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Abstract: We demonstrate a new method to detect terahertz (THz) power using a temperature-
supersensitive capsulized cholesteric liquid crystal film based on the thermochromic and
thermodiffusion effect, which is clearly observed. A quantitative visualization of the THz intensity
up to 4.0 × 103 mW/cm2 is presented. The diameter of the color change area is linearly dependent
on the THz radiation power above 0.07 mW in the steady state. Moreover, the THz power can be
detected for 1 sec of radiation with a parabolic relation to the color change area. The THz power
meter is robust, cost-effective, portable, and even flexible, and can be used in applications such as
THz imaging, biological sensing, and inspection.
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1. Introduction

Terahertz (THz) radiation in the range of 0.1–10 THz has enormous advantages such as a low
photon energy, sensitivity to free carrier, crystal lattice vibration, magnetic spins, hydrogen bonds,
intermolecular interaction, water, and high transparency for non-conducting materials. THz technology
is, therefore, promising for a diverse range of applications from spectroscopy, security screening and
biomedical technology to high-speed wireless communication [1–7]. Many types of THz sources such
as photoconductive antenna, semiconductor, magnetic materials, nonlinear optical crystal, cascade
laser, resonant tunneling diode, and air plasma were developed [3,8–19]. The intensity and conversion
efficiency are becoming very well recently. THz wave detection plays a key role in all of these areas.
Conventional THz detectors are primarily divided into noncoherent and coherent types. Noncoherent
THz thermal detectors typically based on the pyroelectric or bolometric effect are widely used in
THz imaging [20–22]. However, these devices detect THz radiation based on electronic measurement,
which requires complex fabrication and is bulky and expensive. The Golay detector can measure THz
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radiation through the optical method, but it is fragile and sensitive to mechanical vibration, has a slow
response, and has too low a THz power (maximum ~10 µW) to be detected [23]. THz detectors still
have outstanding challenges to address before becoming cost-effective, user-friendly, and widely used.

Recently, alternative thermal detection techniques using cholesteric liquid crystals (CLCs) have
emerged. CLCs have the intrinsic self-organizing ability of a helical structure, the pitch of which
depends on temperature, and the wavelength of the selective reflection depends on the pitch [24,25].
THz radiation increases the temperature of CLCs, which changes the pitch. Therefore, THz power
is detected through measurement of the reflective wavelength. THz waves induce color change of
CLCs, which can be observed directly by the naked eye, thus makes electronic devices, power supplies,
or connecting cables unnecessary. This simplicity enables us to make cheap and portable THz imagers.
The first CLC imager for 337-µm radiation was demonstrated by Keilmann and Renk in 1971 [26].
In 2013, Woolard et al. reported a CLC imager for THz quantum cascade lasers [27]. Both are for
single-frequency THz radiation. With the rapid development of various broadband and high-power
THz sources pumped by table-top lasers, we have used a temperature-sensitive CLC to measure the
THz beam profile. We have measured the THz beam profiles at low power density under which
condition the influence of thermodiffusion-effect CLC film can be neglected [28]. Under a high THz
power density, the thermochromatic and thermodiffusion effect always exists simultaneously in the
CLC. Especially, while the color does not change at the center of the CLC film at the saturation, the color
change can still diffuse to a larger area in the CLC, which is stable, easy to investigate, and can be used
for designing new THz devices.

Here, we present new methods for detecting THz waves in high THz intensity using a temperature-
supersensitive capsulized CLC film (CCLCF). We utilize not only the thermochromic effect but also the
thermal diffusion effect of the CLCs to quantify the THz absorption-induced increase in the size of the
color change area. By focusing the THz beam, the power density reaches as high as 4.0 × 103 mW/cm2.
In the equilibrium state, the diameter of the color change area is linearly related to the THz power,
whereas in the transient state, for 1 sec of THz radiation, the THz power can also be clearly detected.

2. Materials and Methods

The configuration of the CCLCF is illustrated in Figure 1. It consists of three layers. The CLCs
are encapsulated in droplets of ~10 µm in size dispersed in an organic solvent (RM2325, Capsular
Products, Tokyo, Japan), shown in the inset of Figure 1, which is directly coated on the acrylic resin
layer. The carbon black layer adheres to the CCLC layer from the back side, in order to clearly change
the color of the CCLCF. This thin film is flexible and pressure-insensitive, which makes it easy to scale
up for operation.Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 8 
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Figure 1. Schematic and working principle of the capsulized cholesteric liquid crystal film (CCLCF).
The inset shows a micrograph of the CCLCF, which is produced with a color 3D laser scanning
microscope (VK-8710, KEYENCE, Osaka, Japan).
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We harness the heat produced by the localized absorption of the THz radiation to increase the
temperature of the CCLCF. Thus, the helical pitch of the CCLC is shortened, simultaneously resulting
in both a color change and increase in size. This is the process of producing an image of the color
change that is dependent on the THz intensity. Especially when the THz radiation is focused, the high
THz power density clearly reveals the diffusion of the color change. The THz radiation is measured by
analyzing the image. The device is not restricted by the saturation of the color change and is stable
and practical without any additional components required to measure the temperature.

The narrow temperature range of the color change is better for the sensitivity of the THz power
measurement. Our thermochromic LC is temperature-supersensitive, which is from about 22 ◦C to
25.5 ◦C, as shown in Figure 2, at a room temperature of 23.8 ◦C, and green light is reflected while
the color changes to blue (corresponding to the saturation) when the temperature reaches 25.5 ◦C,
increasing by just 1.7 ◦C. The inset pictures were taken by a common commercial digital camera and
show that the film is very homogeneous. The curves represent the THz absorptance spectra at different
temperatures. The absorption A(ω) is calculated by 1 − T(ω) − R(ω), where T(ω) and R(ω) are the
transmittance and reflectance of the CCLCF, respectively, measured by conventional THz time-domain
spectroscopy. Compared to our earlier work [28], here we improved the sample by removing two
layers Polyethylene terephthalate and double-sided tape to obtain a higher THz absorption. We can
see that the THz absorption of the CCLCF is almost temperature-independent, where the absorption
at 25.5 ◦C is a little larger than that at 23.8 ◦C. The THz polarization-independent characteristic is
also measured and confirmed, which is not given here. The absorption increases over the entire THz
region from 0 to 3 THz. The oscillation in the THz absorptance spectrum is an interference effect
caused by multiple reflections of the CCLCF. The thermal conductivity of the sample we measured is
about 0.5 J/msK. All the measurements indicate that the device is stable, which is suitable for our THz
power detection.
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Figure 2. Effect of temperature on THz absorption spectra of CCLCF. The inset shows the photos of
color change from green (23.8 ◦C) to blue (25.5 ◦C).

3. Setup and Results

Since we aim to propose a new method to detect THz power using our CLC device, the characterization
of its performance in a large power range is more expected. Therefore, the THz pulse generation setup
using the titled-pump-pulse-front method [15,16], which is believed to be one of the most efficient
THz sources [9,13,16], is adopted in our experiment. We generate THz pulses with pulse energy of
2.6 µJ by using pump beam with pulse energy of 4 mJ. The energy conversion efficiency is thus ~0.7‰.
The advantage of our system is that the LiNbO3 has a much higher pump-power tolerance and can
generate high intensity THz waves. The much larger pump power compensates for the lack of the
energy conversion efficiency. Our mW class THz source (pulse peak amplitude ~500 kV/cm) can be
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satisfactory for many researches. The setup and the THz power measurement with the CCLCF is
shown in Figure 3a. The LiNbO3 crystal is pumped by a regeneratively amplified Ti: sapphire laser
(Legend Elite: 800-nm central wavelength, 4-W optical power, 100-fs pulse duration, 1-kHz repetition
rate, Coherent) to generate the broadband THz pulse. A black polypropylene filter is used to block the
remaining pumped laser and the radiation produced in the crystal along with the terahertz generation.
The THz source intensity is tunable by rotating the THz polarizer. The CCLCF (1.5 cm × 2.5 cm) is
placed at the focal point. THz radiation is normally incident on the sample. Images and videos are
taken by a smartphone camera with wireless Bluetooth technology to make it not only convenient but
also to insure the detection position is fixed. The initial temperature of the CCLCF is 23.8 ◦C. Figure 3b
shows the THz temporal profile. Single-cycle THz pulses with amplitudes of about 500 kV/cm are
generated by optical rectification from LiNbO3 [29]. Its corresponding THz spectral range is mainly
0–1 THz, which is shown in Figure 3c. The inset indicates that the THz beam spot size obtained with a
THz camera (IRV-T0831, NEC, Tokyo, Japan) has a spatial profile of only about 300 µm after focusing
by the parabolic mirrors. A commercial pyroelectric detector (THz-5B-MT, Gentec-EO, Quebec City,
Canada) was used to calibrate and measure the THz radiation power. The maximum average THz
power (Pmax) was 2.6 mW in our system. Thus, the maximum THz power density is as high as
4.0 × 103 mW/cm2. As the focused THz beam size is very small with a high power density, the color
change increases in size to a large area in the CCLCF, which can be seen clearly.
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Figure 3. (a) Experimental setup. Broadband THz waves are generated by the tilted-pump-pulse-front
method with a LiNbO3 crystal. The THz beam is tightly focused into the CCLCF through off-axis
parabolic mirrors (PM). (b) Measured THz temporal waveform and (c) its Fourier components. The inset
shows the THz beam profile image at the focused point after PM3.

A direct visualization of different THz powers is demonstrated in Figure 4a. The images show
an increase in alteration at the same area, suggesting the apparent temperature growth and thermal
diffusion due to the increase in THz intensity. Without THz radiation, the green background color
is a reference. Just two colors are involved, which is beneficial for our image analysis. For simple
use, here we choose the diameter of the color change area as an evaluating parameter. Through
the processing of our CCLCF images and videos based on hue, since hue increases monotonically
with an increase in temperature [28], related parameters and data can be obtained by using software
ImageJ [30]. The digital value of hue is 131. Figure 4b presents the relationship between the diameter
and THz power in the steady state. The detectable THz field threshold value is about 0.07 mW, which
can produce color changes visible to the naked eye. It has an approximately linear relationship above
the threshold. The film still works well even when the THz intensity exceeds 4.0 × 103 mW/cm2.
Therefore, we quantify the THz wave intensity by the diameter of the color change of the CCLCF.
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The increasing diameter looks similar to a target, which suggests an apparent temperature growth due
to the increase in THz intensity. The response time is shown in Figure 4c. We can see that the CCLCF
clearly has different responses with different THz powers. The entire system has corresponding images
in thermodynamic equilibrium with different THz powers. With the high THz power, thermal diffusion
is faster than that at low power, but the stabilization diameter is much larger, thus, the response time is
slow. As can be seen, at the THz power maximum of 2.6 mW in our system, it takes about 30 sec to
reach equilibrium, while at 1.3 mW, the stabilization time is about 15 sec. The images from the video
captured by the camera under 2.6 mW at radiation times of 2, 5, 28, and 30 sec shown in the inset
demonstrate how the diameter increases with time.
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Figure 4. (a) Visible pictures are taken under different THz intensities by a smartphone camera with
Bluetooth. (b) Increase in the diameter of the color change with different THz powers in thermal
equilibrium, similar to the target shown in the inset. (c) Increase in the diameters as a function of
response time with 1.3 and 2.6-mW THz radiation. The inset shows image changes under different
THz radiation times.

For rapid THz power measurement, we switched to transient detection which means THz power
can be obtained by the measurement at one point in time before the thermal equilibrium. The transient
performance of the CCLCF for 1 sec of THz radiation was demonstrated in Figure 5. We varied the
power by rotating the wire grid and detected the color change of the area. When the angle of the
wire grid polarizer θ = 0◦, which is parallel to the polarization of the THz wave, there is no THz
transmission. Then, the angle changes to 40◦, 60◦, and 80◦ to obtain the radiation images from the
video taken by the same smartphone shown in the inset. We can see that the CCLCF clearly differs for
different THz powers and the response in the central small active area is more rapid than in the large
active area shown in Figure 4. Here, the images are still analyzed based on hue of which the digital
value we chose is 122. The THz intensity is proportional to the area of the color change. A quantitative
evaluation with an approximately parabolic relation between THz power with the color change area is
also obtained based on this fast measurement method.
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Figure 5. Relation between THz power and transient color change area when THz radiation is incident
for 1 sec. The insets show the areas of color change under different THz powers.

4. Conclusions

We develop a new kind of THz power meter based on not only the thermochromic but also
the thermal diffusion effect of the CCLCF, which can be used conveniently and effectively at room
temperature. The THz intensity is represented as a change in color, which can be observed clearly
by the naked eye and quantified through simple image analysis. Meanwhile, the radius of the THz
spot is focused to only about 150 µm and the meter can measure a very high THz power density
of 4.0 × 103 mW/cm2. Fast THz power measurement can be realized through transient detection.
The performance of the THz power meter regarding sensitivity and resolution can be enhanced by
improving the characteristics of the CLC, as well as image analysis methods [31,32] which may decrease
the speed of the detector. There is a tradeoff we should consider. The estimated time of retrieving
power after image processing should be less than one second if the whole system is completed in near
future. Combined with the metamaterial [33–35], not only the amplitude of the THz wave, but also the
wavelength, phase, and polarization can be detected visually in a wide frequency range, which has
potential for use in practical applications.
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