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Abstract: Test, verification, and development activities of vehicles with ADAS (Advanced
Driver Assistance Systems) and ADF (Automated Driving Functions) generate large amounts of
measurement data. To efficiently evaluate and use this data, a generic understanding and classification
of the relevant driving scenarios is necessary. Currently, such understanding is obtained by using
heuristic algorithms or even by manual inspection of sensor signals. In this paper, we apply deep
learning on sensor time series data to automatically extract relevant features for classification
of driving scenarios relevant for a Lane-Keep-Assist System. We compare the performance of
convolutional and recurrent neural networks and propose two classification models. The first one is
an online model for scenario classification during driving. The second one is an offline model for
post-processing, providing higher accuracy.

Keywords: deep learning; scenario classification; automated driving functions; automated driving
functions (ADF); advanced driver assistance systems (ADAS)

1. Introduction

In recent years, the development and adoption of Automated Driving Functions (ADF) have
substantially increased. All major OEMs have started to include various assisting features such
as Lane-Keep-Assist (LKA), Adaptive-Cruise-Control (ACC), parking assist, traffic jam assist and
others, into their fleets. All with the same goal, to provide the customer with increased safety and
comfort. By definition, these systems represent level 1–2 automation with respect to the 6 levels of
automation defined by the SAE [1]. However, test vehicles with higher level of automation, enabling
fully unsupervised driving on defined street networks, are used for promotion and advertisement of
research capabilities. In addition, test applications for automated transport, still with a supervisor on
board, have been launched.

Beside OEMs, various research groups are working on novel technologies which provide
enhancements in safety and efficiency of passenger vehicles. On one side, we have advanced vehicle
state estimation [2–4], followed by safe and agile maneuvering in extreme conditions [5], and improved
control of steering feedback to the driver [6]. On the other side, improved safety is considered in several
areas, starting from a shared control system where the human and ADFs are working in synergy [7], to
research focusing on pedestrian safety [8], and in the development of future human-machine interfaces
that should reduce driver distraction [9]. Optimal and efficient driving will play a huge role in the
future of automation as more and more vehicles become aware of their dynamic surroundings [10].

However, testing and validation of these functions and their complex interactions are still
among the biggest challenges in the field. Demonstrating the reliability, safety, and robustness of the
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technology in all conceivable situations, e.g., in all possible scenarios under all potential road and
weather conditions, has been identified as the main roadblock for product homologation, certification
and thus commercialization. It is also well known and accepted that time and cost-wise it is not feasible
to drive the required 240 million kilometers [11] manually with every vehicle variant to achieve a
proven-in-use certification. In addition, for every sensor and software update the same number of
kilometers would have to be repeated.

The focus of recent research in this area has been the development of methods and tools that reduce
the number of driven kilometers for certification [12]. Currently, the main expectation is that only a
clever combination of methods selecting the important test-cases and test-environments including
Software in the loop (SiL), Hardware in the loop (HiL), Vehicle in the loop (ViL) and test-track and
public road will lead to a feasible reduction in current testing efforts. It is clear that many kilometers
will be driven purely virtually. The advantages of virtual tests are, beside others, the independence
from real time and the possibility to execute the tests in a safe and repeatable environment.

Nevertheless, the behavior of the ADFs needs to be continuously assessed and monitored
throughout the whole tool chain. The data need to be classified by scenario type and severity level
of safety and/or comfort issues. Currently, the classification is based on heuristic algorithms [13,14],
where engineering experts spend a lot of time and effort to create the necessary rules. For each
detected driving scenario, various Key Performance Indicators (KPI) are calculated to reflect the
driving sensation of the passengers. However, some signal patterns are very challenging to be
detected by heuristic algorithms only. There are no distinct triggers where a threshold could be set.
Instead, the signals usually show decreasing and increasing slopes containing noise that could lead to
misclassification. Furthermore, due to sensor noise or false target detections some information gets lost
and therefore some interesting driving scenario cannot be detected correctly by the heuristics. This is
where machine learning is applied to mend the detection rate when the networks, along with a well
labeled dataset, have learned to deal with false positives and false negatives. The networks are not
immune to data inaccuracy, but they are able to learn, to some degree, when the sensor measurements
are inconsistent.

In this research we explore end-to-end Deep Learning (DL) methods for classification of driving
scenarios related to LKA systems using time series data coming from various sensors. We focused
on Convolutional Neural Networks (CNN) as they have shown better performance compared to
Recurrent Neural Networks (RNN). Finally, we propose two classification models as shown in Figure 1.
The online model is used during driving, when a real-time classification is necessary. This model uses
the past values to make the class predictions. The offline model is used in post-processing. As this
model can use a priori as well as a posteriori knowledge in the recorded data, it can look what the
vehicle was doing and then trace back and make the prediction. In other words, the model makes
the prediction in the center of the considered time window taking in consideration what the vehicle
did before and after. This approach leads to improved accuracy and can, to some degree, eliminate
wrong detections.

Figure 1. Concept overview. Scenario detection from sensor data using online and offline model.
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2. Related Work

The most prominent driver for the development of deep neural network models capable of time
series or sequence prediction and classification has been natural language processing and machine
translation [15–17]. The main idea behind it is to translate words, or phonemes if speech is used, into a
fixed length vector embedding. This vector embedding can then be used as a time series sequence.
The research resulting from the natural language processing is widely adopted to other fields that
deal with time series data. Until recently, the de facto choice for time series modeling have been RNNs.
RNNs are networks that use hidden states that get propagated during time to compress valuable
information from the past. Especially successful RNNs are the Long Short-Term Memory (LSTM) [18]
or Gated Recurrent Unit (GRU) [19]. Both use several gates to control which information should be
stored and which information should be forgotten.

Outside the natural language processing, the LSTM and GRU have been applied in various
tasks such as general time series classification [20], classification of ECG data [21], time series
forecasting [22], etc.

Other researchers have also combined CNNs with RNNs to increase model performance.
The main idea is to use the CNN in the first layers as feature extractors and later use RNNs for
sequence classification. This method has been applied to trajectory clustering [23], human activity
classification [24], sentiment classification [25], and others.

However, RNNs have several limitations that can impact model accuracy and training duration.
The training data for RNNs needs to be sequential and divided in such a way that the hidden outputs
from one batch match the inputs of the next batch. This batching procedure could lead to deficient
performance as some classes are only rarely seen by the network. Normally, shuffling of the data could
greatly improve the training. However, shuffling of the data is not possible because we need to follow
the constraint that each previous batch needs to lead to the current batch to preserve the propagation
of the hidden states. In addition, RNNs process only one set of features at a time. After each step
new hidden states and outputs are calculated which are then used in the next step. This sequential
calculation procedure leads to increased training duration. CNNs do not suffer from these limitations.
The data can be shuffled as individual batches do not have to be sequential. Furthermore, as the CNN
is a feed-forward network the whole batch is processed directly.

The advantages of CNNs over RNNs have led researchers to apply only CNNs for time series
classification [26]; however, their performance has been inferior until recently. Bai et al. [27] have
shown that CNNs can produce even better results than RNNs if new architectural improvements such
as dilatation and residual networks are used. Because of the recent breakthrough and their superior
performance, we will focus on the usage of CNNs for the task of time series classification and compare
their performance to RNNs.

Outside the scope of time series classification, CNNs have also been used for classification of
driving scenarios. Gruner et al. [28] proposed a spatiotemporal representation (Grid Map) that can
capture dynamic traffic behavior. The representation is constructed using object information obtained
by fusing data from several sensors. The representations are then used as inputs for a CNN which
classifies the data into five classes: Validity of frame, Ego vehicle speed larger than 1m/s, Leading vehicle
ahead in lane, Other vehicle overtaking the ego vehicle on adjacent lane, Cross-traffic in front of the ego vehicle.

Our research differs from the mentioned methods as we perform time series classification using
sensor data only. This data is used as an input to a CNN with separable and dilated convolutions,
residual connections, and self-normalizing layers. In addition, we apply the network on a different
classification problem, identifying driving scenarios relevant for LKA assessment.

3. Time Series Classification Using Convolutional Neural Networks (CNN)

This section will give an overview on the proposed model that consists of a CNN acting as a feature
extractor which is followed by a dense multi-layer perceptron for classification. The convolutional
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feature extractor uses several enhancements compared to an ordinary CNN, which will be explained
in the following subsections.

3.1. Depthwise Separable Convolutions

Given an input tensor Ti with shape chi × hi × wi, where chi is the input depth or number of
channels, hi and wi are the height and width respectively, an ordinary convolution layer applies the
kernel k × k over all the channels of the input tensor simultaneously and the whole kernel is applied
for cho times leading to the output tensor To with dimensions cho × ho × wo. Thus, the dimension of
the kernel K is defined as k × k × chi × cho, leading to a computational cost of hi · wi · chi · cho · k · k.
Generally, the convolutional layer filters input features and computes new representations at the
same time.

On the contrary, the depthwise separable convolutions [29,30] separate the feature filtering and
feature computation into two parts. For the filtering part, a separate convolutional kernel Ki is applied
for each of the input channels chi. As all the channels have their individual kernels an additional layer
is needed to combine these filtered features. Thus, the depthwise convolution is followed by a 1 × 1
convolution generating the new representation. The 1 × 1 layer is a linear combination of the filtered
features generated in the depthwise convolution. Each kernel Ki has a dimension of k × k × 1 and
combined with the 1 × 1 convolution leads to a computational complexity of hi · wi · chi · (cho + k · k).
The number of parameters compared to the ordinary convolutional layer is reduced by the factor:

cho · k · k
k · k + cho

(1)

3.2. Dilated Convolutions

One drawback of ordinary CNNs is that, in order to achieve a wide receptive field, the networks
need to be very deep. For example, if we have a 1D time series input and network with two
convolutional layers, each with a 1 × 3 kernel and stride (1, 1) (the kernel moves by 1 feature each
step), the receptive field of the second layer will be 5. In other words, a perceptron in the second layer
will be able to “perceive” 5 values from the input. In general, the receptive field grows linearly with
the depth of the network and is given as:

Ri = Ri−1 +
i

∏
j=1

sj · (k − 1) (2)

where Ri−1 and Ri are the receptive fields of the previous and current layer, sj is the product over all
previous strides and k is the kernel size.

However, when working with time series data it is often necessary to consider a very wide view
of the input to make adequate predictions. What if we could increase the receptive field of the network
without adding more layers and increasing the size of the network? The solution is to use dilated
convolutions [31], as shown in Figure 2. The main idea is that during the convolution the kernel is not
considering every adjacent input from the previous layer but instead there is some fixed dilation step
di between them. With this approach, it is possible to achieve an exponentially increasing receptive
field formulated as:

Ri = Ri−1 + di ·
i

∏
j=1

sj · (k − 1) (3)

It can be seen that the receptive field of the ordinary CNN (2) is actually a special case of the
dilated convolutional network (3) where the dilation factor di equals 1. In practice, it is common to
increase the dilation factor di exponentially for each layer i, i.e., (di = 2i).
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Figure 2. Visual representation of the dilated convolutional layers with different dilation factors d.
It can be seen how the last layer has a wide receptive field.

3.3. Residual Connections

To produce models that generalize well on highly complex data, the number of layers need to
increase. By creating deeper models, and by using appropriate regularization, we assure that the
models learn the necessary features to produce appropriate outputs. However, training deep networks
represents a challenge because of the vanishing gradient problem. The gradients from the output
layers need to be propagated through the whole network which makes the gradients closer to the
input part of the network infinitely small, saturating and degrading the model.

He et al. [32] have proposed skip connections, as shown in the residual block in Figure 3.
The skip connection allows the network to learn a residual mapping more easily instead of the original
underlying mapping, circumventing the gradient vanishing problem, as gradients can more easily
flow through the network. However, Veit et al. [33] have done research on the residual connections
and argue that the skip connections allow the network to create better prediction as they effectively
allow information to pass through different pathways.

The skip connection introduced in the residual block is basically an identity connection added to
the convolutional layers and can be expressed with the following equation:

resx = x + F(x), (4)

where x is the layers input and F(x) presents an ensemble of operations, in our case convolutional
layers followed by an activation function.

Figure 3. Building blocks of the CNN network. The residual block with dilated separable convolutions
is shown on the left. The separable convolutional layers with stride s = 2 for dimensionality reduction
is shown on the right.
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3.4. Self-Normalizing Layers

It has become a widespread practice to use batch normalization [34] between layers in CNNs to
assure that layer outputs have zero mean and unit variance. This approach leads to faster training
and serves as a regularizer for the network. However, a downside of batch normalization is that it
increases the number of parameters of the network as they are used after each layer.

Klambauer et al. [35] have introduced a new activation function called Scaled Exponential
Linear Unit (SELU) that makes the layer’s outputs converge to zero mean and unit variance, naturally.
This means that the usual batch normalization layer followed by nonlinear activation can be directly
replaced by the SELU activation. The SELU activation is defined as:

selu(x) = λ

{
x, if x > 0

αex − α, if x ≤ 0
, (5)

where λ and α are coefficients that determine the mean and variance of the layer’s output. Usually, their
values are selected as λ = 1.6733 and α = 1.0507, which lead to zero mean and unit variance outputs.

If dropout [36] is applied in the network than a special type of dropout called alpha dropout is
needed to preserve the zero mean and unit variance between the layers. Together the SELU activation
and alpha dropout lead to self-normalizing layers in the model.

3.5. Model Architecture

By applying the modifications to the ordinary convolutional network, we construct two models.
One model for online and one for offline classification of scenarios. Both models share the same
architecture but differ on how the input data is processed. The model architecture consists of a
combination of two residual and two separable convolutional blocks, which are shown in Figure 3.
The eight convolutional layers are then followed by four dense layers. The parameters for each layer
can be seen in Table 1.

Table 1. Model Architecture.

Layer Kernel Stride Dilation Activation Input Online Model Input Offline Model

conv1 1 × 3 1 × 1 1 × 1 selu 10 × 60 10 × 80
conv2 1 × 3 1 × 1 1 × 2 linear 10 × 60 10 × 80
conv3 1 × 3 1 × 2 1 × 1 selu 18 × 30 18 × 40
conv4 1 × 3 1 × 2 1 × 1 linear 18 × 15 18 × 20
conv5 1 × 3 1 × 1 1 × 2 selu 18 × 15 18 × 20
conv6 1 × 3 1 × 1 1 × 4 linear 18 × 15 18 × 20
conv7 1 × 3 1 × 2 1 × 1 selu 20 × 8 20 × 10
conv8 1 × 3 1 × 2 1 × 1 selu 20 × 4 20 × 5

Output Size Conv8 Dense1 Dense2 Dense3 Dense4

online 80 64 32 20 13
offline 100 64 32 20 13

The input to the models is split into windows of equal length and move, with a fixed stride,
through the time series data, as shown in Figure 4. The online model is not able to “look” into the
future and its input window consist of past measurements followed by the current stride. The model
then uses this data to predict the classes associated with the current stride. When applied to real
measurements on a vehicle, this scheme would result in a prediction for each stride duration, e.g.,
every half a second. The offline model has all the data available and thus can consider behavior of the
vehicle before and after the current stride which leads to higher prediction accuracy.
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Figure 4. Window partitioning for class predictions. In the online model the input is only the current
stride and an aggregated past. No information of what happened after the prediction is available.
On the offline model the information what the vehicle did after the detection is available, enabling the
model to make a prediction based on past and future behavior of the vehicle. To process the whole
data, the windows are moved with a fix stride length generating corresponding class probabilities.

4. Driving Data

The full dataset used to train the neural networks consists of real-world recordings obtained
in seven highway and four motorway runs in the area around Graz, Austria. The dataset contains
183 channels and 304 thousand samples per channel, with a sampling rate of ten samples per second.
The channels are raw sensor measurements coming from various sensors such as the lane detection
camera, inertial measurement unit, encoders, etc., recorded directly from a CAN-Bus interface. As the
focus of this research is classifying scenarios relevant for LKA systems, 10 relevant input channels
were chosen to learn the distinct features. The used channels are: Lane Assist Lateral Deviation, Lane
Assist Lateral Velocity, Lane Assist Lateral Velocity SMO20—smoothed with a 20-step window,
Lane Curvature, Lane Width, Steering Wheel Angle, Longitudinal Acceleration, Lateral Acceleration,
Velocity and Yaw Rate.

The model should learn to segment the data into 13 classes, as shown in Figure 5, which were
hand labeled using a custom labeling tool. The labels are: TR: Turn Right, TL: Turn Left—these
two classes are defined with slow velocity sharp turns, LCLR: Lane Change Left to Right, LCRL:
Lane Change Right to Left, S: Straight—straight driving, CL: Curve Left, CR: Curve Right—curves
with fixed radius, TOL: Turn Out Left, TOR: Turn Out Right—curves with increasing radius, TIL:
Turn In Left, TIR: Turn In Right—curves with decreasing radius, R: Roundabout and SS: Stand Still.
The labeled data contains class probabilities for each sample from the training data. When a sample
could not be assigned to one of the thirteen classes, a uniform distribution between the classes was
introduced to represent the unknown state. In other words, the model should not be able to tell which
class the sample belongs to by generating low probabilities for all classes.

Figure 5. Example scenario classes. From left to right, top to bottom the labels are: TR: Turn Right, TL:
Turn Left, LCLR: Lane Change Left to Right, LCRL: Lane Change Right to Left, S: Straight, CL: Curve
Left, CR: Curve Right, TOL: Turn Out Left, TOR: Turn Out Right, TIL: Turn In Left, TIR: Turn In Right,
R: Roundabout and SS: Stand Still.
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The distribution of samples per class is shown in Figure 6. A strong imbalance between the classes
exists which limits the capacity to train the models. Classes TR, TL and SS appear very rarely in the
dataset, whereas S, CL, CR appear with a much higher occurrence. There was no possibility to balance
the classes more evenly during the recording. In addition, various time series augmentation techniques
were applied but they did not show any improvements on the accuracy of the models. Furthermore,
time series data, such as the present one, contain classes which repeat for a long period of time, i.e.,
during parts of the training the network gets as an input only one class which hinders generalization.
A remedy for this problem is to shuffle the data. However, shuffling of the data is not possible if RNNs
are used. The requirement of these networks is that all data is introduced sequentially. CNNs on
the other hand are applied on segments of the data, i.e., windows. Inside the windows the data is
sequential but individual windows can be shuffled which increases the accuracy.

The average duration per class is shown in Figure 6. This information is used to determine the
size of the windows used for the CNNs. By increasing the window size, we increase the complexity,
size, and accuracy of the models. However, if we increase the windows size to much the accuracy
will decrease because we are not able to distinguish classes with shorter duration. On the other hand,
if we use a small window size the network will not be able to learn the classification triggers for
the classes with longer duration. After an experimental analysis we decided to use a window size
of 8 s (80 samples) for the offline, and 6 seconds (60 samples) for the online model providing good
balance between accuracy and complexity. In addition, both models use the same stride length of 5 s
(5 samples) to traverse the windows over the whole data.

Figure 6. Distribution and average duration of scenario classes.

5. Results

The models were trained and evaluated using both the highway and motorway data. The first
dataset contains only the highway records; whereas, the second dataset contains all recordings. In
both cases, a test set including 10% of the recorded data is left for the evaluation of the models after
the training.

We compared the performance of the proposed CNN networks with two LSTM networks using
the same window size and stride length. The first LSTM network is a multi-layer network with 3 layers
and hidden state size of 512 neurons. The second LSTM network is a 3 layer bi-directional network
with the same hidden state size. The bi-directional LSTM has twice as many neurons compared to
the first LSTM network. One part of the biLSTM network starts at the beginning and traverses the
input until the end, and the second part starts at the end and traverses the input to the beginning.
This approach leads to better results as the network combines both the forward and backward pass to
make a prediction.

All models were trained for 100 epoch using a decaying learning rate, with batch size of
256 samples. The CNNs use the Adam optimizer, whereas the LSTM networks use the Adagrad
optimizer. To increase the generalization, a dropout rate of 15% was applied to all models. For the
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LSTM networks the dropout was used on the 3 layers, and for the CNN networks the dropout was
applied on the dense layers. In addition, the CNN networks use L2 regularization for the kernel
weights with a regularization factor of 2e−3.

The training losses are shown in Figure 7. The offline CNN model has the lowest training loss
compared to all other networks. The LSTM network has the worst performance and the network
is not able to model the data well. Compared to LSTM, the bi-directional LSTM has a much better
performance. On the highway/motorway dataset the online biLSTM model performs better than the
online CNN model. However, when comparing the offline and online bi-directional LSTM we can see
that the offline models performs worse than the online one. A possible explanation could be that the
offline model is not able to memories the “future” part of the data well when making a prediction in
the middle of the window.

Figure 7. Training losses for the online and offline models trained on the highway, and highway/
motorway datasets, respectively. CNN: Convolutional Neural Network, LSTM: Long Short-Term
Memory, biLSTM: bi-directional Long Short-Term Memory.

The accuracy of the models on the test sets can be seen in Table 2. The columns present the
evaluated models and the rows present the accuracy and loss for the highway, and highway/motorway
datasets. We can see that the offline CNN has the best accuracy on both test sets. The online bi-directional
LSTM has the lowest loss in both cases, but still a lower accuracy compared to the CNN. This is possible
because the loss is calculated as the mean cross entropy loss, meaning that the bi-direction LSTM makes
more mistakes in general, but the class probabilities are closer to the desired ones.

The decrease in accuracy between the highway, and highway/motorway dataset is due to the
fact that the motorway dataset is more complex, and that the outputs from the sensors are not always
consistent. In addition, because some classes are appearing less frequently than others, the models are
not able to fully generalize. Figure 8. shows a part of the highway test set. We confirm that the model
can distinguish the desired classes providing satisfactory results. However, some misclassifications are
still present. The black ellipses in the figure highlight some of them. For example, the model confuses
the CL class with TIL, TOR or LCRL. These classes are all very similar with subtle differences in the
curvature radius or duration of the maneuver. In general, the accuracy and generalization of the model
could be greatly increased if more balanced data is available.
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Figure 8. Part of the highway test set with a duration of 20 min showing that the model can learn the
desired class labels. Predictions from the offline CNN model are shown in blue and the class labels are
shown in orange. Classes TR, TL, SS were not shown as they did not occur on the highway. The black
ellipses highlight some misclassifications made by the network.
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Table 2. Test Accuracy and Loss. CNN: Convolutional Neural Network, LSTM: Long Short-Term
Memory, biLSTM: bi-directional Long Short-Term Memory.

off CNN off biLSTM off LSTM on CNN on biLSTM on LSTM
highways acc. 86.4% 76.8% 51.5% 84.4% 77.6% 57.4%
highways loss 0.725 0.775 1.614 0.787 0.663 1.469

high. motorways acc. 81.6% 73.3% 45.3% 79.6% 78.9% 69.0%
high. motorways loss 0.821 0.833 1.486 0.824 0.640 1.192

6. Conclusions

In this paper, we applied end-to-end DL architectures for classification of driving scenarios
used for evaluation of ADFs. We focused on scenarios relevant for LKA systems and considered
both Convolutional (CNN) and Recurrent Neural Networks (RNNs). Through evaluation on two
datasets, we concluded that CNNs provide better accuracy. Even though the performance of the
proposed method is satisfactory, due to the imbalances of classes in the data, similarities between
classes and sensor inconsistencies the networks could not fully generalize. However, we believe that
deep neural networks represent a great tool for scenario classification as the complex classification rules
can be learned directly by the networks. In addition, the accuracy of the networks can be increased
incrementally as more data is recorded. In our future work, we will expand the number of classified
scenarios taking into consideration also other traffic participants.
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