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Featured Application: Hyperspectral imaging may provide lumber mills with a cost-effective
method to efficiently identify areas of high and low stiffness within logs prior to sawing, and
thus allow mills to make more informed decisions on a log-by-log basis for sawing solutions.

Abstract: Near-infrared (NIR) spectroscopy and NIR hyperspectral imaging (NIR-HSI) were
compared for the rapid estimation of physical and mechanical properties of No. 2 visual grade 2 × 4
(38.1 mm by 88.9 mm) Douglas-fir structural lumber. In total, 390 lumber samples were acquired from
four mills in North America and destructively tested through bending. From each piece of lumber,
a 25-mm length block was cut to collect diffuse reflectance NIR spectra and hyperspectral images.
Calibrations for the specific gravity (SG) of both the lumber (SGlumber) and 25-mm block (SGblock) and
the lumber modulus of elasticity (MOE) and modulus of rupture (MOR) were created using partial
least squares (PLS) regression and their performance checked with a prediction set. The strongest
calibrations were based on NIR spectra; however, the NIR-HSI data provided stronger predictions
for all properties. In terms of fit statistics, SGblock gave the best results, followed by SGlumber, MOE,
and MOR. The NIR-HSI SGlumber, MOE, and MOR calibrations were used to predict these properties
for each pixel across the transverse surface of the scanned samples, allowing SG, MOE, and MOR
variation within and among rings to be observed.

Keywords: bending stiffness; bending strength; NIR; nondestructive testing; Pseudotsuga menziesii;
wood and fiber quality

1. Introduction

The Northwestern United States accounts for a large proportion of the structural lumber produced
in the United States, to which Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is the most important
species [1,2]. Douglas-fir is increasingly being sourced from forest plantations that yield excellent
growth, which allows for shorter rotation lengths than in the past [3–6]. The wood from stands
harvested from short rotations have a higher proportion of corewood (juvenile wood), which has a
lower modulus of elasticity (MOE or stiffness), lower modulus of rupture (MOR or strength), and
lower dimensional stability compared to wood harvested from older stands [7–9].
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Due to the variable nature of wood, there is a need to better segregate high-quality material from
low-quality material. Prior to sawing logs into lumber, logs can be evaluated by measuring the acoustic
velocity, with high velocity indicating stiffer wood than logs with low velocity [10–14]. Segregating
logs by acoustic velocity has its limitations in that logs with low acoustic velocity can contain lumber
with high stiffness and vice versa, because much of the variation in stiffness within a log is due to the
radial variability associated with corewood and outerwood variation [15,16]. Once sawn into lumber,
the stiffness of a piece can be assessed by measuring the density and the acoustic velocity [8,17];
however, at this point, the lumber has already been sawn and thus the product has been determined.
Changing the product after sawing would generate significant waste and thus is not common. Thus,
improved methods for measuring wood properties are needed at the log level for more informed
decision-making within a lumber mill. At a veneer mill, the same challenges exist and the use of
segregating logs by acoustic velocity has been applied successfully to poplar (Populus euramericana) [18]
and trembling aspen (Populus tremuloides Michx.) [19].

Near-infrared (NIR) spectroscopy has emerged as an alternative approach for the estimation of
mechanical properties of lumber. In studies based on short, defect-free samples, the potential of NIR
spectroscopy for predicting density, MOE, and MOR in both softwoods [20–23] and hardwoods [24]
has been demonstrated. These studies on small clear samples represent a “best-case” scenario,
as a small number of spectra can adequately represent a sample due to the limited radial and
vertical variation found in a small clear sample. Owing to size and variability, the collection of
representative spectra from dimensional lumber of standard size presents a far greater challenge.
Dahlen et al. [25] reviewed publications that had explored estimation of the mechanical properties
of softwood lumber [26–30]. Of these studies, only Hoffmeyer and Pedersen [26] collected spectra
from the transverse surface; all others scanned along the length of the sample with spectra collected
from the tangential and/or radial face. Calibration and prediction statistics were variable, with the
strongest predictions (Rp

2 = 0.82) reported for hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.)
lumber [30]. Only Fujimoto et al. [29] reported a calibration for MOR, and it was much weaker than
that reported for MOE using the same set of Japanese larch (Larix kaempferi (Lamb.) Carr.) lumber.

Dahlen et al. [25] utilized transverse face spectra collected from a laboratory-grade NIR
spectroscopy instrument to predict the SG, MOE, and MOR of No. 2 grade 2 × 4 southern pine
lumber from six commercial mills in the Southeast. The Duplex sample selection technique was used
to identify samples for the calibration (539) and prediction (179) sets. Moderate results were reported
for the prediction set for lumber SG (Rp

2 = 0.53), MOE (Rp
2 = 0.58), and MOR (Rp

2 = 0.4). There,
the spectra were collected from approximately 8% of the area of the transverse face, but the prediction
statistics were quite favorable compared to full-length density information collected from the lumber
(MOE R2 = 0.46, MOR R2 = 0.51). These NIR results were promising, especially given the limited area
in which the NIR spectra was collected, and the authors proposed that the use of an NIR instrument
that allowed a larger area of the transverse surface to be scanned could provide better results.

To this end, NIR hyperspectral imaging (HSI) is an emerging methodology whose use has been
reported in several recent reviews across a range of fields, including medical applications [31], food
quality and safety [32,33], and plants and biological materials [34,35]. As noted by Burger and
Gowen [36], “HSI combines spectroscopy and imaging, resulting in three-dimensional multivariate
data structures (‘hypercubes’). Each pixel in a hypercube contains a spectrum representing its light
absorbing and scattering properties. This spectrum can be used to estimate the chemical composition
and/or physical properties of the spatial region represented by that pixel.”. NIR-HSI can thus be used
to capture information on the spatial distribution of wood properties [34], and to this end, it provides
an option for the collection of spectra over the entire transverse surface of the lumber. In addition,
all spectra collected from the surface of an individual sample can be averaged to a single spectrum
that represents the whole area scanned.

The earliest related HSI studies on wood used visible light [37,38] and wavelengths from
400–1000 nm [39] to detect compression wood. Jones et al. [40] utilized NIR-HSI data from
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1250–1650 nm to estimate density, microfibril angle (MFA), and stiffness pith-to-bark variation at
2-mm spatial resolution for loblolly pine (Pinus taeda L.). More recently, Fernandes et al. [41,42]
estimated density for stone pine (Pinus pinea L.), while Ma et al. [43] reported maps of radial strips
showing density and MFA variation at high spatial resolution for Sugi (Cryptomeria japonica (L.f.) D.
Don). Thumm et al. [44,45] utilized NIR-HSI to examine the spatial variation of several radiata pine
(Pinus radiata D. Don) wood properties (lignin, cellulose, hemicellulose, galactose, glucose) across discs,
while for the same species, NIR-HSI has also been used to detect compression wood [46] and resin
defects [47]. Mora et al. [48] utilized NIR-HSI to estimate loblolly pine whole-log density and moisture
content. Due to the flexibility of NIR-HSI, the system has many possible applications in manufacturing
environments. Whole-board maps showing variation in moisture content [49] and density [50] were
reported for subalpine fir (Abies lasiocarpa Hook) lumber. Lestander et al. [51] used NIR-HSI to identify
wood chips with high levels of extractives, which would allow for biomass to be directed towards a
process stream that would maximize its utilization.

The advantages of NIR-HSI are apparent, but compared to benchtop NIR systems, there is
typically a higher interval between wavelengths and the signal-to-noise ratio may not be as high, thus
the calibrations may not be as accurate as those of a benchtop system. Hence, the primary goals of
this preliminary study were to (1) compare the use of NIR spectroscopy with NIR-HSI on Douglas-fir
lumber properties with the transverse face scanned on both instruments, (2) compare the predictions
with models constructed to predict MOE and MOR using specific gravity, and (3) utilize the NIR-HSI
for the spatial prediction of properties on transverse surfaces. If successful and with additional studies,
the flexibility of the NIR-HSI could potentially be used in a mill, whereby logs could be scanned and
areas within a log that do not meet product specifications could have their sawing pattern changed to
a more suitable product.

2. Materials and Methods

2.1. Specimen Preparation and Testing

Four packages of kiln-dried No. 2 grade, 2 × 4 (38 mm × 89 mm × 2438 mm) Douglas-fir (DF)
lumber were obtained from commercial mills in Canada, Idaho, Oregon, and Washington [52]. From
each of the four mills, 124 pieces were originally tested, for a total of 496 samples. For each lumber
specimen, the dimensions, weight, and moisture content were measured. The specific gravity at 15%
moisture content (SGlumber) was determined for the lumber. Following testing, a block (38 mm by
89 mm by 51 mm longitudinally) was cut from the lumber using a radial arm saw. Not all pieces
yielded a usable sample for the NIR and HSI analysis due to a number of reasons, including the failure
of the piece due to shear which split the piece in half, along with other testing-related failures, and
some samples were excluded due to excessive cracking. Thus, a total of 390 pieces were available
for the NIR and HSI analysis, with 88 samples from Canada, 95 samples from Idaho, 109 samples
from Oregon, and 98 samples from Washington. The lumber represents a wide range of variability
that is found in commerce (Figure 1). The specific gravity at 12% moisture content (SGblock) was
then determined for the block. The edgewise destructive bending test setup was conducted via
four-point bending in third-point loading (load heads positioned one-third of the span distance from
the reactions) on an Instron Satec testing machine [53,54]. The span-to-depth ratio was 21:1 (1867 mm
to 89 mm). The tension face of each sample was randomly selected, and if a strength-reducing defect
was identified, it was located randomly between the reaction points [53]. Deflection was measured
using a Tinius Olsen deflectometer to determine MOE; MOR was calculated from the maximum load.
MOE and MOR were adjusted to 15% moisture content [52,55].

2.2. Near-Infrared Spectroscopy

Diffuse reflectance NIR spectra were collected from the cross-sectional face of each block using a
FOSS NIR Systems Inc. Model 5000 scanning spectrometer (FOSS NIRSystems Inc. Laurel, MD, USA).
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A 16.5 mm by 16.5 mm white Teflon mask was installed on the face of the spectrometer to ensure that
a consistent section was scanned. All measurements were made in a controlled environment of 40%
relative humidity and a temperature of 20 ◦C. The spectra were collected at 2-nm intervals over the
wavelength range 1100–2500 nm. The instrument reference was a ceramic standard. Two separate
scans were conducted on each piece with each scan being an average of 32 readings; the two scans
were then averaged to give a single spectrum per block.

Figure 1. Transverse view of randomly selected lumber pieces from the study.

2.3. Hyperspectral Imaging

Hyperspectral images were collected on a push broom short-wave infrared (SWIR) system
(Hyperspec ® SWIR, Headwall Photonics, Fitchburg, MA, USA) in the wavelength range 1000–2500 nm.
The system (Figure 2) consisted of a spectrograph, a focal plane array with a Peltier-cooled 320 × 256
mercury cadmium telluride (MCT) detector (MCT-851 XC403, Xenics, Leuven, Belgium), a 30.7-mm
front lens (OLES30, Specim, Oulu, Finland), two illumination sources with tungsten halogen lamps,
a motorized linear slide (T-LSR300B, Zaber Technologies, Vancouver, BC, Canada), a computer, and
in-house developed software (C++) for image acquisition and preprocessing, including intensity
calibration and denoising. Two light sources oriented approximately 20 degrees from the sample were
used for illumination. For each image, a scan of an individual sample started while a dark current
reference was collected with the camera lens cap covering the lens. After acquiring about 10 lines of
dark current signals, the lens cap was opened so that white reference signals were collected from a
white diffuse-reflectance standard panel (Fluorilon-99W, Avian Technologies, Sunapee, NH, USA) with
dimensions 25 mm × 300 mm, followed by scanning of sample (Figure 2). The spectra were collected
at approximately 8-nm intervals over the wavelength range 1000–2500 nm. Due to the intensity of
light, care was taken to not leave samples exposed to the light beyond the sample collection period.
The background plate was stationary and black.

Figure 2. Hyperspectral imaging setup.
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2.4. Hyperspectral Imaging Data Processing

The raw hyperspectral data was calibrated to relative reflectance (R) via an in-field calibration
process, where the dark current and white references were averaged to two horizontal reference
lines. Each image was calibrated with its own dark current and white reference signals. Then, the
relative reflectance values were transformed to absorbance (A), with the equation A = log10 1/R.
Then, these absorbance spectral images were used for subsequent data analysis. The hyperspectral
data processing was done with custom Matlab scripts. The wavelength range of the calibrated data
was cropped to 1100–2500 nm. The white reference image in the top of each image was removed
and the bottom edge of each sample was also removed, which was automatically done with an
image-processing algorithm based on edge detection and image segmentation. Intensity thresholding
was used for the image segmentation of an individual sample. Then, a region of interest (ROI) with a
rectangular shape was automatically detected inside each segmentation image of an individual sample.
The ROIs were automatically detected by an image-processing algorithm in Matlab. More specifically,
note that a measured hyperspectral image consisted of three sections, i.e., dark current, white target,
and sample sections, from top to bottom. A waveband at 1789 nm in the approximately middle of
the measured spectral range was chosen to find three horizontal line edges dividing three sections
via a y-profile analysis technique. A y-profile was obtained by projecting the 2-D waveband image
onto the y-axis and averaging all intensity values along each y point. Then, the first derivative was
applied to the y profile and the peaks were searched to find y edges of the dark current, white target,
and sample. After the sample’s y edges (top and bottom edges) were detected, its left and right edges
were detected similarly by a x-profile analysis technique such that the sample became segmented and
enclosed by a bounding box obtained from the coordinates of the detected four edges. An ROI was
detected inside this bounding box by shrinking the bounding box of the sample by 8% and 5% in the y
and x directions, respectively. These ROIs were used to extract spectral data for analysis.

2.5. Wood Property Calibration and Prediction of Wood Properties

Wood property calibrations, statistical analyses, and associated graphics were developed using
the R statistical software [56] with the RStudio interface [57] and the packages gridExtra [58], pls [59],
prospectr [60], signal [61], and the tidyverse series of packages [62]. Models were developed between
MOE and MOR with SGlumber, and MOR with MOE. Linear models were developed between MOR
and MOE [52]. Examining the scatterplots between MOE and MOR with SGlumber showed that the
relationships were not linear; several model forms were tested, with the best models being quadratic
models without the linear term. For these models, the coefficient of determination (R2) and the root
mean square error (RMSE) were calculated.

For both the NIR and the NIR-HSI spectra, the pretreatment used was the second derivative
with the left and right gaps of four points using the Savitzky–Golay approach [63]. The samples were
split into the calibration set, which contained 75% of the samples (292 samples), and the prediction
set which contained the remaining 25% (98 samples) of the sets using the Duplex sample selection
technique done on the NIR spectra data [60]. The duplex algorithm selects the most unique samples
based on the Mahalanobis distance to better ensure that the calibration and prediction set contain
samples that are representative of the population, while still maintaining independence between the
calibration and prediction sets [64,65].

The specific gravity of the block (SGblock), specific gravity of the entire lumber piece adjusted
to 15% moisture content (SGlumber), modulus of elasticity adjusted to 15% moisture content (MOE),
and modulus of rupture adjusted to 15% moisture content (MOR) were modeled as responses to the
NIR and the NIR-HSI spectra. Calibrations were developed using partial least square (PLS) regression
with four cross-validation segments and a maximum of 10 factors. The final number of factors were
determined based on the standard error of cross-validation (SECV) (determined from the residuals of
the final cross-validation), the root mean square error of cross-validation (RMSECV), the coefficient of
determination of cross-validation (R2), and the ratio of performance to deviation for the cross-validation
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(RPDcv) [66]. RPDcv was calculated as the ratio of the standard deviation of the reference data to the
SECV. Determination of the RPDcv allows the comparison of calibrations developed for different wood
properties that have differing data ranges and units; the higher the RPDcv, the more accurately the data
is described by the calibration. The performance of the calibration models was examined by predicting
the wood properties of the test set samples. The standard error of prediction (SEP) (determined from
the residuals of the predictions) was calculated and gives a measure of how well a calibration predicts
parameters of interest for a set of samples not included in the calibration set. The predictive ability
of the calibrations was assessed by the coefficient of determination (Rp

2) and calculating the RPDp,
which is similar to the RPDcv, but uses the standard deviation of the prediction set reference data and
the SEP. The bias (mean of prediction residuals) was also evaluated. Plots were produced to show the
relationship between the measured data with the NIR or NIR-HSI data, with the plots also showing
the confidence interval for the mean prediction and the 1:1 line of equivalence.

Following the creation of the PLS NIR-HSI models, the coefficients of the PLS model were used to
predict the spatial variation within each block for SG, MOE, and MOR in Matlab. This work was similar
to a calibration transfer from a spectrometer to a hyperspectral imaging system, done in Matlab. The
pretreatment (Savitzky–Golay filtering) process was exactly replicated in Matlab. Spectral data in each
image were folded to a matrix form. The PLS model coefficients in a CSV-format file (in Supplementary
Materials) were read and applied to the spectrum in each pixel via a matrix form. The output results
were refolded back to an image domain, where each pixel contained prediction values for SG, MOE or
MOR, depending on a PLSR model. Finally, the prediction images were converted to pseudo-color,
where each pixel value was represented with a standardized color.

3. Results

Table 1 contains the property measurements for the lumber utilized in the current study, broken
down by calibration data set and prediction data set. The SG, MOE, and MOR data is highly variable,
which reflects the variability that these properties have in commerce. Both data sets contained samples
with similar summary statistics for each property, which meant that the Duplex sample selection
algorithm successfully selected calibration and prediction samples across the range of values only
using information from the NIR spectra.

Table 1. Summary statistics of block specific gravity, lumber specific gravity, lumber modulus of
elasticity, and lumber modulus of rupture for calibration and prediction sets.

Calibration Prediction

Property 1 N Mean Min Max SD N Mean Min Max SD

SGblock

292

0.455 0.326 0.667 0.066

98

0.459 0.343 0.626 0.067
SGlumber 0.47 0.346 0.619 0.051 0.472 0.374 0.603 0.05

MOE 12 6.3 19.9 2.8 12 6.5 20.4 2.9
MOR 44.6 14.8 93.6 16.2 44.5 13.4 94.3 17.8

1 SGblock = block specific gravity, SGlumber = lumber specific gravity, MOE = modulus of elasticity (GPa), MOR =
modulus of rupture (MPa).

A reference point for comparing the relative performance of the NIR and NIR-HSI systems to
model MOE and MOR is to compare them against predictions using the measured SG of the lumber,
and for MOR, the measured static MOE (Figure 3). A quadratic regression model without the linear
term was used to model MOE versus lumber SG (intercept = 3.7, parameter = 37.1), which had a
coefficient of determination of 0.42 and a root mean square error (RMSE) of 2.1 GPa. The same model
form was used to model MOR versus lumber SG (intercept = −3.6, parameter = 215.4), which had a
coefficient of determination of 0.41 and a RMSE of 12.8 MPa. For both models, the quadratic model
form instead of a linear model was used because of the differences in the radial variation trends for
wood properties of Douglas-fir. Wood density decreases for approximately 8 years from pith to bark
and then increases, whereas stiffness and strength increases from pith to bark because of decreasing
microfibril angle [67]. Thus, for samples near the pith, a lower density value does not necessarily
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mean a decrease in wood stiffness or strength. A linear model was used to model MOR versus MOE
(intercept = −14.8, parameter = 4.9), which had a coefficient of determination value of 0.69 and a root
mean square error (RMSE) value of 9.2 MPa.

Figure 3. Quadratic and linear models and plots to predict modulus of elasticity (MOE) and modulus
of rupture (MOR) with lumber specific gravity and MOE. RMSE: root mean square error.

Table 2 contains the results of the calibration models and their predictions for the various
properties measured in the study using second-derivative NIR spectra. The PLS coefficients for
the intercept and the wavelengths are included as supplementary data. All of the RPDp results
are lower than what is frequently cited by AACC Method 39-00 [68] as the recommended values
for screening in breeding programs (RPD > 2.5), but these guidelines were set up for cereal grains
and not for translating wood chemistry information as detected by the NIR spectra to that of the
physical and mechanical properties of wood. For the block SG (SGblock), 10 factors were chosen for
the cross-validation for the NIR model, and 6 factors for the NIR-HSI model. When used to predict
SGblock, the NIR model gave a Rp

2 of 0.78 and a SEP of 0.031, while the NIR-HSI gave a Rp
2 of 0.82 and

a SEP of 0.029 (Figure 4). The bias was slightly higher for the NIR-HSI model than for the NIR model.
For the lumber SG (SGlumber), 10 factors were chosen for the cross-validation for the NIR model and 7
factors for the NIR-HSI model. When used to predict SGlumber, the NIR model gave a Rp

2 of 0.65 and a
SEP of 0.029, while the NIR-HSI gave a Rp

2 of 0.70 and a SEP of 0.027 (Figure 5). The bias was slightly
lower for the NIR-HSI model than the NIR model.

Table 2. Near-infrared spectroscopy and hyperspectral imaging results of block specific gravity, lumber
specific gravity, lumber modulus of elasticity, and lumber modulus of rupture for the calibration and
prediction sets.

Calibration Prediction

Tool 1 Property 2 No. Factors R2 SECV RMSECV RPDcv Rp
2 SEP RPDp Bias

NIR

SGblock 10 0.83 0.027 0.035 2.4 0.78 0.031 2.1 0.00075
SGlumber 10 0.74 0.026 0.032 2.0 0.65 0.029 1.7 0.0033

MOE 6 0.67 1.6 1.8 1.7 0.56 1.9 1.5 0.16
MOR 7 0.57 10.7 12.2 1.5 0.40 13.7 1.3 0.75

NIR-HSI

SGblock 6 0.75 0.033 0.037 2.0 0.82 0.029 2.3 0.0029
SGlumber 7 0.67 0.03 0.033 1.7 0.70 0.027 1.8 0.0013

MOE 5 0.65 1.6 1.7 1.7 0.62 1.8 1.6 0.15
MOR 6 0.51 11.3 12.2 1.4 0.49 12.7 1.4 0.79

1 NIR = near-infrared spectroscopy, NIR-HSI = near-infrared spectroscopy hyperspectral imaging. 2 SGblock = block
specific gravity, SGlumber = lumber specific gravity, MOE = modulus of elasticity (GPa), MOR = modulus of rupture
(MPa). SECV: standard error of cross-validation; RPDcv: ratio of performance to deviation for the cross-validation;
Rp

2: R2 for predictions of each property; SEP: standard error of prediction; RPDp: ratio of performance to deviation
for the prediction set.
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Figure 4. Calibration and prediction plots of block specific gravity for near-infrared spectroscopy and
hyperspectral imaging. The dashed blue line indicates the line of equivalence.

Figure 5. Calibration and prediction plots of lumber specific gravity for near-infrared spectroscopy
and hyperspectral imaging. The dashed blue line indicates the line of equivalence.

For MOE, six factors were chosen for the cross-validated NIR model and five factors for the
NIR-HSI model. When used to predict MOE, the NIR model gave a Rp

2 of 0.56 and a SEP of 1.9 GPa,
while the NIR-HSI model was slightly better (Rp

2 = 0.62, SEP = 1.8 GPa) (Figure 6). The bias was similar
for the NIR and the NIR-HSI models. For the NIR-based MOR calibration, seven factors were chosen,
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while six factors were recommended for the NIR-HSI model. When used to predict MOR, the NIR
model gave a Rp

2 of 0.40 and a SEP of 13.7 MPa, which was inferior to the NIR-HSI MOR model
(Rp

2 = 0.49, SEP = 12.7 MPa) (Figure 7). The bias was similar for the NIR and the NIR-HSI models.

Figure 6. Calibration and prediction plots of modulus of elasticity (MOE) for near-infrared spectroscopy
and hyperspectral imaging. The dashed blue line indicates the line of equivalence.

Figure 7. Calibration and prediction plots of modulus of rupture (MOR) for near-infrared spectroscopy
and hyperspectral imaging. The dashed blue line indicates the line of equivalence.
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The PLS model for the NIR-HSI system was then used to visualize the spatial variation in SG,
MOE, and MOR. Figure 8 illustrates the predictions on a sample containing the pith with wide growth
rings, thus being indicative of low-stiffness corewood, while Figure 9 illustrates the predictions on a
sample containing narrow growth rings, thus being indicative of high-stiffness outerwood.

Figure 8. Top left: RGB image, Top Right: single hyperspectral channel image, Bottom: prediction of
specific gravity (SG), modulus of elasticity (MOE) (GPa), and modulus of rupture (MOR) (MPa) using
the partial least squares (PLS) models and applied to one sample in the study with wide growth rings
and containing the pith.
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Figure 9. Top left: RGB image, Top Right: single hyperspectral channel image, Bottom: prediction of
specific gravity (SG), modulus of elasticity (MOE) (GPa), and modulus of rupture (MOR) (MPa) using
the PLS models and applied to one sample in the study with narrow growth rings.

4. Discussion

In efforts to utilize NIR spectroscopy to estimate lumber properties, various approaches have been
employed, with the majority of studies collecting spectra along the length of the sample from either the
radial face, tangential face, or somewhere between the two where neither a perfect radial or tangential
face is available for examination, as is common in flatsawn lumber. The quality of information collected
with reference to its suitability for estimation of whole lumber quality will vary between the two
(radial vs tangential) extremes, with the radial face providing the most representative spectra and the
tangential face the least [69]. In sawmill lumber with a very wide variety of orientations, ranging from
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quartersawn to flatsawn and everything in between can be expected. Hence, scanning along the length
of a board can provide spectra that potentially represent the properties of a board very well (when the
radial face is scanned) to one that does not (when the tangential face is scanned), or does only partially
(somewhere between radial and tangential), if scanning is done on only one face. Current automated
grading systems employ cameras and sensors on all four faces, and given the cost of a hyperspectral
camera, this type of setup is likely not feasible. For these reasons, we chose to scan the transverse face.
The transverse face also demonstrates the variation in orientation described, but with this face, we can
still accurately capture the variation in wood properties across rings; for example, the proportion of
earlywood to latewood is visible on this face, which ultimately is an important factor in determining
lumber properties such SG, MOE, and MOR.

To scan the transverse face, we utilized a FOSS benchtop NIR and NIR hyperspectral imaging
(HSI) system. Scanning lumber on a benchtop NIR had been described previously [25], with promising
results in that the NIR spectra was better correlated with wood stiffness than lumber SG. However,
the use of the benchtop system presented problems because the authors calculated that the spectra
collected represented less than 10% of the transverse area of the sample and thus failed to fully capture
sample variability. Rather than collect more spectra per sample on the benchtop instrument in an
attempt to better represent a board, a NIR-HSI system, which can quickly capture an image of the
entire transverse surface, was explored. As each pixel has its own NIR spectrum, a representative
whole-board spectrum can be obtained by averaging spectra across all pixels, which in principle
should be more representative of the entire transverse surface. Despite improved representation of the
surface, the two different approaches gave calibration/prediction results that were similar (Table 2),
with FOSS NIR having slightly better calibration statistics, while predictions based on NIR-HSI data
were marginally better, perhaps due to the greater area covered in the measurement. In a similar
comparative study (FOSS XDS probe vs NIR-HSI) based on loblolly pine logs, similar results (SG
and moisture content calibrations/predictions) for the two scanning options were also reported [48].
While we may have achieved greater coverage of the surface using NIR-HSI, we know the spectra
are not of the same quality as a benchtop instrument, hence the lack of a substantial improvement in
model performance.

We also explored the relationships between the SG, MOE, and modulus of rupture (MOR) and
observed moderate results. For hard pines including southern pine (Pinus spp.), the relationship
between SG and MOE, and to a lesser degree MOR, is known to be quite strong, particularly for
short clear samples. In the southern pines, SG increases from pith to bark, while at the same time,
microfibril angle decreases from pith to bark [70,71]. For Douglas-fir, the microfibril angle trend is
the same as the southern pines, but SG decreases from pith to bark for approximately 10 years, then
it gradually increases [67]. Thus, the relationships between SG and MOE and MOR is not as strong
as what was reported previously for southern pine, and they mirror results others have found for
Douglas-fir [72]. The presence of defects in lumber, particularly knots, will reduce the prediction
accuracy of models in which defect information is not accounted for [73,74]. Here, we have no
information on the defects within the lumber, and thus our models depend on the relative contributions
of earlywood and latewood to estimate whole-board properties. Given the lack of information on
knots in this study, the relationships reported here for the NIR benchtop and NIR-HSI calibrations
may be approaching what can reasonably be expected for the NIR prediction of MOE or MOR. If
the wood is very high quality (few knots, straight grain), then the calibration/prediction statistics
may improve (e.g., Kobori et al. [30]); however, if the wood has numerous, large knots that detract
greatly from the measured MOE and MOR, calibrations will suffer. Here, we used No. 2 grade lumber;
if we had collected select structural lumber, we would likely have obtained better prediction statistics.
Incorporation of defect information and the negative impact it has on wood properties could improve
our prediction accuracy. Dahlen et al. [25] created a matrix which combined measured SG values with
NIR data and created models using both measurements, which resulted in the improved accuracy of
predictions of MOE (Rp

2 = 0.70) and MOR (Rp
2 = 0.52) compared to the NIR measurement alone for
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MOE (Rp
2 = 0.58) and MOR (Rp

2 = 0.4) for southern pine. A similar idea could be explored with knot
data, and it is likely that without it, NIR spectra (regardless of the face scanned) will fail to provide
statistics that are much stronger than those reported here.

A strength of the NIR-HSI approach is that it allows the prediction of properties across the scanned
surface, assuming an appropriate model exists. Here, we used our average spectra for whole-lumber
PLS models for SG, MOE, and MOR to predict these properties of each pixel across the transverse
surface of the scanned samples. This approach allowed us to visualize the variation in these properties
within and among rings to be observed, particularly for samples with relatively wide rings, and we also
observed the area at the pith as being of very low stiffness (Figure 8). For samples with narrow rings
(Figure 9), it was more difficult to observe ring features owing to the similarity between ring and pixel
size or the rings being smaller than the pixels. While this may be a concern for slowly grown conifers
sourced from natural forests, it is not an issue for plantation-sourced trees that demonstrate much
faster growth rates. The latter material is also where segregation becomes much more critical, because
lumber pieces can consist entirely of corewood. We expect to see increasing mechanical properties from
pith to bark, and the prediction variation we expect, as observed in Figures 8 and 9, i.e., very low MOE
earlywood and very high MOE latewood, would be difficult to validate. Different approaches could
be explored to help validate the data, for example measuring very small samples that contained only
earlywood or latewood would help validate the general ranges predicted here; however, the approach
would be extremely time-consuming and costly. Assuming we had the appropriate wood property
data, a wide range of additional properties, such as wood chemistry information, as demonstrated by
Thumm et al. [44,45], could have been generated.

How well our predictions of properties across the surface of a sample match actual measurements
was not explored. In terms of within-ring and pith-to-bark variation, the predictions were consistent
with our knowledge of SG, MOE, and MOR variation in conifers; however, further study is required to
explore the accuracy of predictions. An instrument such as SilviScan [75] could be used to scan radial
strips at a resolution equivalent to or greater than the pixel size for the NIR-HSI utilized in our study.
While the approach we used to develop our calibrations (average the spectra and calibrate against a
property measured on whole-piece basis, and then use the model to predict at high spatial resolution)
has been utilized in other NIR-HSI studies, it is unknown what impact this approach has on the quality
of predictions. As the calibration is based on data (lumber SG, MOE, and MOR) that has a range that
is narrower than what it was used to predict (SG, MOE, and MOR variation within rings), then we
expect that the model would both overestimate and underestimate the extremes.

We made no effort to improve the quality of the transverse surface of the samples prior to
scanning, and the success of our models based on a reasonably rough surface indicates that the
prediction of stiffness variation over the transverse surface of a log is feasible. Thumm et al. [44,45]
have demonstrated the prediction of wood properties over a transverse surface (discs); however, they
examined dry disks with surfaces that had been carefully prepared prior to scanning. Mora et al. [48]
utilized green logs, and while they did not explore spatial variation (it was not an objective of their
study), they had the required data. Potentially, spatial wood property data could be utilized in a mill to
give an optimal sawing decision for a log aiming to maximize grade recovery, not just volume recovery.
If implemented correctly, the value of such an approach could be considerable.

Exploration of options for manipulating information provided by NIR-HSI may also improve
our ability to estimate lumber properties. For example, latewood and its proportion is an important
determinate of SG, MOE, and MOR. If spectra from latewood regions of rings were weighted greater
than earlywood when determining average spectra, it may improve our calibrations. Analysis of ring
curvature could yield predictions of the location of the pith, which could allow for the estimation of
the age of the material, which in turn would be insightful given the increasing trend of mechanical
properties with cambial age. Further improvement in predictions could also be obtained by combining
measurements; for example, the HSI information could be combined with the acoustic velocity of the
log to refine predictions.
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5. Conclusions

A NIR-HSI system and NIR benchtop instrument provided similar calibration and prediction
statistics when used to rapidly estimate physical and mechanical properties of No. 2 2×4 Douglas-fir
lumber. NIR-HSI data was used to examine SG, MOE, and MOR variation within and among rings.
While the results are similar between the two systems, the use of a NIR-HSI system has several
significant advantages over a typical NIR benchtop instrument, because of the greater versatility of the
instrument and the ability to predict the spatial properties of a sample. In time, NIR-HSI may provide
lumber mills with a cost-effective method to efficiently identify areas of high and low stiffness within
logs prior to sawing, and thus would allow mills to make more informed decisions on a log-by-log
basis for sawing solutions.
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