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Abstract: In this article, we have briefly examined the entropy generation in magnetohydrodynamic
(MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of
thermal radiation and heat source/sink are taken in this investigation. The impact of embedded
parameters on velocity function, temperature function, entropy generation rate, and Bejan number
are deliberated through graphs, and discussed as well. By studying the entropy generation in
magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet,
the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic
parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is
increased with the escalation in porosity and magnetic parameter, while increased with the escalation
in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are
discussed through tables. The partial differential equations are converted to ordinary differential
equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the
solution of the problem. The results of this investigation agree, satisfactorily, with past studies.

Keywords: entropy; MHD; Eyring–Powell fluid; thermal radiation; porosity; oscillatory stretched
sheet; HAM

1. Introduction

A non-Newtonian Fluid has exclusive features: it illustrates both the properties of liquid and
solid, as the relationship between the shear stress and the shear rate becomes non-linear. In everyday
life, industries, and technologies non-Newtonian fluids are used frequently. Non-Newtonian fluid
flow problems in different dimensions, through a porous stretching sheet with heat transfer and
magnetohydrodynamic effects, have plentiful and inclusive applications in several engineering and
industrial sectors. They include heat exchanger design, glass blowing melt spinning, production of
glass fibers, fiber and wire coating, industrialization of rubber and plastic sheets, etc. Eyring–Powell
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fluid model is an interesting model of non-Newtonian fluids. The Eyring–Powell fluid model has much
importance, but the most important feature of this model is that it diminishes to Newtonian behavior
for high and low shear stress. Hayat et al. [1] investigate the Eyring–Powell fluid flow over a stretching
surface with convective boundary condition. Patel et al. [2] numerically studied Eyring–Powell
fluids. Dawar et al. [3] analytically examined an Eyring–Powell fluid under the influence of thermal
radiation and a heat source/sink. The boundary layer and heat transfer of Eyring–Powell fluid
over a continuously moving surface has been investigated by Jalil et al. [4], who observed many
different problems. Over an inclined stretching sheet, Hayat et al. [5] examined the unsteady flow
of Eyring–Powell fluid. Fluids, including Newtonian fluids and non-Newtonian fluids, are widely
used in petroleum engineering, fuel-cell industry, and food industry. The fractal model for water
flow through unsaturated porous rocks has been examined by Xiao et al. [6]. The perforation erosion
impact on practical hydraulic fracturing has been studied by Gongbo Long and Guanshui Xu [7].
The analytical model for the transverse permeability of gas diffusion has proposed by Liang et al. [8].
The fractal model for relative permeability of gas diffusion in proton exchange membrane under the
influence of pressure has been proposed by Xiao et al. [9]. Other related studies can be seen in [10,11].

Entropy is a disorder of a system and surrounding, for example, spin movements, molecular
vibration and friction, kinetic energy, displacements of molecules, and others, due to which a loss of
useful heat occurs and, thus, heat cannot transmit fully into work. Due to these additional movements,
chaos in a system and its surroundings are created. For this, microscopic chaos results in macroscopic
level chaos, which occurs because of some unnecessary irreversibilities. For example, mixing of fluids,
electric resistance, unstained expansion, friction, chemical reaction, inelastic deformation of solids
and unnecessary heat transmission in finite temperature difference. The entropy generation was
originally formulated by Bejan [10]. Over an unsteady stretching surface, Sarojamma et al. [11] have
examined the entropy generation on a thin film flow. Along with an inclined permeable surface,
Soomro et al. [12] have recently examined, numerically, the entropy generation in MHD water-based
CNTs. Mansour et al. [13] have been examined the entropy generation rate in a laminar viscous flow in a
circular flow, and have deliberated that the entropy generation rate is high near the wall than that of the
center of the pipe. For the stagnation point, Rashidi et al. [14] have been examined the flow in a porous
medium through entropy generation. The related study about entropy generation can be seen in [15–17].
The flow of nanoparticles in a rotating system through entropy generation has been examined by
Hayat et al. [18]. The flow of nanofluids with spherical heat source/sink through entropy generation
has been examined by Nouri et al. [19]. Over a stretching surface, the flow of Jeffery nanofluids through
entropy generation has been examined by Dalir et al. [20]. The unsteady squeezing flow of viscous fluid
through entropy generation has been examined by Ahmed et al. [21]. Ishaq et al. [22] have studied the
thin film flow of nanofluid under the influence of entropy generation over a time-dependent spreading
surface. Other related important studies about entropy generation can be seen in [23–25]. Recently
Shah et al. [25] investigated radiative Darcy–Forchheimer flow carbon nanotubes with microstructure
and inertial characteristics. Shah et al. [26,27] have studied the Hall effect on micropolar nanofluid flow
with radiative heat and mass transfer analysis. Khan et al. [28] have investigated Darcy–Forchheimer
flow of micropolar nanofluid non-uniform heat generation/absorption.

Sheikholeslami [29–33] analyzed nanofluids and their applications using magnetic fields and
porous media.

The aim of this work is to examine the entropy generation on MHD Eyring–Powell flow
over an unsteady oscillatory stretching sheet under the impact of thermal radiation and a heat
source/sink. The impact of different imbedding parameters are sketched through graphs and
discussed. The analytical result for velocities and temperature profiles are obtained using the HAM
technique [34–41]. In Section 2, the mathematical modeling of the problem, entropy generation,
Bejan number, and solution by HAM, is presented. In Section 3, the results and discussion of the
imbedded parameters are presented. The theme of this work is presented in Section 4.
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2. Mathematical Modeling

Consider a two-dimensional (2-D) incompressible boundary layer flow of Eyring–Powell fluid
over an oscillatory stretching sheet concurring with plane y. In this Cartesian coordinate system,
x is parallel to the stretching sheet, and y is perpendicular to the stretching sheet. The stretching
sheet is kept porous, and the flow is supposed in an unsteady state. The magnetic field is applied
in the y direction. It is assumed that Tw > T∞, where Tw is the surface temperature and T∞ is the
temperature as the distance from the surface tends to infinity. The physical model of the problem is
shown in Figure 1.
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In Equations (1)–(3), u and v are the velocity components in the direction of x and y, respectively.
Also, ν is the kinematic viscosity, σ is the electrical conductivity, α and C are the fluid materials, ρ is
the density, Cp is the specific heat, k is the thermal conductivity, Qr is the heat source, and qr is the
radiative heat flux. qr is defined as

qr = −
4σ∗
3k∗

∂T4

∂y
, (4)

where σ ∗ (Stefan–Boltzmann constant) and k ∗ (absorption coefficient). Expending T4 by Taylor series
expansion, we obtained [28]

T4 = T∞
4 + 4T∞

3(T− T∞) + 6T∞
2(T− T∞)2 + . . . . (5)
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Neglecting higher terms from Equation (5) and substituting in Equation (3), we have

ρCp

(
∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

)
=

(
k +

16σ ∗ T∞
3

3k∗

)
∂2T
∂y2 +

Qr

ρCp
(T− T∞). (6)

With the following boundary conditions

u = Uw = cx sin ξt, v = 0, T = Tw at y = 0, t > 0,
u→ 0, T→ T∞ at y→ ∞,

(7)

we introduce the following dimensionless variables for the non-dimensionalization of the flow problem.

y =
( c

ν

) 1
2 y, τ = tξ, u = cx fy(y, τ), v = −(νc)

1
2 f (y, τ), g(y, τ) =

T− T∞

Tw − T∞
. (8)

An influential tool in fluid mechanics is the thought of dimensional analysis and scaling laws;
by looking at the physical properties present in a system, we may estimate their size and hence which,
for example, might be neglected. In some cases, the system may not have a fixed natural length scale
(timescale) while the solution depends on space (time). It is then necessary to construct a length scale
(timescale) using space (time) and the other dimensional quantities. In a study of partial differential
equations, particularly fluid dynamics, similarity variables is a form of solution which is similar to
itself if the independent and dependent variables are appropriately scaled.

In the observation of above defined dimensionless variables, Equation (1) satisfied (2) and (6),
and can be written as

(1 + P) f ′′′ − D f ′′ −
(

f ′
)2

+ f f ′′ − ňP( f ′′ )2 f ′′′ − (β + M) f ′ = 0, (9)(
1 +

4
3

Kr

)
g′′ + Pr

(
f g′ − Dg′

)
− εg′ = 0, (10)

with the following boundary conditions

f ′(0, τ) = sin τ, f (0, τ) = 0, g(0, τ) = 1, f ′(∞, τ) = 0, g(∞, τ) = 0. (11)

In the above equations, P = 1
µαC and ň = x2c3

2νC2 are the fluid parameters, β = ν
kc is the porosity

parameter, D = ξ
c depicts the oscillating frequency, M = σB0

c is the magnetic field, ε = νQr
kcρCp

is the heat

source/sink, Pr = µCp
k is the Prandtl number, and Kr =

4σ∗T3
∞T

kk∗ is the radiation parameter.
Equation (11) is subject to the constraints ňP << 1.

2.1. Physical Quantities of Interest

For engineering interest, the skin fraction coefficient C f and local Nusselt number Nu is defined as

C f =
τw

ρU2
w

, Nux =
xqw

k(Tw − T∞)
, qw = −k

(
∂T
∂y

)
y=0

. (12)

In observation of Equation (9), Equation (12) can be written as

Re
1
2
x C fx = (1 + P) f ′′ − P

3
α( f ′′ (0)), Re

1
2
x Nux = −

(
1 +

4
3

Kr

)
g′(0). (13)
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2.2. Entropy Generation and Bejan Number

For the above-stated problem, the local entropy generation rate can be defined as [10]

NG =
k

T2
∞

(
1 +

4
3

4σ ∗ T3

k ∗ k f

){(
∂T
∂y

)2
}
+

1
T∞

(ν

k
+ σB2

0

)
u2. (14)

Executing Equation (8), the above equation becomes

NG = Re
(

1 +
4
3

Kr

)
g′2 +

Re
0

Br(β + M) f ′2, (15)

where Re = T2
∞L2 is the Reynolds number, Br =

U2
w

k(T∞−Tw)
is the Brinkman number, and 0 = T∞−Tw

Tw
is

the dimensionless temperature.
The Bejan number is defined as

Be =

(
1 + 4

3 Kr

)
g′2(

1 + 4
3 Kr

)
g′2 + Re

0 Br(β + M) f ′2
. (16)

2.3. Solution by HAM

Homotopy analysis method was introduced by Liao [30–32] for the first time. He used one of
the elementary ideas of topology, called homotopy, to derive this method. He used two homotopic
functions in the derivation of this technique. The functions are called homotopic function when one
of them can be continuously distorted into another. Assume that Z1, Z2 are two functions which are
continuous, and X, Y are two topological spaces where Z1 & Z2 map from X to Y, then Z1 is said to be
homotopic to Z2 if there is a continuous function <,

< : X× [0, 1]→ Y. (17)

Thus, x ∈ X, then
<[x, 0] = Z1(x) and <[x, 1] = Z2(x). (18)

The mapping < is called homotopic.
In order to solve Equations (9) and (10) with the boundary conditions Equation (11), we use

HAM [38–41] with the succeeding process.
The initial suppositions are chosen as follows:

f0(ϕ) = 1− e−ϕ sin ϕ, g0(ϕ) = e−ϕ. (19)

The linear operators are taken as L f and Lg:

L f ( f ) = f ′′′ − f ′, Lg(g) = g′′ − g, (20)

which have the following succeeding properties:

L f (n1 + n2e−ϕ + n3eϕ) = 0, Lg(n4e−ϕ + n5eϕ) = 0, (21)

where ni(i = 1− 5) are constants.
The resultant non-linear operators, NL f and NLg, are specified as
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NL f [ f (ϕ; 0)] = (1 + P) ∂3 f (ϕ;0)
∂ϕ3 − D ∂2 f (ϕ;0)

∂ϕ2 −
(

∂ f (ϕ;0)
∂ϕ

)2

+ f (ϕ; 0)
∂2 f (ϕ;0)

∂ϕ2 − ňP
(

∂2 f (ϕ;0)
∂ϕ2

)2
− (β + M)

∂ f (ϕ;0)
∂ϕ

(22)

NLg[g(ϕ; 0)] =
(

1 + 4
3 Kr

)
∂2g(ϕ;0)

∂ϕ2

+Pr
(

f (ϕ; 0)
∂g(ϕ;0)

∂ϕ − D ∂g(ϕ;0)
∂ϕ

)
− εg(ϕ; 0).

(23)

The zero-order problems from Equations (9) and (10) are

(1−Ω)L f [ f (ϕ; 0)− f0(ϕ)] = Ωh f NL f [ f (ϕ; 0)],
(1−Ω)Lg[g(ϕ; 0)− g0(ϕ)] = ΩhgNLg[ f (ϕ; 0), g(ϕ; 0)]

(24)

The equivalent boundary conditions are

f (ϕ; Ω)|ϕ=0 = 0, ∂ f (ϕ;Ω)
∂ϕ

∣∣∣
ϕ=0

= sin τ, ∂ f (ϕ;Ω)
∂ϕ

∣∣∣
ϕ→∞

= 0.

g(ϕ; Ω)|ϕ=0 = 1, g(ϕ; Ω)|ϕ→∞ = 0,
(25)

When Ω = 0 and Ω = 1, we have

f (ϕ; 1) = f (ϕ) and g(ϕ; 1) = g(ϕ). (26)

Expanding f (ϕ; Ω) and g(ϕ; Ω) by Taylor series,

f (ϕ; Ω) = f0(ϕ) +
∞
∑

q=1
fq(ϕ)Ωq

g(ϕ; Ω) = g0(ϕ) +
∞
∑

q=1
gq(ϕ)Ωq

(27)

where

fq(ϕ) =
1
q!

∂ f (ϕ; Ω)

∂ϕ

∣∣∣∣
Ω=0

and gq(ϕ) =
1
q!

∂g(ϕ; Ω)

∂ϕ

∣∣∣∣
Ω=0

. (28)

Setting Ω = 1 in (28), we obtain

f (ϕ) = f0(ϕ) +
∞
∑

q=1
fq(ϕ),

g(ϕ) = g0(ϕ) +
∞
∑

q=1
gq(ϕ).

(29)

The qth-order problem satisfies the following:

L f
[

fq(ϕ)− χq fq−1(ϕ)
]
= h f U f

q (ϕ)

Lg
[
gq(ϕ)− χqgq−1(ϕ)

]
= hgUg

q (ϕ)
(30)

with the conditions
fq(0) = f ′q(0) = f ′q(∞) = 0,

gq(0) = gq(∞) = 0.
(31)

Here,

U f
q (ϕ) = (1 + P) f ′′′q−1 − D f ′′q−1 −

q−1
∑

k=0
f ′q−1−k f ′k +

q−1
∑

k=0
fq−1−k f ′′k − ňP

q−1
∑

k=0
f ′′q−1−k

k
∑

j=0
f ′′k−j f ′′′j −

(β + M) f ′q−1,
(32)
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Ug
q (ϕ) = (1 + Kr)g′′q−1 + Pr

[
q−1

∑
k=0

Fq−1−kg′k − Dg′q−1

]
− εgq−1. (33)

where

χq =

{
0, if Ω ≤ 1
1, if Ω > 1

, (34)

the overall homotopic series solutions in general form are specified as

fi(η) = f̂i(η) + n1 + n2e−ϕy + n3eϕy,
gi(η) = ĝi(η) + n4e−ϕ + n5eϕy

(35)

2.4. HAM Convergence

Whenever we calculate the series solution of the velocity function and temperature function by
using HAM, the parameters h f and hg, which are called assisting parameters, appear. The function
of these parameters is to adjust the convergence of these solutions. At the 5th order approximation,
the h-curves of f ′′ (0) and g′(0) are plotted in Figures 2 and 3, respectively. The convergence region of
the velocity function is −0.8 ≤ h f ≤ −0.1, and the convergence region of the temperature function is
−1.0 ≤ hg ≤ −0.5.
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3. Results and Discussion

3.1. Tables Discussion

Tables 1 and 2 depict the influence of various parameters on skin fraction coefficient C fx and local
Nusselt number Nux. These tables express the best agreement with our previous study. The impacts of
emerging parameters on skin fraction coefficient are presented in Table 1. From the tabulated values,
we see that the skin fraction coefficient reduces with the escalation in β, P, and ň. The impacts of
emerging parameters on local Nusselt number is presented in Table 2. The local Nusselt number
reduces with the escalation in Pr, while it escalates with the escalation in ε and Kr.

Table 1. Numerical values for skin fraction coefficient C fx, when D = 0.5, α = 1.0, M = 0.008, at time
instant τ = π

2 .

β P ň Previous Result Ref. [3]. Present Study

0.5 −1.29447 −1.29876

0.7 −1.39927 −1.40331

0.9 −1.50053 −1.50452

1.1 1.0 −1.59913 −1.60303

1.3 −1.68426 −1.68834

1.5 −1.73747 −1.74168

1.7 0.5 −1.78810 −1.79324

0.6 −1.81316 −1.81795

0.7 −1.84069 −1.84533

Table 2. Numerical values for heat flux Nux, when D = 0.5, α = 1, 0.1, M = 0.008, at time instant
τ = π

2 .

Pr ε Kr Previous Results, Ref [3]. Present Study

1.0 1.82770 1.82748
1.2 1.80574 1.80200
1.4 1.78404 1.77763
1.6 2.5 1.76259 1.75229

2.6 1.79740 1.79024
2.7 1.83133 1.82557
2.8 0.3 1.85965 1.85951

0.4 1.97571 1.97496
0.5 2.08693 2.08544

3.2. Graphical Discussion

In this section, we have discussed the influences of different embedded parameters and
dimensionless numbers on velocity function f ′(ϕ), temperature function g(ϕ), entropy generation rate
NG, and Bejan number Be. These embedded parameters and dimensionless numbers are oscillating
frequency D, porosity parameter β, fluid parameters P and ň, magnetic parameter M, heat source/sink
ε, Prandtl number Pr, rotation parameter Kr, and Reynolds number Re. To comprehend the influence
of these parameters and dimensionless numbers, Figures 4–19 are schemed.

Figure 4 displays the influence of oscillating frequency D on velocity function f ′(ϕ). It is observed
that augmented values of D increased the flow motion. Actually, the higher value of oscillating
frequency D increases the kinetic energy of fluid molecules which result in increases in the flow motion.
The impact of porosity parameter β on velocity function f ′(ϕ) is shown in Figure 5, which has a
dominating effect on the flow motion. Generally, the porosity creates resistance in the flow path,
and declines the velocity of the flow motion. In fact, growing values of β show the large number of
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porous spaces, which create resistance in the flow path and reduce overall fluid motion. Basically,
with the increase, the number of holes in the porous plates are increased. The nanoliquid particle
aspect hurdles in, flowing over these holes. Hence, it is obvious that the increasing values of β reduce
the velocity function f ′(ϕ).Appl. Sci. 2019, 9 FOR PEER REVIEW  11 
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Figures 6 and 7 depict the influence of fluid parameters P and ň on velocity function f ′(ϕ),
respectively. It is evident that the higher values of fluid parameters raise the velocity profile. Figure 8
shows the impact of magnetic field M on velocity function f ′(ϕ). Lorentz force theory says that the
magnetic field has a reverse effect on velocity function. Hence, the higher values of M reduce f ′(ϕ).
This important effect of M on velocity profile f ′(ϕ) is because of the fact that the increases in the M
movements, or the friction force, is named the Lorentz force. It has the affinity to reduce the fluid
velocity in the boundary sheet. Figure 9 shows the impact of heat source/sink ε on temperature function
g(ϕ). Generally, the heat source/sink performs like a heat generator, which releases heat to the flow of
fluid. Therefore, the enhancement in ε improves the temperature field g(ϕ). In addition, this helps to
grow the thickness of the boundary layer. Figure 10 demonstrates the impact of oscillating frequency
D on temperature function g(ϕ). Generally, the high oscillating frequency reduces the temperature
function much more. Hence, the increasing values of D reduce g(ϕ). Figure 11 demonstrates the
impact of radiation parameter Kr on temperature function g(ϕ). Thermal radiation has a leading role
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in heat transmission when the coefficient of convection heat transmission is small. The enhancement
in Kr improves g(ϕ). Actually, when we increase thermal radiation parameter Rd, then it is apparent
that it enhances the temperature in the boundary layer area in the fluid layer. This increase leads to
a drop in the rate of cooling for nanofluid flow. Figure 12 shows the impact of Prandtl number Pr
on temperature function g(ϕ). Physically, the nanofluids have a large thermal diffusivity with small
Pr, but this effect is reversed for higher Pr, therefore, the temperature of liquid shows a decreasing
behavior. Physically, the fluids having a small number of Pr have a larger thermal diffusivity, and this
effect is opposite for higher Prandtl numbers. Due to this fact, a large value of Pr causes the thermal
boundary layer to drop. Figures 13 and 14 demonstrate the influence of porosity parameter β on the
entropy generation rate NG and Bejan number Be, respectively. From these figures, we observe that the
porosity parameter β has a reversed impact on NG and Be. Figures 15 and 16 demonstrate the impact
of magnetic parameter M on generation rate NG and Bejan number Be, respectively. Here, M has a
reversed impact on NG and Be. That is, the enhancement in magnetic parameter reduces NG and Be.
Figures 17 and 18 are plotted to describe the impact of radiation parameter Kr on generation rate NG
and Bejan number Be, respectively. From Figure 17, we observed that the increase in Kr reduces NG,
while Figure 18 depicts the reverse impact on Be. Figure 19 demonstrates the impact of (Re) on NG.
From this figure, we observed that the increasing Reynolds number increases the entropy generation.Appl. Sci. 2019, 9 FOR PEER REVIEW  12 
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4. Conclusions

In this article, we investigated the entropy generation on MHD Eyring–Powell fluid over an
unsteady oscillatory porous stretching sheet. The impact of thermal radiation and heat source/sink
is taken into account. Also, this article is compared with one from our previous study, and found to
agree satisfactorily. The concluding remarks of this study are listed below:

• The velocity function reduces with the enhancement in magnetic field and porosity parameter,
and escalates with the enhancement in oscillating frequency and fluid parameters.

• The temperature function reduces with the enhancement in oscillating frequency and Prandtl
number, and escalates with the enhancement in heat source/sink and radiation parameter.

• The entropy generation rate reduces with the escalation in porosity parameter, thermal radiation,
magnetic field, and escalates with the enhancement in Reynolds number.

• The Bejan number reduces with the enhancement in porosity parameter and magnetic field,
and increases with the enhancement in thermal radiation parameter.
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Nomenclature

B magnetic field
(

NmA−1
)

Br Brinkman number

Cp specific heat
(

J
kgK

)
C f skin friction coefficient
D oscillating frequency (Hz)
k thermal conductivity (Wm−1K−1)
k∗ absorption coefficient
Kr radiation parameter
M magnetic parameter
Nux Nusselt number
P fluid parameter
Pr Prandtl number
Qr heat source

qr heat flux
(

Wm−2
)

T fluid temperature (K)
T∞ infinity temperature (K)
Tw surface temperature (K)
u, v velocity components

(
ms−1)

x, y coordinates
X, Y topological spaces
Z1, Z2 homotopic functions
Greek Letters
α fluid material
ν kinematic viscosity,

ρ fluid density
(

Kgm−3
)

σ electrical conductivity of fluid
(

Sm−1
)
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σ∗ Stefan–Boltzmann constant
h assisting parameter
ň fluid parameter
β porosity parameter
ε heat source/sink
0 dimensionless temperature
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