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Featured Application: The current analysis can be applied to a wide variety of switched systems
with unstable subsystems, for instance power electronic, mechanical, aeronautic, and nuclear
plant systems, among others.

Abstract: This paper deals with the robust stability of a class of uncertain switched systems with
possibly unstable linear subsystems. In particular, conditions for global uniform exponential stability
are presented. In addition, a procedure to design a mode dependent average dwell time switching
signal that stabilizes a switched linear system composed of diagonalizable subsystems is established,
even if all of them are stable/unstable and time-varying (within design bounds). An illustrative
example of the stabilizing switching law design and numerical results are presented.

Keywords: switched systems analysis; mathematically-unstable subsystems; robust control demonstration

1. Introduction

In recent years, the interest in Switched Linear Systems (SLS) has increased because of its capability
to represent complex nonlinear systems in a more tractable math form, and their analysis has spread
out as a new branch of stability and control especially for SLS with one or more unstable subsystems,
while some of the Lyapunov and other theories can be applied to those with all stable subsystems [1,2].

State-dependent and time-dependent switching signals are the main approaches to design
stabilizing switching laws. In the former, the whole state space is usually divided to facilitate the search
for Lyapunov-like functions; unfortunately, the system’s states must be measurable or observable.
In the latter, time-constrained switching is used, wherein a stable subsystem is activated for enough
time to stabilize the entire system [3–6].

The stability of SLS with one or more unstable subsystems is now well established from the
stabilizing switching signal point of view [7–13]. However, studies on time-dependent switching
stabilization with Mode-Dependent Average Dwell Time (MDADT) dedicated to the robust stability of
time-varying SLS have remained unfinished.

The authors in [14] aimed at the robust stability of a discrete, positive, switched system,
with bounded control inputs and with stable and unstable subsystems; the examples presented
showed that a stabilizing MDADT signal can be easily designed. In [15] was presented a switching
stabilization of SLS composed of both stable and unstable subsystems, easily extendable to all stable or
unstable subsystems. Although the study had typographic errors, the authors presented important
results on stability and the switching MDADT signal design. In [16], a parameter-dependent MDADT
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switching scheme related to a set of parameter-dependent Lyapunov functions was proposed in
order to control a class of switching LPVsystems; the proposed approach was applied to satisfy the
overall control objectives related to a variable-sweep, wing-morphing aircraft. A full-envelope flight
controller using switched linear modeling based on MDADT, with Locally-Overlapped Subsystems
(LOSS), was proposed for a full-envelope flight in [17]. A stability proof by using a common Lyapunov
function for each LOSS was also reported. It is worth mentioning that each active subsystem can
only switch to another adjacent LOSS subsystem, and this particularity relaxed the controller, stability,
and control problem formulation. In [18], multiple co-positive Lyapunov functions and an MDADT
technique were combined to derive sufficient conditions for the input-output finite time stability
problem. Additionally, a controller was derived, and numerical examples were also provided to show
the feasibility of the proposed technique. A quasi-time dependent H-∞ robust controller for a switched
system with MDADT was proposed in [19]; a Lyapunov function was used to prove theoretical stability.
Numerical results in an SLS and practical results in a power electronic, boost converter were reported.
Unfortunately, the switching signal to control both systems had a variable frequency, which in the case
of the boost converter produced noise and EMI degradation. The stability analysis of time-varying
impulsive positive hybrid systems with time-varying, distributed delays, and all unstable subsystems,
by using an MDADT, was reported in [20]. Additionally, a concept of input-output finite time stability
was presented. Finally, their numerical simulations showed the feasibility of the proposed method.
It is worth mentioning the important contribution in the topic of adaptation and robustness of SLS
in [21]. This work was focused on four main areas: adaptive tracking using extended and average dwell
times, adaptive asymptotic tracking, robust adaptive tracking, adaptive stabilization with time-varying
delays, and robust stability and stabilization with switching delays.

It can be noticed from the above state of the art that the robust stability and stabilizing
switching MDADT signal design for SLS with any combination of stable/unstable systems is a
topic of recent interest for researchers and industry. Therefore, in this paper, the robust stability for
diagonalizable uncertain SLS is analyzed, and a new result is presented. Such analysis allows the
design of a stabilizing switching MDADT signal, and it is not restricted to positive systems, nor to all
stable/unstable subsystems.

Although this paper is inspired by [15], a generalization to uncertain SLSs is demonstrated by
analyzing the uncertain polytope for the design of a stabilizing switching law, and an additional
simplification of the conditions for stability is obtained. An illustrative example is presented,
and a numerical analysis complements the proposed approach.

This paper is organized as follows. Section 2 is aimed at the math preliminaries. The principal
result is presented in Section 3 and the numerical example in Section 4. Finally, conclusions are
presented in the last section.

2. Preliminaries

In this paper, R represents the real numbers’ set, I represents the positive integers’ set excluding
zero, In represents the set of integers { 1, ..., n } where n is the dimension of the system, Q is the identity
matrix of adequate dimensions, Z represents the positive integers’ set including zero, and the set
operations are denoted as follows: ⊂,⊆ for subset and strict subset, respectively, ∪,∩ for union and
intersection, respectively, ⊕ for addition, and C for the complement. Re(·), Max(·), Min(·) stands for
the real part, the maximum of real parts, and the minimum of real parts of a real or complex number.
λ(·) and δ(·) are the eigenvalues and singular values of a matrix. ‖ · ‖ and ‖ · ‖r denote the spectral
norm and the spectral norm with restriction to a subspace r, respectively.

Consider a Linear Time-Variant Switched System (LTVSS) as follows:

ẋ(t) = Aσ(t)x(t) (1)
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where x(t) ∈ Rn is the vector state, Aσ(t) ∈ Rn×n is a time-varying matrix that can commute
(e.g., from A1(t1) to A3(t2) to A2(t3)...), and σ(t) : t → I is the stabilization switching signal to be
designed (I = {1, 2, ..., s} ⊂ I, where s is the number of subsystems). For a switching sequence
t1, t2, ..., σ(t) is a piece-wise continuous function and σ(t) = p ∈ I, ∀t ∈ [ti, ti+1) with i ∈ I and
ti < ti+1 < ti+2, ...

The total number of time-varying entries of Ap(t) is denoted as v; if all of the entries of Ap(t) are
time varying, v = 2n×n. With k ≤ n denoting the row and l ≤ n the column of a matrix, an entry of
Ap(t) is denoted as a[p,k,l](t), and if it is known that a[p,k,l] ≤ a[p,k,l](t) ≤ a[p,k,l], each pth subsystem can
be written as a Linear Parameter-Variant Subsystem (LPVS) by a polytopic simplice representation [22]:

ẋ(t) = Ap(t)x(t) = Ap(θ(t))x(t) =

(
2v

∑
j=1

θj(t)A[p,j]

)
x(t) (2)

where θ ∈ Θ =
{

θ| 0 ≤ θj(t) ≤ 1, ∑ θj = 1, ∀j ∈ V = {1, ..., 2v}
}

, and A[p,j] is the jth vertex of Ap(θ(t)).
For instance, the vertexes can be built with the combinations of a[p,k,l] and a[p,k,l]:

Ap,1 =


a[p,1,1] a[p,1,2] ...
a[p,2,1] a[p,2,2] ...

...
...

. . .

 , Ap,2 =


a[p,1,1] a[p,1,2] ...
a[p,2,1] a[p,2,2] ...

...
...

. . .

 , Ap,3 =


a[p,1,1] a[p,1,2] ...
a[p,2,1] a[p,2,2] ...

...
...

. . .

 , ... (3)

Below are definitions and previous results to be used.

Definition 1 ([23]). Suppose A ∈ Rn×n, and S ⊆ Rn is a subspace. S is A-invariant if AS ⊆ S, that is,
∀b ∈ S⇒ Ab ∈ S.

In the following, σ(t) is considered a strict piecewise continuous (must commute), mode-dependent
average dwell time function; that is, each mode has its own average dwell time in order to obtain
more flexible and less conservative stability conditions, in comparison with analyzes that use a single
average dwell time [24]:

Definition 2. For a switching signal σ(t) with T ≥ t ≥ 0, let N[σ,p](T, t) be the quantity of switching events
(in [24], this term was originally called switching numbers; in this paper, this is changed for clearness to the
quantity of switching events) that the pth subsystem is activated along the interval [t, T] and Tp(T, t) the total
running time of the pth subsystem over the interval [t, T], p ∈ I. We say that σ(t) has a mode-dependent
average dwell time τp if there exist N[0,p] > 0 and τp > 0 such that:

N[σ,p](T, t) ≤ N[0,p] +
Tp(T, t)

τp
, ∀T ≥ t ≥ 0 (4)

In this paper, a mode-dependent average dwell time switching signal is denoted as σ(t) ∈
FMDADT [N[0,p], τp].

Definition 3. The equilibrium of x = 0 of (2) is Globally Uniformly Exponentially Stable (GUES) under
a certain switching signal σ(t) if for initial conditions x(t0), there exist constants η1 > 0, η2 > 0 such that the
solution of the system satisfies ‖x(t)‖ ≤ η1e−η2(t−t0 ‖x(t0)‖, ∀t ≥ t0.

3. Main Result

The whole state space can be divided into two subspaces SS
p and SU

p defined as follows:
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Definition 4. The stable subspace SS
p, p ∈ I, is spanned by the eigenvectors corresponding to the eigenvalues:

λk

(
2v

∑
j=1

θj(t)A[p,j]

)
,

k ∈ Ks
p = {m ∈ In| Re

(
λm

(
2v

∑
j=1

θj(t)A[p,j]

))
≥ 0, p ∈ I, θ ∈ Θ, T ≥ t ≥ 0}.

Definition 5. The unstable subspace SU
p , p ∈ I, is spanned by the eigenvectors corresponding to the eigenvalues:

λk

(
2v

∑
j=1

θj(t)A[p,j]

)
,

k ∈ Ku
p = {m ∈ In| Re

(
λm

(
2v

∑
j=1

θj(t)A[p,j]

))
< 0, p ∈ I, θ ∈ Θ, T ≥ t ≥ 0}.

On the other hand, the following proposition will be used later to demonstrate the main theorem:

Lemma 1. Consider the switched linear system (2). If S is Ap(θ(t))-invariant ∀p ∈ I and ∀θ ∈ Θ, then S is
eAp(θ(t))t-invariant ∀p ∈ I, ∀θ ∈ Θ, and ∀t ≥ 0.

Proof. Consider a fixed θ and p = 1 for a ∆ period, then Ap(θ) = A[p,∆] = A[1,1]. S is A[1,1]-invariant
∀x ∈ S by assumption; for any sequence of events in [p, ∆] ∈ Z2, p ∈ I, ∆ ∈ Z:

Ar
[p,∆]x = Ar−1

[p,∆]A[p,∆]x (5)

with x1 = A[p,∆]x ∈ S,
Ar
[p,∆]x = Ar−1

[p,∆]x1 (6)

with x2 = A[p,∆]x1 ∈ S,
Ar
[p,∆]x = Ar−2

[p,∆]x2 (7)

... (8)

with x∆ = A[p,∆]xr−1 ∈ S,
Ar
[p,∆]x = A[p,∆]xr ∈ S (9)

From the matrix exponential definition:

eA[p,∆]∆x = Qx + ∆A[p,∆]x +
∆2

2!
A2
[p,∆]x + ... +

∆r

r!
A2
[p,∆](θ)x + ... (10)

For sufficiently small values of ∆ in a succession [p1, ∆1], [p2, ∆2], [p3, ∆3], ... (without loss of
generality), one has the decomposition:

eAp(θ(t))tx =

(
Q + ∆1 A[p1,∆1]

+ ∆2 A[p2,∆2]
+ ... +

∆2
1 A2

[p1,∆1 ]
2! +

∆2
2 A2

[p2,∆2 ]
2! + ... +

∆3
1 A3

[p1,∆1 ]
3! + ...+

∆1∆2 A[p1,∆1]
A[p2,∆2]

+ ∆1∆3 A[p1,∆1]
A[p3,∆3]

+ ... + ∆1∆2
2 A2

[p2,∆2]
A[p2,∆2]

+ ...
)

x ∈ S
(11)

where properties for the sum and intersection of subsets are used to complete the proof.
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This last property is known and demonstrated, in a different way, by some authors as the cocycle
property (see for instance [25]).

Lemma 2. Consider the subsystem ẋ = Ap(θ(t))x and let:

λm
p =

{
Max

(
λk(A[p,j)]

)∣∣∣ Re
(

λk

(
A[p,j)]

))
< 0, p ∈ I, j ∈ {1, ..., 2v}, k ∈ In

}
and:

λM
p =

{
Max

(
λk(A[p,j)])

)∣∣∣ Re
(

λk

(
A[p,j)]

))
≥ 0, p ∈ I, j ∈ {1, ..., 2v}, k ∈ In

}
then there exists a constant εp > 0 such that:

‖eAp(θ(t))t‖SS ≤ eεp+λmt (12)

‖eAp(θ(t))t‖SU ≤ eεp+λMt (13)

where SS and SU are the stable and unstable subspaces of Ap(θ(t)), respectively.

Proof. Choosing from the set of diagonalizing matrices T[S,`], composed of the basis of SS (a matrix for
each stable vertex in the stable subspace), one has:∥∥∥eA(θ(t))t

∥∥∥
S
≤ T[S,M1]T[S,M2]

∥∥∥Diag
(

eA[ps ,j]
)∥∥∥ ≤ T[S,M1]T[S,M2]e

λm
(14)

where T[S,M1] = max
{∥∥∥T[S,`]

∥∥∥}, and T[S,M2] = max
{∥∥∥T−1

[S,`]

∥∥∥}.
On the other hand, choosing from the set of diagonalizing matrices T[U,`], composed of the basis

of SU (a matrix for each unstable vertex in the unstable subspace), the worst vertex one has:∥∥∥eA(θ(t))t
∥∥∥

U
≤ T[U,M1]T[U,M2]

∥∥∥Diag
(

eA[pu ,j]
)∥∥∥ ≤ T[U,M1]T[U,M2]e

λM
(15)

where T[U,M1] = max
{∥∥∥T[U,`]

∥∥∥}, and T[U,M2] = max
{∥∥∥T−1

[U,`]

∥∥∥}.
Setting:

εp = Max
{

Ln
(

T[S,M1]T[S,M2]

)
, Ln

(
T[U,M1]T[U,M2]

)}
(16)

completes the proof.

Theorem 1. Consider the switched linear polytopic system (2). For given constants:

0 < λM
p +

εp

τp
< αp, (17)

λm
p +

εp

τp
< βp < 0, (18)

p ∈ I, and θ ∈ Θ. If there exist two sets I1, I2 ⊂ I with I1 ∪ I2 = I such that Ω1 = ∑p∈I1
SU

p and
Ω2 = ∩p∈I2 SS

p are Ap(θ(t))-invariant ∀p ∈ I, C(Ω1) ⊇ ∩p∈I2 SS
p, then the system (2) is GUES for any

switching signal σ(t) ∈ FMDADT [N0p, τp] satisfying:

∑
p∈I1

αp∈I1Tp(T, 0) < − ∑
p∈I2

βpTp(T, 0)− ∑
p∈I

N[0,p]εp. (19)
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Proof. It is obvious that Ω1 and Ω2 are two subspaces in Rn, and it is also clear from the definitions of
Ω1 and Ω2 that:

Ω1 ∩Ω2 = ∅, (20)

C(Ω2) = C(∩p∈I1 SS
p) = ∑

p∈I1

C(SS
p) = ∑

p∈I1

SU
p = Ω1 (21)

which implies:
Ω1 ⊕Ω2 = Rn (22)

For any sufficiently large T > 0, let t0 = 0 and t1, t2..., ti, ti+1, ...tNT denote the switching times on
the interval [0, T]. With initial condition x(0) ∈ Rn, Lemma 1 yields:

x(T) = e
(T−tNT )A[θ(t),σ(tNT

)] ...e
(ti+1−ti)A[θ(t),σ(ti)] ...e

(t1−t0)A[θ(t),σ(t0)]x(0) (23)

Therefore, using (4) and Lemma 2:

‖x(T)‖ ≤ ∏
q∈Φ1

∥∥∥e(tq+1−tq)A[σ(tq),j]
∥∥∥

Ω1
∏

q∈Φ1

∥∥∥e(tq+1−tq)A[σ(tq),j]
∥∥∥

Ω2
‖x(0)‖

≤ ∏
q∈Φ1

∥∥∥e(tq+1−tq)A[σ(tq),j]
∥∥∥

SU
p

∏
q∈Φ1

∥∥∥e(tq+1−tq)A[σ(tq),j]
∥∥∥

SS
p
‖x(0)‖

≤ ∏
p∈I1

eN[σ,p](T,0)εp eλM
p Tp(T,0) ∏

p∈I2

eN[σ,p](T,0)εp eλm
p Tp(T,0) ‖x(0)‖

= e∑p∈I N[σ,p](T,0)εp e∑p∈I1
λM

p Tp(T,0)+∑p∈I2
λm

p Tp(T,0) ‖x(0)‖

≤ e∑p∈I N[0,p]εp e∑p∈I1
λM

p Tp(T,0)+∑p∈I2
λm

p Tp(T,0)+∑p∈I
εpTp(T,0)

τp ‖x(0)‖

≤ e∑p∈I N[0,p]εp e∑p∈I1

(
λM

p +
εp
τp

)
Tp(T,0)+∑p∈I2

(
λm

p +
εp
τp

)
Tp(T,0) ‖x(0)‖ (24)

where Φ1, Φ2 denote the sets of q satisfying σ(tq) ∈ I1, I2, respectively. Therefore, if:

τp ≥
εp

αp − λM
p

, ∀p ∈ I1 (25)

τp ≥
εp

βp − λm
p

, ∀p ∈ I2 (26)

is used, then:

‖x(T)‖ ≤ e∑p∈I N[0,p]εp e∑p∈I1
αpTp(T,0)+∑p∈I2

βpTp(T,0) ‖x(0)‖

which means that the system is GUES under MDADT, satisfying (19).

It is worth mentioning that this theorem can be used even if all of the subsystems are stable; in
such a case, I1 = ∅, I2 = I, Ω1 = ∅, Ω2 = Rn. Even more, the result can be used even if all of the
subsystems are unstable; in such a case, I2 = ∅, I1 = I, Ω2 = ∅, Ω1 = Rn.

4. Simulations

In this section is illustrated the main result of this paper through MATLAB simulations.
For simplicity and demonstrative reasons, the following system is proposed:

ẋ(t) = Aσ(t)x(t) = Aσ(θ(t))x(t) =

(
4

∑
j=1

θj(t)A[σ,j]

)
x(t), σ(t) : R→ {1, 2} (27)
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with vertexes:

A1,1 =

[
0.1074 0.0154
−0.0154 0.2026

]
, A1,2 =

[
0.0966 0.0206
−0.0206 0.2234

]
, A1,3 =

[
0.1069 0.0189
−0.0189 0.2231

]
,

A1,4 =

[
0.0971 0.0171
−0.0171 0.2029

]
, A2,1 =

[
−4.9701 −0.1995
0.1995 −6.3299

]
, A2,2 =

[
−5.4816 −0.1228
0.1228 −6.3184

]
,

A2,3 =

[
−4.9556 −0.2962
0.2962 −6.9744

]
, A2,4 =

[
−5.4671 −0.2194
0.2194 −6.9629

]
,

In Figure 1 is shown the dynamic behavior for the system (27), with nominal parameter values
and the switching law plotted in Figure 2. Note that while the first state converges to zero, the second
state is not GUES, and a switching law is designed based on the main result of this paper; the objective
is to design a switching signal p = σ(t) ∈ FMDADT [N[0,p], τp] such that (27) is GUES.

From Lemma 2, λM
1 = 0.22, λm

1 = ∅, λM
2 = ∅, λm

2 = −5.00,

T[U,1] =

[
0.90 0.15
0.15 0.90

]
, (28)

T[U,2] =

[
1 0.15

0.15 1

]
, (29)

εp = 0.6931 ∀p. Set Tp(T, t) = 26s, N[σ,1](T, t) = N[σ,2](T, t) = 26. For (4) and using τ1, τ2 ≤ 1,
then N[0,1] = N[0,2] = 1. From (17)–(19):

−5 +
0.6931

τ2
< β2 < 0 (30)

0 < 0.22 +
0.6931

τ1
< α1 (31)

26α1 < −26β2 − 1.3862 (32)

With τ1 = τ2 = 0.5s, β2 = 3.5 and α1 = 1 are selected, and all the conditions of Theorem 1
are satisfied.

Under the above designed switching law, simulations that include the introduction of
perturbations in the entries of Ap(θ) in aleatory sequences are performed. The entries are stepped
between their maximum and minimum values in order to illustrate the validity of the analysis.

Time (s)

0 5 10 15 20 25

S
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te

-2
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-1

-0.5

0

0.5

1

1.5
x

1

x
2

Figure 1. System trajectories for an arbitrary switching law.
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Time (s)

0 5 10 15 20 25

p

0.5

1

1.5

2

2.5

Figure 2. Arbitrary switching law that unstabilizes the system’s trajectories.

In Figure 3 are shown the system’s trajectories for an initial condition x1(0) = 1 and x2(0) = −1,
with the designed switching law of Figure 4 and with the Ap(θ) entries’ changes plotted in
Figure 5. Note that even under hard parameter changes (abrupt changes), the system’s trajectories
converge to zero.

Finally, the switching law is designed for the above example, with the approach in [15] in order
to show comparative results. Such an approach is selected to provide the fairest comparison: other
approaches, do not provide a switching signal design method and/or involve discrete systems,
state estimation, fuzzy logic, LMIresolution, etc. Recall that the approach in [15] is not intended to
be robust against abrupt parameter changes.

Using the nominal parameters according to [15], it is possible to find a diagonalizing matrix
such that ε1 = 0.3365, ε2 = 0.3023, λM

1 = 0.2, and λm
2 = 5.25. Selecting τ1 = 0.5s, it is obtained

that τ2 ≥ 2.42 s such that τ2 = 5s, and all of the stability conditions are met for the nominal system.
In Figure 6 is shown the state behavior for the same initial conditions of the previous example
(x1(0) = 1 and x2(0) = −1) and with the Ap(θ) entries’ changes plotted in Figure 5; since the time
restrictions for dwell times are more lax in such an approach, the transient state is longer than that
obtained with the approach of this paper (Figure 3). In Figure 7 are shown the phase portraits for
both approaches comparatively; note that the convergence with the presented approach in this paper
is achieved smoothly.
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1
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Figure 3. System trajectories, under arbitrary changes in parameters/entries of the system’s matrix
and the designed switching law.
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Figure 4. Designed switching law.
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Figure 6. System trajectories, under arbitrary changes in parameters/entries of the system’s matrix
with the switching law designed in [15].
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Figure 7. Phase portrait comparing [15] (upper plot) and the approach of this paper (lower plot).

5. Conclusions

This paper is aimed at the robust asymptotic stability of a class of time-variant switched linear
systems composed of stable and unstable subsystems or all stable/unstable subsystems.

The main result in this paper, allows the design of a switching law ensuring the asymptotic
stability; this is exemplified with numerical results that include abrupt, but bounded changes in the
parameters and a comparison with similar (not robust) approaches, illustrating that the designed
switching law smoothly stabilizes the parameter-varying switched system.
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