flow shop scheduling problem can be described as follows: There are n jobs with the same
process route to be processed, which need to be processed continuously on m machines. The layout of
the flow shop is shown in Figure 1. The machining process satisfies the following assumptions: (1) All
jobs and machines are available at time zero. (2) There is no prior priority among jobs. (3) Each job
has m processing steps. (4) Every process must be processed on different machines and the process
sequence cannot be changed. (5) Each machine can only process only one job at a time, and each
workpiece can only be machined by one machine at a time. (6) The machining process cannot be
interrupted during the processing. (7) All jobs must obey the first-in/first-out rule during processing.
Note that the symbols used in this paper and their meanings are shown in Table 2.Appl. Sci. 2018, 8, x FOR PEER REVIEW 5 of 20

M1 M2 Mm

2

5

3
n

4
6

1

MachinesJobs 132

Figure 1. Layout of the flow shop processing environment. 133

Table 2. The meaning of the parameters used in this paper. 134

Parameter Meaning

J = {1,2,…,n} Set of n jobs

M = {11,2,…,m} Set of m machines

pij The processing time when job i is processed on machine tool j

Sij The starting time when job i is processed on machine tool j

Cij

π = {π1,π2,…,πn}

Π

Cmax(π)

The finishing time when job i is processed on machine tool j

A sequence of jobs

Set of all jobs’ sequences

Makespan of one job’s sequence π

The mathematical model of the FSSP makespan can be expressed as [4] 135

min Cmaxπ（ ） (1)

S.t. 136

1

1, 1,2,
n

ik
k

X i n

 (2)

1

1, 1,2,
n

ik
i

X i n

 (3)

 1
 ij i j

C S

 (4)

 1 1ij i j
C C

 (5)

ij ij ijC S P . (6)

Formula (2) is a constraint which indicates that different processes of the same job cannot be 137
proceeded at the same time. Formula (3) is a machine constraint which indicates that one machine 138
can only process one job at a time. Formula (4) is time constraint which indicates that the next process 139
of a job cannot start before the current process is completed. Formula (5) indicates that if the 140
subsequent machine j + 1 is in the machining state, the job will delay at machine j until machine j + 1 141
is idle. Formula (6) shows that for any job i, the completion time is determined by the starting time 142
and the processing time on machine j. Therefore, Cmax(π) and Cij can be calculated from Formulas 143
(7) to (8): 144

(j 1) , (i 1)(j 1) 0 0 (m 1)max , 1,2,...n, j 1,2... ; 0, 0, 0

ij i ij i j iC C t C i m whereC C C
 (7)

 max nmC C . (8)

 145

Figure 1. Layout of the flow shop processing environment.

Appl. Sci. 2018, 8, 2621 6 of 20

Table 2. The meaning of the parameters used in this paper.

Parameter Meaning

J = {1, 2, . . . , n} Set of n jobs
M = {11, 2, . . . , m} Set of m machines
pij The processing time when job i is processed on machine tool j
Sij The starting time when job i is processed on machine tool j
Cij The finishing time when job i is processed on machine tool j
π = {π1, π2, . . . , πn} A sequence of jobs
Π Set of all jobs’ sequences
Cmax(π) Makespan of one job’s sequence π

The mathematical model of the FSSP makespan can be expressed as [4]

min(Cmaxπ) (1)

S.t.
n

∑
k=1

Xik = 1, i ∈ {1, 2, . . . n} (2)

n

∑
i=1

Xik = 1, i ∈ {1, 2, . . . n} (3)

Cij ≤ Si(j+1) (4)

Cij ≥ C(i−1)(j+1) (5)

Cij = Sij + Pij. (6)

Formula (2) is a constraint which indicates that different processes of the same job cannot be
proceeded at the same time. Formula (3) is a machine constraint which indicates that one machine can
only process one job at a time. Formula (4) is time constraint which indicates that the next process of a
job cannot start before the current process is completed. Formula (5) indicates that if the subsequent
machine j + 1 is in the machining state, the job will delay at machine j until machine j + 1 is idle.
Formula (6) shows that for any job i, the completion time is determined by the starting time and the
processing time on machine j. Therefore, Cmax(π) and Cij can be calculated from Formulas (7) to (8):

Cij = max
{

Ci(j−1) + tij,C(i−1)(j+1)

}
, i = 1, 2, . . . n, j = 1, 2, . . . m; where Ci0 = 0, C0j = 0, Ci(m+1) = 0 (7)

Cmax(π) = Cnm. (8)

3. Hybrid Genetic Simulated Annealing Algorithm

3.1. Overview of the HGSA Algorithm

There are many algorithms which have been used to solve flow shop problems, such as the GA,
particle swam optimization (PSO), the SA algorithm, the harmony search (HS) algorithm, ant colony
optimization (ACO), the ABC, etc. Among these algorithms, the genetic algorithm has the advantages
of strong global optimization ability, fast speed, strong versatility, and easy implementation. However,
it has the drawback of poor local search ability, which decreases search efficiency, especially in the
late period of optimization. Fortunately, the simulated annealing algorithm has strong local search
capabilities to make up the shortcomings of the genetic algorithm. Hence, in this paper, the advantages
of the two algorithms are combined. GA is employed to get an optimal or near-optimal solution among
the solution space, and then SA is utilized to seek a better one based on the solution. In addition,
in order to improve the search efficiency of SA, an annealing rate method based on the hormone
regulation mechanism is used in this paper. The flowchart of the algorithm is shown in Figure 2.
The simple pseudocode of HGSA is as follows:

Appl. Sci. 2018, 8, 2621 7 of 20

HGSA {Hybrid Genetic Simulated Annealing Algorithm}

Initialize population by MME

while (not stop condition) do
Step 1: Select the population
Step 2: Crossover operation

If(random==0)
location-based Crossover

else
two-point Crossover

Step 3: Mutation operation
If(random==0)

Insertion Mutation
else

Reverse order Mutation
Step 4: Simulated annealing opearation

end_while
Appl. Sci. 2018, 8, x FOR PEER REVIEW 7 of 20

Start

Initialize algorithm parameters

Generate initial

population

Are termination

condition satisfied

Output the best

solution

Calculate the fitness value

Make selection, crossover

and mutation operation

Save better individuals

Generate new neighborhood solutions and

calculate fitness

Y

N

Accept new

solution

Update

population

Y

Are iteration

condition

satisfied ?

N

Update an annealing

schedule function

Y

N

End

 178

Figure 2. Algorithm flowchart of the hybrid genetic simulated annealing (HGSA) algorithm. 179

3.2. Encoding Representation 180

In this paper, the job ordering is used as the solution chromosome. The number of genes in the 181
chromosome is equal to the quantity of jobs to be processed, which is n. If there are 10 jobs to be 182
processed, p1 = [3,5,8,7,9,6,4,2,1,10] can be taken as one of the chromosomes in the population. The 183
number in the chromosome indicates the ID of the jobs being machined, and the position in the 184
chromosome indicates the processing order of the jobs. 185

3.3. Initial Population 186

The initial population quality has a significant impact on the performance of an evolutionary 187
algorithm. Good initial solutions can significantly improve the convergence rate and solution quality 188
of the algorithm [51]. In this paper, the MME algorithm, combined with the NEH [5] and MM [29] 189
heuristic algorithms, is used to generate the initial population. Ronconi [28] proved that the MME 190
algorithm has better performance than the NEH algorithm for solving FSSPs. In [52], it was also 191
proved that the initial solutions obtained by the MME algorithm explored the specific characteristics 192
of the blocking condition, which made it outperform the NEH for minimizing the makespan of the 193
Blocking Flow-Shop Scheduling (BFSS) problem. 194

The basic flow of the MME algorithm is as follows: 195

Figure 2. Algorithm flowchart of the hybrid genetic simulated annealing (HGSA) algorithm.

Appl. Sci. 2018, 8, 2621 8 of 20

3.2. Encoding Representation

In this paper, the job ordering is used as the solution chromosome. The number of genes in the
chromosome is equal to the quantity of jobs to be processed, which is n. If there are 10 jobs to be
processed, p1 = [3, 5, 8, 7, 9, 6, 4, 2, 1, 10] can be taken as one of the chromosomes in the population.
The number in the chromosome indicates the ID of the jobs being machined, and the position in the
chromosome indicates the processing order of the jobs.

3.3. Initial Population

The initial population quality has a significant impact on the performance of an evolutionary
algorithm. Good initial solutions can significantly improve the convergence rate and solution quality
of the algorithm [51]. In this paper, the MME algorithm, combined with the NEH [5] and MM [29]
heuristic algorithms, is used to generate the initial population. Ronconi [28] proved that the MME
algorithm has better performance than the NEH algorithm for solving FSSPs. In [52], it was also
proved that the initial solutions obtained by the MME algorithm explored the specific characteristics
of the blocking condition, which made it outperform the NEH for minimizing the makespan of the
Blocking Flow-Shop Scheduling (BFSS) problem.

The basic flow of the MME algorithm is as follows:
(1) Calculate the total machining time required for all the steps of each jobs. Rank the job with

the smallest total processing time in the first position of the job sorting. Rank the job with the second
smallest processing time in the last position of the job sorting and set i = 2.

(2) The rest of the n-2 jobs are arranged in ascending order according to the label function value
of Formula (9). The job that takes ai will be sorted on i-th position of the job sequence, fixes the order,
and records as π0:

ai = r×
m−1

∑
j=1

∣∣ti,j − ti−1,j+1
∣∣+ (1− r)×

m

∑
1

tik. (9)

In Formula (9), r is a random number between [0, 1], ∑m−1
j=1

∣∣pi,j − pi−1,j+1
∣∣ means the modulus

of the difference between the two consecutive jobs on the adjacent machines, and (1− r)× ∑m
1 pik

indicates the job with a smaller total machining time is prioritized.
(3) i = i + 1. If i < n, go to step 2, otherwise go to step 4.
(4) Exchange the first two jobs in π0 and add them to the machining sequence π1. Calculate the

makespan before and after the order exchanging. Then, reserve the sequence with the least makespan
and fix the order of the two jobs. Denote the sequence as π1 and set k = 2.

(5) Randomly select a job in the unprocessed sequence to insert to possible positions of π1.
Calculate the makespan after the job is added, then select the position that can minimize the
completion time.

(6) Delete a job from the unprocessed sequence after its position is determined. Perform step 5
until all job positions are determined to form a new chromosome. Repeat the above steps 1–6 for p
times to generate an initial population of p size individuals.

3.4. Crossover Operation

In this paper, we randomly select location-based crossover and two-point crossover, both of which
are often used in genetic algorithms. The process is to generate an integer out of 0 and 1 randomly. If it
is 0, select the location-based crossover operation; otherwise, select the two-point crossover operation.
In the following description, P1 and P2 represent two parent individuals, and C1 and C2 represent two
child individuals. The specific steps are shown as follows.

3.4.1. Location-Based Crossover

(1) Exchange the genes at several randomly selected positions of P1 and P2. Keep the genes in
other locations unchanged.

Appl. Sci. 2018, 8, 2621 9 of 20

(2) Perform conflict detection to delete the same gene as the exchange position in the original
parent gene.

(3) Fill the gene vacancy with unused genes sequentially.
As shown in Figure 3a, there are 10 genes in this chromosome. Select positions 1, 3, 5, and 8

for exchange. The genes at the exchange position of P1 and P2 are directly exchanged to the same
position of C2 and C1. Then, delete the same genes as the swap position in C1 and C2 and fill them
with unused genes.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 8 of 20

(1) Calculate the total machining time required for all the steps of each jobs. Rank the job with 196
the smallest total processing time in the first position of the job sorting. Rank the job with the second 197
smallest processing time in the last position of the job sorting and set i = 2. 198

(2) The rest of the n-2 jobs are arranged in ascending order according to the label function value 199
of Formula (9). The job that takes ai will be sorted on i-th position of the job sequence, fixes the order, 200
and records as π0: 201

1

, 1, 1
1 1

r 1
m m

i j i j ik
j

ai t t r t

 . (9)

In Formula (9), r is a random number between [0, 1], ∑ |𝑝𝑖,𝑗 − 𝑝𝑖−1,𝑗+1|
𝑚−1
𝑗=1 means the modulus 202

of the difference between the two consecutive jobs on the adjacent machines, and (1 − 𝑟) × ∑ 𝑝𝑖𝑘
𝑚
1 203

indicates the job with a smaller total machining time is prioritized. 204
(3) i = i + 1. If i < n, go to step 2, otherwise go to step 4. 205
(4) Exchange the first two jobs in π0 and add them to the machining sequence π1. Calculate the 206

makespan before and after the order exchanging. Then, reserve the sequence with the least makespan 207
and fix the order of the two jobs. Denote the sequence as π1 and set k = 2. 208

(5) Randomly select a job in the unprocessed sequence to insert to possible positions of π1. 209
Calculate the makespan after the job is added, then select the position that can minimize the 210
completion time. 211

(6) Delete a job from the unprocessed sequence after its position is determined. Perform step 5 212
until all job positions are determined to form a new chromosome. Repeat the above steps 1–6 for p 213
times to generate an initial population of p size individuals. 214

3.4. Crossover Operation 215

In this paper, we randomly select location-based crossover and two-point crossover, both of 216
which are often used in genetic algorithms. The process is to generate an integer out of 0 and 1 217
randomly. If it is 0, select the location-based crossover operation; otherwise, select the two-point 218
crossover operation. In the following description, P1 and P2 represent two parent individuals, and 219
C1 and C2 represent two child individuals. The specific steps are shown as follows. 220

3.4.1. Location-Based Crossover 221

(1) Exchange the genes at several randomly selected positions of P1 and P2. Keep the genes in 222
other locations unchanged. 223

(2) Perform conflict detection to delete the same gene as the exchange position in the original 224
parent gene. 225

(3) Fill the gene vacancy with unused genes sequentially. 226
As shown in Figure 3a, there are 10 genes in this chromosome. Select positions 1, 3, 5, and 8 for 227

exchange. The genes at the exchange position of P1 and P2 are directly exchanged to the same position 228
of C2 and C1. Then, delete the same genes as the swap position in C1 and C2 and fill them with 229
unused genes. 230

1 3 4 6 9 10

2 5 7 3 8 10

P1

P2

1 3 4 6 9 102

2

5

5

7

7 3 8 10

8

1 4 6 9

C1

C2

3 4 2 6 9 8 10

5 1 7 3 8 10 9

3 4 5 1 7 2 6 9 8 10

5 1 4 2 6 7 3 8 10 9

(a) (b)

Figure 3. Procedure of location-based crossover operation (a) and two-point crossover operation (b). 231 Figure 3. Procedure of location-based crossover operation (a) and two-point crossover operation (b).

3.4.2. Two-Point Crossover

(1) Two intersections are randomly generated, the gene fragments between the two points are
copied from P1 and P2 to the corresponding positions of C1 and C2, and their positions and order are
kept unchanged.

(2) The genes contained in the intersections between P1 and P2 are removed, the jobs not included
in the intersections are copied to C2 and C1, and their order is maintained.

As shown in Figure 3b, the chromosome contains 10 genes (jobs). Select positions 3 and 6 for
crossover. Then, the genes in P1 and P2 located between position 3 and 6 are directly copied to C1 and
C2. The repetitive gene is removed, the remaining genes in P2 (white gene fragments in the figure) are
sequentially filled into C1 to produce new individuals, and C2 is produced in the same manner.

3.5. Mutation Operation

In the genetic algorithm, the role of the mutation operator is to perturb the original chromosome to
improve the local search ability and capability to jump out of local optima. In this paper, two commonly
used mutation operations twors mutation and inversion mutation are randomly selected [53].

3.5.1. Twors Mutation

(1) Two positions in the chromosome are randomly selected.
(2) Insert the top-ranked gene into the back of another gene.
As shown in Figure 4a, the chromosome contains 10 genes (jobs). Positions 3 and 8 are selected.

The gene 3 is inserted after the gene 8. Then, the other genes are sequentially moved back to obtain a
new chromosome.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 9 of 20

3.4.2. Two-Point Crossover 232

(1) Two intersections are randomly generated, the gene fragments between the two points are 233
copied from P1 and P2 to the corresponding positions of C1 and C2, and their positions and order 234
are kept unchanged. 235

(2) The genes contained in the intersections between P1 and P2 are removed, the jobs not 236
included in the intersections are copied to C2 and C1, and their order is maintained. 237

As shown in Figure 3b, the chromosome contains 10 genes (jobs). Select positions 3 and 6 for 238
crossover. Then, the genes in P1 and P2 located between position 3 and 6 are directly copied to C1 239
and C2. The repetitive gene is removed, the remaining genes in P2 (white gene fragments in the 240
figure) are sequentially filled into C1 to produce new individuals, and C2 is produced in the same 241
manner. 242

3.5. Mutation Operation 243

In the genetic algorithm, the role of the mutation operator is to perturb the original chromosome 244
to improve the local search ability and capability to jump out of local optima. In this paper, two 245
commonly used mutation operations twors mutation and inversion mutation are randomly selected 246
[53]. 247

3.5.1. Twors Mutation 248

(1) Two positions in the chromosome are randomly selected. 249
(2) Insert the top-ranked gene into the back of another gene. 250
As shown in Figure 4a, the chromosome contains 10 genes (jobs). Positions 3 and 8 are selected. 251

The gene 3 is inserted after the gene 8. Then, the other genes are sequentially moved back to obtain a 252
new chromosome. 253

1 3 4 6 9 102 5 7 8P1

1 3 4 6 9 102 7 5C1 8

4 3 1 6 9 102 5 7 8P1

C1 4 3 1 6 9 102 7 5

(a) (b)

Figure 4. Procedure of insert mutation operation (a) and reverse mutation operation (b). 254

3.5.2. Inversion Mutation 255

(1) Two positions in the gene are randomly selected. 256
(2) The genes between the two positions were reversed, and the other gene positions are 257

unchanged. The specific operation mode is shown in Figure 4b. 258

3.6. Simulated Annealing Operation 259

In the process of the HGSA algorithm, better individuals obtained from GA are sent to SA for 260
improvement. The SA operation can help solutions to avoid falling into local optima. SA starts from 261
a higher temperature (i.e., the initial temperature) and randomly finds the global optimal solution of 262
the objective function in the neighborhood along with the continuous decrease at a certain annealing 263
rate of temperature. At last, the algorithm ends and outputs the optimal solution when the 264
termination condition of the algorithm is reached. The search efficiency of the SA is affected by some 265
parameters such as the initial temperature, the neighborhood structure, the annealing rate, and the 266
termination condition. These factors play a significant role in the performance of the HGSA and 267
should be carefully implemented as follows. 268

3.6.1. Neighborhood Structure 269

Figure 4. Procedure of insert mutation operation (a) and reverse mutation operation (b).

3.5.2. Inversion Mutation

(1) Two positions in the gene are randomly selected.

Appl. Sci. 2018, 8, 2621 10 of 20

(2) The genes between the two positions were reversed, and the other gene positions are
unchanged. The specific operation mode is shown in Figure 4b.

3.6. Simulated Annealing Operation

In the process of the HGSA algorithm, better individuals obtained from GA are sent to SA for
improvement. The SA operation can help solutions to avoid falling into local optima. SA starts from a
higher temperature (i.e., the initial temperature) and randomly finds the global optimal solution of the
objective function in the neighborhood along with the continuous decrease at a certain annealing rate
of temperature. At last, the algorithm ends and outputs the optimal solution when the termination
condition of the algorithm is reached. The search efficiency of the SA is affected by some parameters
such as the initial temperature, the neighborhood structure, the annealing rate, and the termination
condition. These factors play a significant role in the performance of the HGSA and should be carefully
implemented as follows.

3.6.1. Neighborhood Structure

The neighborhood structure will directly affect the local search efficiency. This paper adopts the
more common neighborhood structure in the production scheduling problem, namely, exchange and
insertion [54].

(1) Two points exchange. Exchange the genes at two positions which are randomly generated.
For example, the coding of a chromosome is “154837629. The randomly generated gene positions are 3
and 6. Then, the new chromosome produced by exchanging genes at these two positions is “15783429”.

(2) Insertion. Select two gene positions randomly. Then, the gene with the larger position number
is inserted into the previous position of the gene with the smaller position number, and the smaller
number position gene and the subsequent gene sequence is postponed. For example, the code of one
chromosome is “15783429”, the two randomly selected position numbers are 2 and 4, and the new
chromosome obtained after the insertion operation is “18573429”.

3.6.2. Initial Temperature

The initial temperature T0 of the SA should be properly set because a too high initial temperature
causes waste of calculation time, and a too small initial temperature causes the efficiency of the global
search to decrease. This article uses the following formula to set the initial temperature:

T0 = Umax −Umin. (10)

In the formula, Umax is the maximum value of all feasible solutions generated by the MME
algorithm, and Umin is the minimum value of all feasible solutions generated by the MME algorithm.

3.6.3. Annealing Rate

The annealing rate has a significant effect on the efficiency of the simulated annealing
algorithm [55]. In order to improve the search efficiency of the algorithm, a new annealing rate
method based on the hormone regulation mechanism [27] is used in this paper. The annealing rate can
be obtained by Formulas (10)–(12):

T(k + 1) = α× Fdown(k)−
k× ∆T
exp(k)

(11)

Fdown(k) =
1

1 + kn (12)

∆T = T(k + 1)− T(k) (13)

Appl. Sci. 2018, 8, 2621 11 of 20

where α is a small constant, k represents the number of iterations, n represents the Hill coefficient (n
≥ 1), ∆T is the difference between the current temperature (k + 1) and the previous temperature (k),
and ∆T < 0. The effect of the annealing rate function in the case of k = 20, n = 1; 1.2; 1.5; 2.5 is shown in
Figure 5. In this paper, the value of n is chosen to be 1.5.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 20

 297

Figure 5. Annealing rate function. 298

3.6.4. The Terminating Condition 299

In SA, the termination criterion of the annealing procedure consists of the Metropolis sampling 300
stability criterion of the inner loop and the external loop termination criterion. That is, when the new 301
state or the current state’s neighborhood solution space has been searched, the inner loop is jumped 302
out, and the temperature is returned to the outside cycle. The outer loop termination criterion is also 303
the algorithm termination criterion. In the algorithm design, the termination temperature is adopted. 304
When the current temperature reaches the termination temperature requirement, the outer loop is 305
terminated and the algorithm ends. 306

3.7. Benchmark Selected 307

In this work, 120 problems that were contributed to the OR-Library by E. TAILLARD [56] were 308
used. The 120 problems called Ta001, Ta002… Ta120, respectively, were by E. TAILLARD (1993) and 309
are often used to test the algorithm performance in flow shop problems. All these benchmarks can be 310
downloaded from: http://mistic.heig-311
vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html. 312

3.8. Computational Complexity 313

In this section, we derive the algorithmic complexity of the proposed scheme. The meanings of 314
the symbols used are as follows: n is the number of jobs, m is the number of machines, T0 is the initial 315
temperature, Tf is the termination temperature, P is the population size, and G is the number of 316
iterations. At first, the complexity of MME is O (n2m). In GA, the complexity of selection and mutation 317
are O(n×logn) and O(nm), respectively. The computational complexity of SA is O(Pn2m2logTf/T0). 318
The total computational complexity of HGSA is O (n2m)+G× O(n×logn)+G× O(n2m)+G× O(nm)+G× 319
O(Pn2m2logTf/T0). It can be seen that the complexity of the proposed algorithm is related to 320
population size, iterations, problem size, and parameters. 321

4. Experimental Results and Analysis 322

The algorithm of this paper was coded in Matlab language. The program running environment 323
was Intel Corei5, 2.19 GHz CPU, and 8 GB RAM. We selected 120 classic examples proposed by 324
Taillard as test data, and the data size of the Taillard benchmark was from 20jobs-5machines to 325
500jobs-20machines. The experimental parameters of the algorithm were set as follows [57,58]: the 326
population size was 100, the crossover probability was 0.9, and the mutation probability was 0.1. In 327
order to compare the performance of the HGSA with different Hill coefficients (n = 1; 1.2; 1.5; 2.5), the 328
average relative percentage deviation (ARPD) values of different Hill coefficients with other 329

Figure 5. Annealing rate function.

3.6.4. The Terminating Condition

In SA, the termination criterion of the annealing procedure consists of the Metropolis sampling
stability criterion of the inner loop and the external loop termination criterion. That is, when the new
state or the current state’s neighborhood solution space has been searched, the inner loop is jumped
out, and the temperature is returned to the outside cycle. The outer loop termination criterion is also
the algorithm termination criterion. In the algorithm design, the termination temperature is adopted.
When the current temperature reaches the termination temperature requirement, the outer loop is
terminated and the algorithm ends.

3.7. Benchmark Selected

In this work, 120 problems that were contributed to the OR-Library by E. TAILLARD [56] were
used. The 120 problems called Ta001, Ta002 . . . Ta120, respectively, were by E. TAILLARD (1993)
and are often used to test the algorithm performance in flow shop problems. All these benchmarks
can be downloaded from: http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html.

3.8. Computational Complexity

In this section, we derive the algorithmic complexity of the proposed scheme. The meanings
of the symbols used are as follows: n is the number of jobs, m is the number of machines, T0 is the
initial temperature, Tf is the termination temperature, P is the population size, and G is the number of
iterations. At first, the complexity of MME is O (n2m). In GA, the complexity of selection and mutation
are O(n × logn) and O(nm), respectively. The computational complexity of SA is O(Pn2m2logTf/T0).
The total computational complexity of HGSA is O (n2m) + G × O(n × logn) + G × O(n2m) + G ×
O(nm) + G × O(Pn2m2logTf/T0). It can be seen that the complexity of the proposed algorithm is
related to population size, iterations, problem size, and parameters.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

Appl. Sci. 2018, 8, 2621 12 of 20

4. Experimental Results and Analysis

The algorithm of this paper was coded in Matlab language. The program running environment
was Intel Corei5, 2.19 GHz CPU, and 8 GB RAM. We selected 120 classic examples proposed by
Taillard as test data, and the data size of the Taillard benchmark was from 20jobs-5machines to
500jobs-20machines. The experimental parameters of the algorithm were set as follows [57,58]: the
population size was 100, the crossover probability was 0.9, and the mutation probability was 0.1.
In order to compare the performance of the HGSA with different Hill coefficients (n = 1; 1.2; 1.5;
2.5), the average relative percentage deviation (ARPD) values of different Hill coefficients with other
parameters fixed are shown in Table 3. In these experiments, we chose the 200 × 20 and 500 × 20
instance in Talliard as the benchmarks. The results show that algorithm obtained the minimum ARPD
when the Hill coefficient was equal to 1.5. So, the value of the Hill coefficient was chosen to be 1.5.

Table 3. The average relative percentage deviation (ARPD) value of different Hill coefficients on the
performance of HGSA.

Problem Size Function Factor (n) ARPD%

200 × 20

1.0 9.21
1.2 7.82
1.5 5.16
2.0 8.34
2.5 11.06

500 × 20

1.0 6.28
1.2 5.49
1.5 3.29
2.0 7.13
2.5 9.56

In order to analyze the performance of the proposed algorithm, it was compared with the hybrid
genetic algorithm (HGA) in [18], the improved iterated greedy algorithm (IIGA) in [19], the iterated
greedy algorithm with a referenced insertion scheme (IG-RIS) in [20], the memetic algorithm (MA)
in [21], and the discrete self-organizing migrating algorithm (DSOMA) in [22]. Table 4 shows the
makespan results of the proposed algorithm and the other four algorithms tested in different sizes of
Taillard benchmark. Each data scale has 10 sets of data, and the boldface figure in Table 4 represents
the optimal solution obtained by the algorithms. It can be seen from the table that the algorithm
proposed in this paper improved the results of 109 out of 120 examples, which indicates that the best
results obtained by HGSA are better than the other four metaheuristics, reflecting the better search
quality of HGSA. Compared with the MA, IG-RIS, and HIGA algorithms, the results of HGSA were
greatly improved. Only in 11 cases with a small problem size were the results of HGSA slightly
inferior to DSOMA. As the scale of the study increased, HGSA reflected a more obvious advantage.
At the same time, the comparison with the HIGA and HGA algorithms showed that the MME initial
population generation method and SA local search method based on hormone regulation mechanism
could improve the optimization effect of the algorithm more effectively, especially for large-scale
examples. Figure 6 is the Gantt chart of the ta001. The chart shows that the makespan obtained by
proposed algorithm was 1324. The optimal schedule we got was [3, 17, 15, 16, 8, 6, 9, 18, 4, 2, 14, 5, 7,
11, 12, 10, 1, 19, 13, 20]. In order to further compare the advantages and disadvantages of the proposed
algorithm and the other algorithms, three parameters of average error (AE), improvement percentage
(IP), and ARPD were introduced to compare the effects of each algorithm.

Appl. Sci. 2018, 8, 2621 13 of 20

Table 4. Makespan comparison of different algorithms on Taillard benchmarks.

Problem
Size Instance Upper

Bound MA IG-RIS HGA IIGA DSOMA HGSA

20 × 5

Ta001 1278 - - 1449 1486 1374 1324
Ta002 1359 - - 1460 1528 1408 1442
Ta003 1081 - - 1386 1460 1280 1098
Ta004 1293 - - 1521 1588 1448 1469
Ta005 1235 - - 1403 1449 1341 1291
Ta006 1195 - - 1430 1481 1363 1391
Ta007 1239 - - 1461 1483 1381 1299
Ta008 1206 - - 1433 1482 1379 1292
Ta009 1230 - - 1398 1469 1373 1306
Ta010 1108 - - 1324 1377 1283 1233

20 × 10

Ta011 1582 - - 1955 2011 1698 1713
Ta012 1659 - - 2123 2166 1833 1718
Ta013 1496 - - 1912 1940 1676 1555
Ta014 1377 - - 1782 1811 1546 1516
Ta015 1419 - - 1933 1933 1617 1573
Ta016 1397 - - 1827 1892 1590 1457
Ta017 1484 - - 1944 1963 1622 1622
Ta018 1538 - - 2006 2057 1731 1749
Ta019 1593 - - 1908 1973 1747 1624
Ta020 1591 - - 2001 2051 1782 1722

20 × 20

Ta021 2297 - - 2912 2973 2436 2331
Ta022 2099 - - 2780 2582 2234 2280
Ta023 2326 - - 2922 3013 2479 2480
Ta024 2223 - - 2967 3001 2348 2362
Ta025 2291 - - 2953 3003 2435 2507
Ta026 2226 - - 2908 2988 2383 2375
Ta027 2273 - - 2970 3052 2390 2341
Ta028 2200 - - 2763 2839 2328 2279
Ta029 2237 - - 2972 3009 2363 2410
Ta030 2178 - - 2919 2979 2323 2401

50 × 5

Ta031 2724 3000 3002 3127 3161 3033 2731
Ta032 2834 3199 3201 3438 3432 3045 2934
Ta033 2621 3011 3011 3182 3211 3036 2638
Ta034 2751 3128 3128 3289 3339 3011 2785
Ta035 2863 3162 3166 3315 3356 3128 2864
Ta036 2829 3166 3169 3324 3347 3166 2907
Ta037 2725 3013 3013 3183 3231 3021 2764
Ta038 2683 3067 3073 3243 3235 3063 2706
Ta039 2552 2908 2908 3059 3072 2908 2610
Ta040 2782 3111 3120 3301 3317 3120 2784

50 × 10

Ta041 2991 3638 3638 4251 4274 3638 3198
Ta042 2867 3486 3507 4139 4177 3511 3020
Ta043 2839 3483 3488 4083 4099 3492 3055
Ta044 3063 3656 3656 4480 4399 3672 3124
Ta045 2976 3629 3629 4316 4322 3633 3129
Ta046 3006 3596 3621 4282 4289 3621 3293
Ta047 3093 3692 3696 4376 4420 3704 3232
Ta048 3037 3562 3572 4304 4318 3572 3390
Ta049 2897 3527 3532 4162 4155 3541 3237
Ta050 3065 3622 3624 4232 4283 3624 3251

Appl. Sci. 2018, 8, 2621 14 of 20

Table 4. Cont.

Problem
Size Instance Upper

Bound MA IG-RIS HGA IIGA DSOMA HGSA

50 × 20

Ta051 3850 4479 4500 6138 6129 4511 4105
Ta052 3704 4276 4276 5721 5725 4288 3992
Ta053 3640 4261 4289 5847 5862 4289 3900
Ta054 3720 4366 4377 5781 5788 4378 3921
Ta055 3610 4261 4268 5891 5886 4271 4020
Ta056 3681 4280 4280 5875 5863 4202 3971
Ta057 3704 4304 4308 5937 5962 4315 4093
Ta058 3691 4317 4326 5919 5926 4326 4090
Ta059 3743 4315 4316 5839 5876 4329 4107
Ta060 3756 4413 4428 5935 5958 4422 4113

100 × 5

Ta061 5493 6143 6151 6492 6397 6151 5536
Ta062 5268 6022 6022 6353 6234 6064 5302
Ta063 5175 5927 5927 6148 6121 6003 5221
Ta064 5014 5756 5772 6080 6026 5786 5044
Ta065 5250 5957 5960 6254 6200 6021 5358
Ta066 5135 5812 5852 6177 6074 5869 5197
Ta067 5246 5989 6004 6257 6274 6004 5414
Ta068 5094 5856 5915 6225 6130 5924 5130
Ta069 5448 6066 6123 6443 6370 6154 5546
Ta070 5322 6142 6159 6441 6381 6186 5480

100 × 10

Ta071 5770 7016 7042 8115 8077 7042 5964
Ta072 5349 6740 6791 7986 7880 6813 5596
Ta073 5676 6878 6936 8057 8028 6943 5796
Ta074 5781 7116 7187 8327 8348 7198 5928
Ta075 5467 6810 6810 7991 7859 6815 5748
Ta076 5303 6614 6666 7823 7801 6685 5446
Ta077 5595 6783 6801 7915 7866 6827 5679
Ta078 5617 6790 6874 7379 7913 6874 5723
Ta079 5871 6981 7055 8226 8161 6092 5934
Ta080 5845 6814 6965 8186 8114 6990 5998

100 × 20

Ta081 6202 7796 7844 10,745 10,700 7854 6395
Ta082 6183 7845 7894 10,655 10,594 7910 6433
Ta083 6271 7794 7794 10,672 10,611 7825 6689
Ta084 6269 7797 7899 10,630 10,607 7902 6419
Ta085 6314 7817 7901 10,548 10,539 7901 6536
Ta086 6364 7826 7888 10,700 10,690 7921 6527
Ta087 6268 7923 7930 10,827 10,825 8051 6542
Ta088 6401 7984 8022 10,863 10,839 8025 6712
Ta089 6275 7877 7969 10,751 10,723 7969 6760
Ta090 6434 7913 7933 10,794 10,798 8036 6621

200 × 10

Ta091 10,862 13,348 13,406 15,739 15,319 13,507 11,120
Ta092 10,480 13,242 13,313 15,534 15,085 16,458 10,658
Ta093 10,922 13,318 13,416 15,755 15,376 13,521 11,224
Ta094 10,889 13,290 13,344 15,842 15,200 13,686 11,075
Ta095 10,524 13,247 13,360 15,692 15,209 13,547 10,793
Ta096 10,326 13,079 13,192 15,622 15,109 13,247 10,467
Ta097 10,854 13,517 13,598 15,877 15,395 13,910 11,394
Ta098 10,730 13,483 13,504 15,733 15,237 13,830 11,011
Ta099 10,438 13,277 13,310 15,573 15,100 13,410 10,725
Ta100 10,657 13,325 13,439 15,803 15,340 13,744 10,786

Appl. Sci. 2018, 8, 2621 15 of 20

Table 4. Cont.

Problem
Size Instance Upper

Bound MA IG-RIS HGA IIGA DSOMA HGSA

200 × 20

Ta101 11,195 14,912 14,912 20,148 19,681 15,027 11,642
Ta102 11,203 14,876 15,002 20,539 20,096 15,211 11,683
Ta103 11,281 15,057 15,186 20,511 19,913 15,247 11,930
Ta104 11,275 14,975 15,082 20,461 19,928 15,174 11,791
Ta105 11,259 14,733 14,970 20,339 19,843 15,047 11,728
Ta106 11,176 14,861 15,101 20,501 19,942 15,212 11,690
Ta107 11,360 14,988 15,099 20,680 20,112 15,168 11,958
Ta108 11,334 14,926 15,141 20,614 20,056 15,247 11,730
Ta109 11,192 14,885 15,034 20,300 19,918 15,136 12,138
Ta110 11,288 14,921 15,122 20,437 19,935 15,243 12,084

500 × 20

Ta111 26,059 35,677 35,372 49,095 46,689 37,064 26,859
Ta112 26,520 35,953 35,743 49,461 47,275 37,419 27,220
Ta113 26,371 35,732 35,452 48,777 46,544 37,059 27,511
Ta114 26,456 36,084 35,687 49,283 46,899 37,014 26,912
Ta115 26,334 35,774 35,417 48,950 46,741 36,894 26,930
Ta116 26,477 35,948 35,747 49,533 46,941 37,372 27,354
Ta117 26,389 35,631 35,395 48,943 46,509 36,698 26,888
Ta118 26,560 35,943 35,568 49,277 46,873 36,944 27,229
Ta119 26,005 35,658 35,304 49,207 46,743 36,862 28,103
Ta120 26,457 36,016 35,643 49,092 46,847 37,098 27,290

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 20

Ta115 26,334 35,774 35,417 48,950 46,741 36,894 26,930

Ta116 26,477 35,948 35,747 49,533 46,941 37,372 27,354

Ta117 26,389 35,631 35,395 48,943 46,509 36,698 26,888

Ta118 26,560 35,943 35,568 49,277 46,873 36,944 27,229

Ta119 26,005 35,658 35,304 49,207 46,743 36,862 28,103

Ta120 26,457 36,016 35,643 49,092 46,847 37,098 27,290

 356

Figure 6. Gantt chart of the Ta001. 357

(1) AE represents the average error between the makespan of the algorithms and the lowest 358
known upper bound values. The formula is 359

1

1
AE 100

k
opt i

opti

z z

K z

 (14)

where zopt is the known upper bound value for each instance, zi is the optimal makespan of each 360
algorithm, and K is the number of instances. The average error comparison results of several 361
algorithms are shown in Figure 7. As can be seen from the figure, the lowest AE value of HGSA in 362
this paper was 5.58, which was lower than the lowest value of 20.516 for the DSOMA algorithm. 363

MA IG-RIS HGA IIGA DSOMA HGSA

A
E

0

10

20

30

40

50

22.573 22.986

45.298 44.514

20.516

5.58

 364

Figure 7. Comparison of average errors (AEs) on Taillard benchmarks. 365

Figure 6. Gantt chart of the Ta001.

(1) AE represents the average error between the makespan of the algorithms and the lowest
known upper bound values. The formula is

AE =
1
K
·

k

∑
i=1

zopt − zi

zopt
·100 (14)

where zopt is the known upper bound value for each instance, zi is the optimal makespan of each
algorithm, and K is the number of instances. The average error comparison results of several algorithms
are shown in Figure 7. As can be seen from the figure, the lowest AE value of HGSA in this paper was
5.58, which was lower than the lowest value of 20.516 for the DSOMA algorithm.

Appl. Sci. 2018, 8, 2621 16 of 20

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 20

Ta115 26,334 35,774 35,417 48,950 46,741 36,894 26,930

Ta116 26,477 35,948 35,747 49,533 46,941 37,372 27,354

Ta117 26,389 35,631 35,395 48,943 46,509 36,698 26,888

Ta118 26,560 35,943 35,568 49,277 46,873 36,944 27,229

Ta119 26,005 35,658 35,304 49,207 46,743 36,862 28,103

Ta120 26,457 36,016 35,643 49,092 46,847 37,098 27,290

 356

Figure 6. Gantt chart of the Ta001. 357

(1) AE represents the average error between the makespan of the algorithms and the lowest 358
known upper bound values. The formula is 359

1

1
AE 100

k
opt i

opti

z z

K z

 (14)

where zopt is the known upper bound value for each instance, zi is the optimal makespan of each 360
algorithm, and K is the number of instances. The average error comparison results of several 361
algorithms are shown in Figure 7. As can be seen from the figure, the lowest AE value of HGSA in 362
this paper was 5.58, which was lower than the lowest value of 20.516 for the DSOMA algorithm. 363

MA IG-RIS HGA IIGA DSOMA HGSA

A
E

0

10

20

30

40

50

22.573 22.986

45.298 44.514

20.516

5.58

 364

Figure 7. Comparison of average errors (AEs) on Taillard benchmarks. 365
Figure 7. Comparison of average errors (AEs) on Taillard benchmarks.

(2) IP represents the improvement percentage on makespan of the HGSA algorithm compared
with the other algorithms. The formula is

IP =
CHGSA − CX

CHGSA
·100% (15)

where CHGSA is the minimum makespan obtained by the HGSA algorithm, and CX is the minimum
makespan obtained by the other algorithms. Figure 8 shows the percentage improvement on makespan
of the HGSA algorithm compared to the MA, IG-RIS, IIGA, and DSOMA algorithms. It can be seen
from the figure that the superiority of the HGSA algorithm is not obvious compared with other
algorithms when the scale of the benchmark is small. In the 20 × 20 instances, the HGSA algorithm
performed slightly weaker than the DSOMA algorithm. However, with the increase of instances scale,
that is, the increasing of workpieces and machine tools number, the advantages of HGSA became
increasingly obvious. In the 500 × 20 instances, HGSA had an improvement of 31.7%, 30.5%, 80.6%,
36.1%, and 71.9% compared to MA, G-RIS, HGA, DSOMA, and IIGA, respectively. As the scale of
instances increased, the improvement effect was more obvious, indicating that the algorithm performed
better when the schedule was larger.

(3) ARPD represents the average relative percentage deviation between the result obtained by the
algorithm and the optimal value. The formula is

ARPD =
1
K
·

k

∑
i=1

Cxi − Copti

Copti
× 100% (16)

where K is the number of the same scale instances, Cxi is the makespan of the algorithm x on the ith
instance of the same size, and Copti is the optimal value on the ith instance of the same size. Figure 9
shows that the ARPD of HGSA was similar to that of the DSOMA algorithm in the 20 × 20 instances,
which was approximately 6%. In the other instances, the ARPD of HGSA, which were all less than
9%, was significantly lower than that of the existing algorithms. This demonstrates that the results
obtained by our HGSA algorithm can be closer to the theoretical optimal values (upper bound) of these
benchmark instances. Furthermore, the results show that HGSA performs well when the population
size of jobs and the number of machines increases. Furthermore, the results show that HGSA performs
well when the population size of jobs and the number of machines increases.

Appl. Sci. 2018, 8, 2621 17 of 20

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 20

(2) IP represents the improvement percentage on makespan of the HGSA algorithm compared 366
with the other algorithms. The formula is 367

100%HGSA X

HGSA

C C
IP

C

 (15)

where CHGSA is the minimum makespan obtained by the HGSA algorithm, and CX is the minimum 368
makespan obtained by the other algorithms. Figure 8 shows the percentage improvement on 369
makespan of the HGSA algorithm compared to the MA, IG-RIS, IIGA, and DSOMA algorithms. It 370
can be seen from the figure that the superiority of the HGSA algorithm is not obvious compared with 371
other algorithms when the scale of the benchmark is small. In the 20×20 instances, the HGSA 372
algorithm performed slightly weaker than the DSOMA algorithm. However, with the increase of 373
instances scale, that is, the increasing of workpieces and machine tools number, the advantages of 374
HGSA became increasingly obvious. In the 500×20 instances, HGSA had an improvement of 31.7%, 375
30.5%, 80.6%, 36.1%, and 71.9% compared to MA, G-RIS, HGA, DSOMA, and IIGA, respectively. As 376
the scale of instances increased, the improvement effect was more obvious, indicating that the 377
algorithm performed better when the schedule was larger. 378

PROBLEM SIZE

20*5 20*10 20*20 50*5 50*10 50*20 100*5 100*10 100*20 200*10 200*20 500*20

IG
S

A

IM

P
R

O
V

E
M

E
N

T
%

-20

0

20

40

60

80

100

HGSA vs MA

HGSA vs IG-RIS

HGSA vs HGA

HGSA vs DSOMA

HGSA vs IIGA

 379

Figure 8. Improvement percentage (IP) of HGSA with other algorithms for makespan criterion. 380

(3) ARPD represents the average relative percentage deviation between the result obtained by 381
the algorithm and the optimal value. The formula is 382

1

1
ARPD 100%

k
xi opti

optii

C C

K C

 (16)

where K is the number of the same scale instances, Cxi is the makespan of the algorithm x on the ith 383
instance of the same size, and Copti is the optimal value on the ith instance of the same size. Figure 9 384
shows that the ARPD of HGSA was similar to that of the DSOMA algorithm in the 20×20 instances, 385
which was approximately 6%. In the other instances, the ARPD of HGSA, which were all less than 386
9%, was significantly lower than that of the existing algorithms. This demonstrates that the results 387

Figure 8. Improvement percentage (IP) of HGSA with other algorithms for makespan criterion.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 17 of 20

obtained by our HGSA algorithm can be closer to the theoretical optimal values (upper bound) of 388
these benchmark instances. Furthermore, the results show that HGSA performs well when the 389
population size of jobs and the number of machines increases. Furthermore, the results show that 390
HGSA performs well when the population size of jobs and the number of machines increases. 391

PROBLEM SIZE

20*5 20*10 20*20 50*5 50*10 50*20 100*5 100*10 100*20 200*10 200*20 500*20

A
P

R
D

%

0

20

40

60

80

100

MA

IG-RIS

HGA

IIGA

DSOMA

HGSA

 392

Figure 9. Comparison of ARPD on Taillard benchmarks. 393

5. Conclusions and Future Work 394

In this paper, a hybrid genetic simulated annealing algorithm based on the hormone regulation 395
mechanism was designed for the flow shop scheduling problem. In order to ensure the quality of the 396
initial population, the MME algorithm, combined with the NEH and MM algorithms, was used to 397
generate the initial population with a certain quality and diversity. Then, SA based on the hormone 398
regulation mechanism was combined with GA to balance the efficiency and global search ability of 399
the algorithm. Furthermore, randomly selected cross-mutation methods were introduced in GA to 400
obtain promising results. Through the test on Talliard benchmarks, the results of HGSA were 401
compared with MA, IG-RIS, HGA, IIGA, and DSOMA in terms of makespan, AE, IP, and ARPD. The 402
results of our HGSA algorithm were closer to the upper bound of the Talliard benchmarks, which 403
verified the effectiveness of the HGSA. In future research, we plan to add an energy consumption 404
objective into the flow shop problem. We will also adapt our algorithm and apply it to the flow shop 405
scheduling problem with job random arrivals together with an energy saving model. In addition, the 406
proposed algorithm can also be extended to solve hybrid flow shop scheduling and job shop 407
scheduling problems. 408

Author Contributions: H.W., S.L., and J.H. conceived of and designed the study. H.W., H.J., and J.H. worked 409
on the algorithm design. H.W. and J.H. wrote the manuscript, made the figures, and reformatted the manuscript. 410
All authors have read and approved the final manuscript. 411

Funding: This work is supported by the National Natural Science Foundation of China under Grant Nos. 412
51475097, 91746116, and 51741101; and Science and Technology Foundation of Guizhou Province under Grant 413
Nos. [2015]4011, [2016]5013, [2015]02, and [2017]239. 414

Conflicts of Interest: The authors declare no conflict of interest. 415

Figure 9. Comparison of ARPD on Taillard benchmarks.

5. Conclusions and Future Work

In this paper, a hybrid genetic simulated annealing algorithm based on the hormone regulation
mechanism was designed for the flow shop scheduling problem. In order to ensure the quality of the
initial population, the MME algorithm, combined with the NEH and MM algorithms, was used to
generate the initial population with a certain quality and diversity. Then, SA based on the hormone

Appl. Sci. 2018, 8, 2621 18 of 20

regulation mechanism was combined with GA to balance the efficiency and global search ability of the
algorithm. Furthermore, randomly selected cross-mutation methods were introduced in GA to obtain
promising results. Through the test on Talliard benchmarks, the results of HGSA were compared
with MA, IG-RIS, HGA, IIGA, and DSOMA in terms of makespan, AE, IP, and ARPD. The results of
our HGSA algorithm were closer to the upper bound of the Talliard benchmarks, which verified the
effectiveness of the HGSA. In future research, we plan to add an energy consumption objective into the
flow shop problem. We will also adapt our algorithm and apply it to the flow shop scheduling problem
with job random arrivals together with an energy saving model. In addition, the proposed algorithm
can also be extended to solve hybrid flow shop scheduling and job shop scheduling problems.

Author Contributions: H.W., S.L., and J.H. conceived of and designed the study. H.W., H.J., and J.H. worked on
the algorithm design. H.W. and J.H. wrote the manuscript, made the figures, and reformatted the manuscript.
All authors have read and approved the final manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant No. 51475097,
91746116, and 51741101; and Science and Technology Foundation of Guizhou Province under Grant No. [2015]4011,
[2016]5013, [2015]02, and [2017]239.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Naval Res.
Logist. Q. 2010, 1, 61–68. [CrossRef]

2. Hong, Z.Y.; Pang, H.L. Study on a constructive heuristic algorithm based on compromise policy for Blocking
flow-shop scheduling. Syst. Eng. Theory Pract. 2008, 28, 114–118.

3. Ignall, E.; Schrage, L. Application of the Branch and Bound Technique to Some Flow-Shop Scheduling
Problems. Oper. Res. 1965, 13, 400–412. [CrossRef]

4. Bansal, S.P. Minimizing the Sum of Completion Times of n Jobs over m Machines in a Flowshop A Branch
and Bound Approach. AIIE Trans. 1977, 9, 306–311. [CrossRef]

5. Nawaz, M.E.E.E., Jr.; Ham, I. A heuristic algorithm for the m -machine, n -job flow-shop sequencing problem.
Omega 1983, 11, 91–95. [CrossRef]

6. Cui, Q.; Xiuli, W.U.; Jianjun, Y.U. Improved genetic algorithm variable neighborhood search for solving
hybrid flow shop scheduling problem. Comput. Integr. Manuf. Syst. 2017, 23, 1917–1927.

7. Marichelvam, M.K.; Prabaharan, T.; Yang, X.S. Improved cuckoo search algorithm for hybrid flow shop
scheduling problems to minimize makespan. Appl. Soft Comput. 2014, 19, 93–101. [CrossRef]

8. Burdett, R.L.; Kozan, E. A sequencing approach for creating new train timetables. OR Spectr. 2010, 32,
163–193. [CrossRef]

9. Rathinam, B. Rule based heuristic approach for minimizing total flow time in permutation flow shop
scheduling. Teh. Vjesn. 2015, 22, 25–32. [CrossRef]

10. Govindan, K.; Balasundaram, R.; Baskar, N.; Asokan, P. A Hybrid Approach for Minimizing Makespan In
Permutation Flowshop Scheduling. J. Syst. Sci. Syst. Eng. 2017, 26, 50–76. [CrossRef]

11. Han, Y.Y.; Gong, D.; Sun, X. A discrete artificial bee colony algorithm incorporating differential evolution for
the flow-shop scheduling problem with blocking. Eng. Optim. 2015, 47, 927–946. [CrossRef]

12. Pan, C.H.; Huang, H.C. A hybrid genetic algorithm for no-wait job shop scheduling problems.
Expert Syst. Appl. 2009, 36, 5800–5806. [CrossRef]

13. Gao, K.; Pan, Q.; Suganthan, P.N.; Li, J. Effective heuristics for the no-wait flow shop scheduling problem
with;total flow time minimization. Int. J. Adv. Manuf. Technol. 2013, 66, 1563–1572. [CrossRef]

14. Bertolissi, E. Heuristic algorithm for scheduling in the no-wait flow-shop. J. Mater. Process. Technol. 2000, 107,
459–465. [CrossRef]

15. Nowicki, E.; Smutnicki, C. A fast tabu search algorithm for the permutation flow-shop problem. Eur. J.
Oper. Res. 1996, 91, 160–175. [CrossRef]

16. Sayoti, F.; Ri, M.E. Golden Ball Algorithm for solving Flow Shop Scheduling Problem. Ijimai 2016, 4, 15–18.
[CrossRef]

http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1287/opre.13.3.400
http://dx.doi.org/10.1080/05695557708975160
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1016/j.asoc.2014.02.005
http://dx.doi.org/10.1007/s00291-008-0143-6
http://dx.doi.org/10.17559/TV-20130704132725
http://dx.doi.org/10.1007/s11518-016-5297-1
http://dx.doi.org/10.1080/0305215X.2014.928817
http://dx.doi.org/10.1016/j.eswa.2008.07.005
http://dx.doi.org/10.1007/s00170-012-4440-5
http://dx.doi.org/10.1016/S0924-0136(00)00720-2
http://dx.doi.org/10.1016/0377-2217(95)00037-2
http://dx.doi.org/10.9781/ijimai.2016.413

Appl. Sci. 2018, 8, 2621 19 of 20

17. Kasihmuddin, M.S.B.M.; Mansor, M.A.B.; Sathasivam, S. Genetic Algorithm for Restricted Maximum
k-Satisfiability in the Hopfield Network. Int. J. Interact. Multimedia Artif. Intell. 2016, 4, 52.

18. Tseng, L.; Lin, Y. A hybrid genetic algorithm for no-wait flowshop scheduling problem. Int. J. Prod. Econ.
2010, 128, 144–152. [CrossRef]

19. Ding, J.Y.; Song, S.; Gupta, J.N.; Zhang, R.; Chiong, R.; Wu, C. An improved iterated greedy algorithm with a
Tabu-based reconstruction strategy for the no-wait flowshop scheduling problem. Appl. Soft Comput. 2015,
30, 604–613. [CrossRef]

20. Tasgetiren, M.F.; Kizilay, D.; Pan, Q.K.; Suganthan, P.N. Iterated greedy algorithms for the blocking flowshop
scheduling problem with makespan criterion. Comput. Oper. Res. 2017, 77, 111–126. [CrossRef]

21. Pan, Q.K.; Wang, L.; Sang, H.Y.; Li, J.Q.; Liu, M. A High Performing Memetic Algorithm for the Flowshop
Scheduling Problem with Blocking. IEEE Trans. Autom. Sci. Eng. 2013, 10, 741–756.

22. Davendra, D.; Bialicdavendra, M. Scheduling flow shops with blocking using a discrete self-organising
migrating algorithm. Int. J. Prod. Res. 2013, 51, 2200–2218. [CrossRef]

23. Eddaly, M.; Jarboui, B.; Siarry, P. Combinatorial particle swarm optimization for solving blocking flowshop
scheduling problem. J. Comput. Des. Eng. 2016, 3, 295–311. [CrossRef]

24. Burdett, R.L.; Kozan, E. Evolutionary algorithms for flowshop sequencing with non-unique jobs. Int. Trans.
Oper. Res. 2000, 7, 401–418. [CrossRef]

25. Yin, H.L. Genetic Algorithm Nested with Simulated Annealing for Big Job Shop Scheduling Problems.
In Proceedings of the 2013 9th International Conference on Computational Intelligence and Security (CIS),
Emei Moutain, China, 14–15 December 2013.

26. Andresen, M.; BräSel, H.; MöRig, M.; Tusch, J.; Werner, F.; Willenius, P. Simulated annealing and genetic
algorithms for minimizing mean flow time in an open shop. Math. Comput. Model. 2008, 48, 1279–1293.
[CrossRef]

27. Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop
using an improved genetic-simulated annealing algorithm. Robot. Comput.-Integr. Manuf. 2013, 29, 418–429.
[CrossRef]

28. Ronconi, D.P. A note on constructive heuristics for the flowshop problem with blocking. Int. J. Prod. Econ.
2004, 87, 39–48. [CrossRef]

29. Merz, P.; Freisleben, B. Memetic Algorithms for the Traveling Salesman Problem. Complex Syst. 1997, 13,
297–345.

30. Abdoun, O.; Abouchabaka, J.; Tajani, C. Analyzing the Performance of Mutation Operators to Solve the
Travelling Salesman Problem. Int. J. Emerg. Sci. 2012, 2, 61–77.

31. Koulamas, C.; Kyparisis, G.J. The three-stage assembly flowshop scheduling problem. Comput. Oper. Res.
2001, 28, 689–704. [CrossRef]

32. Chang, P.; Hsieh, J.; Lin, S. The development of gradual-priority weighting approach for the multi-objective
flowshop scheduling problem. Int. J. Prod. Econ. 2002, 79, 171–183. [CrossRef]

33. Fink, A.; Vos, S. Solving the continuous flow-shop scheduling problem by metaheuristics. Eur. J. Oper. Res.
2003, 151, 400–414. [CrossRef]

34. Wang, J.; Xia, Z.Q. Flow-shop scheduling with a learning effect. J. Oper. Res. Soc. 2005, 56, 1325–1330.
[CrossRef]

35. Agarwal, A.; Colak, S.; Eryarsoy, E. Improvement heuristic for the flow-shop scheduling problem:
An adaptive-learning approach. Eur. J. Oper. Res. 2006, 169, 801–815. [CrossRef]

36. Rajendran, C.; Ziegler, H. Ant-colony algorithms for permutation flowshop scheduling to minimize
makespan/total flowtime of jobs. Eur. J. Oper. Res. 2007, 155, 426–438. [CrossRef]

37. Yagmahan, B.; Yenisey, M.M. Ant colony optimization for multi-objective flow shop scheduling problem.
Comput. Ind. Eng. 2008, 54, 411–420. [CrossRef]

38. Zhang, G.; Shao, X.; Li, P.; Gao, L. An effective hybrid particle swarm optimization algorithm for
multi-objective flexible job-shop scheduling problem. Comput. Ind. Eng. 2009, 56, 1309–1318. [CrossRef]

39. Sayadi, M.K.; Ramezanian, R.; Ghaffarinasab, N. A discrete firefly meta-heuristic with local search for
makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput. 2010, 1,
1–10. [CrossRef]

40. Pan, Q.K.; Tasgetiren, M.F.; Suganthan, P.N.; Chua, T.J. A discrete artificial bee colony algorithm for the
lot-streaming flow shop scheduling problem. China Mech. Eng. 2011, 181, 2455–2468. [CrossRef]

http://dx.doi.org/10.1016/j.ijpe.2010.06.006
http://dx.doi.org/10.1016/j.asoc.2015.02.006
http://dx.doi.org/10.1016/j.cor.2016.07.002
http://dx.doi.org/10.1080/00207543.2012.711968
http://dx.doi.org/10.1016/j.jcde.2016.05.001
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00207.x
http://dx.doi.org/10.1016/j.mcm.2008.01.002
http://dx.doi.org/10.1016/j.rcim.2013.04.001
http://dx.doi.org/10.1016/S0925-5273(03)00065-3
http://dx.doi.org/10.1016/S0305-0548(00)00004-6
http://dx.doi.org/10.1016/S0925-5273(02)00141-X
http://dx.doi.org/10.1016/S0377-2217(02)00834-2
http://dx.doi.org/10.1057/palgrave.jors.2601856
http://dx.doi.org/10.1016/j.ejor.2004.06.039
http://dx.doi.org/10.1016/S0377-2217(02)00908-6
http://dx.doi.org/10.1016/j.cie.2007.08.003
http://dx.doi.org/10.1016/j.cie.2008.07.021
http://dx.doi.org/10.5267/j.ijiec.2010.01.001
http://dx.doi.org/10.1016/j.ins.2009.12.025

Appl. Sci. 2018, 8, 2621 20 of 20

41. Deng, G.; Gu, X. A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop
scheduling problem with makespan criterion. Comput. Oper. Res. 2012, 39, 2152–2160. [CrossRef]

42. Li, X.; Yin, M. A hybrid cuckoo search via Lévy flights for the permutation flow shop scheduling problem.
Int. J. Prod. Res. 2013, 51, 4732–4754. [CrossRef]

43. Xie, Z.; Zhang, C.; Shao, X.; Lin, W.; Zhu, H. An effective hybrid teaching–learning-based optimization
algorithm for permutation flow shop scheduling problem. Adv. Eng. Softw. 2014, 77, 35–47. [CrossRef]

44. Lin, Q.; Gao, L.; Li, X.; Zhang, C. A hybrid backtracking search algorithm for permutation flow-shop
scheduling problem minimizing makespan and energy consumption. Comput. Ind. Eng. 2015, 85, 437–446.
[CrossRef]

45. Lin, J.; Zhang, S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly
permutation flow-shop scheduling problem. Comput. Ind. Eng. 2016, 97, 128–136. [CrossRef]

46. Deng, J.; Wang, L.; Wang, S.Y.; Zheng, X.L. A competitive memetic algorithm for the distributed two-stage
assembly flow-shop scheduling problem. Int. J. Prod. Res. 2017, 54, 3561–3577. [CrossRef]

47. Chen, P.; Wen, W.; Li, R.; Li, X. A hybrid backtracking search algorithm for permutation flow-shop
scheduling problem minimizing makespan and energy consumption. In Proceedings of the 2017 IEEE
International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore,
10–13 December 2017.

48. Bewoor, L.; Prakash, V.C.; Sapkal, S. Evolutionary Hybrid Particle Swarm Optimization Algorithm for
Solving NP-Hard No-Wait Flow Shop Scheduling Problems. Algorithms 2017, 10, 121. [CrossRef]

49. Sun, Z.; Gu, X. Hybrid Algorithm Based on an Estimation of Distribution Algorithm and Cuckoo Search for
the No Idle Permutation Flow Shop Scheduling Problem with the Total Tardiness Criterion Minimization.
Sustainability 2017, 9, 953.

50. Meng, T.; Pan, Q.K.; Li, J.Q.; Sang, H.Y. An improved migrating birds optimization for an integrated
lot-streaming flow shop scheduling problem. Swarm Evol. Comput. 2018, 38, 64–78. [CrossRef]

51. Yahyaoui, A.; Fnaiech, N.; Fnaiech, F. A Suitable Initialization Procedure for Speeding a Neural Network
Job-Shop Scheduling. IEEE Trans. Ind. Electron. 2011, 58, 1052–1060. [CrossRef]

52. Liu, S.Q.; Kozan, E. Scheduling a flow shop with combined buffer conditions. Int. J. Prod. Econ. 2009, 117,
371–380. [CrossRef]

53. Tao, S.; Wang, S. An algorithm for weighted sub-graph matching based on gradient flows. Inf. Sci. 2016,
340–341, 104–121. [CrossRef]

54. Ku, L. An Adaptive Variable Neighbourhood Search Algorithm for the Hybrid Flowshop Scheduling
Problem. Syst. Eng. 2015, 11, 121–129.

55. Dai, M.; Tang, D.; Zheng, K.; Cai, Q. An Improved Genetic-Simulated Annealing Algorithm Based on a
Hormone Modulation Mechanism for a Flexible Flow-Shop Scheduling Problem. Adv. Mech. Eng. 2013,
5, 124903. [CrossRef]

56. Taillard, E. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 1993, 64, 278–285. [CrossRef]
57. Salido, M.A.; Escamilla, J.; Giret, A.; Barber, F. A genetic algorithm for energy-efficiency in job-shop

scheduling. Int. J. Adv. Manuf. Technol. 2016, 85, 1303–1314. [CrossRef]
58. Rajkumar, R.; Shahabudeen, P. An improved genetic algorithm for the flowshop scheduling problem. Int. J.

Prod. Res. 2009, 47, 233–249. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cor.2011.10.024
http://dx.doi.org/10.1080/00207543.2013.767988
http://dx.doi.org/10.1016/j.advengsoft.2014.07.006
http://dx.doi.org/10.1016/j.cie.2015.04.009
http://dx.doi.org/10.1016/j.cie.2016.05.005
http://dx.doi.org/10.1080/00207543.2015.1084063
http://dx.doi.org/10.3390/a10040121
http://dx.doi.org/10.1016/j.swevo.2017.06.003
http://dx.doi.org/10.1109/TIE.2010.2048290
http://dx.doi.org/10.1016/j.ijpe.2008.11.007
http://dx.doi.org/10.1016/j.ins.2015.12.033
http://dx.doi.org/10.1155/2013/124903
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1007/s00170-015-7987-0
http://dx.doi.org/10.1080/00207540701523041
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Flow Shop Scheduling Problem Description
	Hybrid Genetic Simulated Annealing Algorithm
	Overview of the HGSA Algorithm
	Encoding Representation
	Initial Population
	Crossover Operation
	Location-Based Crossover
	Two-Point Crossover

	Mutation Operation
	Twors Mutation
	Inversion Mutation

	Simulated Annealing Operation
	Neighborhood Structure
	Initial Temperature
	Annealing Rate
	The Terminating Condition

	Benchmark Selected
	Computational Complexity

	Experimental Results and Analysis
	Conclusions and Future Work
	References

