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Abstract: Skewness Decision Tree Support Vector Machine (SDTSVM) algorithm is widely known
as a supervised learning model for multi-class classification problems. However, the classification
accuracy of the SDTSVM algorithm depends on the perfect selection of its parameters and the
classification order. Therefore, an improved SDTSVM (ISDTSVM) algorithm is proposed in order
to improve the classification accuracy of steel cord conveyor belt defects. In the proposed model,
the classification order is determined by the sum of the Euclidean distances between multi-class
sample centers and the parameters are optimized by the inertia weight Particle Swarm Optimization
(PSO) algorithm. In order to verify the effectiveness of the ISDTSVM algorithm with different feature
space, experiments were conducted on multiple UCI (University of California Irvine) data sets
and steel cord conveyor belt defects using the proposed ISDTSVM algorithm and the conventional
SDTSVM algorithm respectively. The average classification accuracies of five-fold cross-validation
were obtained, based on two kinds of kernel functions respectively. For the Vowel, Zoo, and Wine
data sets of the UCI data sets, as well as the steel cord conveyor belt defects, the ISDTSVM algorithm
improved the classification accuracy by 3%, 3%, 1% and 4% respectively, compared to the SDTSVM
algorithm. The classification accuracy of the radial basis function kernel were higher than the
polynomial kernel. The results indicated that the proposed ISDTSVM algorithm improved the
classification accuracy significantly, compared to the conventional SDTSVM algorithm.

Keywords: steel cord conveyor belt; weak magnetic testing; defects classification; decision tree
support vector machine (DTSVM); particle swarm optimization (PSO)

1. Introduction

The steel cord belt conveyor is an important transport equipment in modern coal mine
transportation. The structure of the steel cord conveyor belt is presented in Figure 1. The main
bearing part is the wire rope. Commonly, the steel cord conveyor belt is very long. The vulcanized
splice is used for the multi-section connections of the belts. The splices are the weakest parts in the
conveyor belt. The steel cord conveyor belt usually suffers from complex loadings and operates under
harsh conditions. Therefore, the typical steel cord conveyor belt defects (e.g., splice twitch, broken rope
and rope fatigue) are induced leading to the strength reduction of the conveyor belt. The fracture failure
of the steel cord conveyor belt could be caused if the defects had not been classified timely. The fracture
presented in Figure 2 illustrates the consequence of such a failure. The belt fracture will not only cause
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huge economic losses, but also even causes casualties [1,2]. Therefore, it is imperative to develop
more accurate methods for the classification of steel cord conveyor belt defects, which significantly
contributes to prevent fracture accidents.

Figure 1. The structure of the steel cord conveyor belt.

Figure 2. A photo of the steel cord conveyor belt after a fracture failure.

The SVM algorithm is widely known as a supervised learning model for multi-class classification
problems. However, the classification accuracy of the SVM algorithm depends on the perfect choice of
its parameters. Some researchers have been trying to optimize the parameters of the SVM algorithm,
using grid search method, genetic algorithm (GA) and PSO algorithm [3]. Although the procedure of
the grid search method is simple to understand and perform, it costs a lot of computation resources
and the optimization efficiency is below expectation [4]. The genetic algorithm is a good method
for the optimization of the SVM parameters [5,6]. Compared to the genetic algorithm, the PSO
algorithm can usually provide better fitness values with a less complexity of optimization [7,8].
Z. W. Liu et al. [9] studied a wavelet SVM method, based on PSO, to accomplish bearing fault vibration
signals classification. J.A. Mohammadi et al. [10] applied the SVM optimized by the PSO (PSO-SVM) to
detect the squamous disease, with a recognition accuracy of 98.9%. Due to the weak local optimization
ability of the conventional PSO algorithm, the inertia weight factor has been proposed to improve the
optimization ability of the PSO algorithm [11].

Regarding the multi-class classification problem, a variety of strategies for the combination of
a multi-class classification, using SVM, have been proposed and widely used, for example 1-v-r
(one-versus-rest) SVM, 1-v-1 (one-versus-one) SVM and Decision Tree SVM [12,13]. In order to
make the SVM algorithm less sensitive to outliers and noise, a variant of SVM, fuzzy SVM (FSVM),
was introduced to improve the performance of the conventional SVM [14,15]. For an N-class problem,
N(N-1)/2 SVMs need to be trained in the 1-v-1 SVM algorithm and N SVMs need to be trained in
the 1-v-r SVM algorithm, while N-1 SVMs need to be trained in the Decision Tree SVM. Although
the 1-v-1 SVM algorithm performs with a superior performance, it may require a high computing
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cost for many realistic problems. The 1-v-r SVM algorithm has less accuracy and demands a higher
computing cost [16,17]. The Decision Tree SVM includes the Skewness Decision Tree SVM and the
Normal Binary Decision Tree SVM. The Skewness Decision Tree SVM is widely applied because
it usually has higher efficiency and accuracy [18,19]. The classification order of the conventional
Skewness Decision Tree SVM is determined by the class label sort. The hardest category may be
separated first in the conventional SDTSVM algorithm, which would decrease the classification
accuracy [20]. In order to improve the classification accuracy, an improved Skewness Decision Tree
SVM was proposed by determining the classification order using the Euclidean distance between the
nearest sample vectors of the multi-class samples [21]. However, the nearest sample vectors of the
multi-class samples may be an interference point, which would decrease the classification accuracy.
In order to address such a limitation, an improved SDTSVM algorithm has been proposed with the
classification order determined by the sum of the Euclidean distances between the multi-class sample
centers. The ISDTSVM algorithm can improve the classification accuracy and overcome the influence
of interference point by considering the distribution characteristics of the samples.

In this study, our main contribution is to propose an improved SDTSVM algorithm and the
ISDTSVM algorithm has been applied to the classification of the weak magnetic signals of steel cord
conveyor belt defects. The classification order of the ISDTSVM algorithm is determined by the sum
of the Euclidean distances between the multi-class sample centers and the parameters are optimized
by the inertia weight of the PSO algorithm. The ISDTSVM algorithm can efficiently improve the
classification accuracy of the steel cord conveyor belt defects. It has an important significance for
preventing fracture accidents of the steel cord conveyor belt.

2. Improved Skewness Decision Tree SVM (ISDTSVM) Algorithm

Decision Tree SVM takes advantage of both the efficient computation of the tree structure and
the high classification accuracy of the SVM. The Decision Tree SVM includes a Skewness Decision
Tree SVM and a Normal Binary Decision Tree SVM. In this paper, the Skewness Decision Tree SVM
algorithm has been studied. This section will briefly present an effective multi-class classification
algorithm for the Skewness Decision Tree SVM and its improved model has been briefly presented in
the subsequent sections.

2.1. Non-Linear Model of the SDTSVM Based on the Kernel Function

This section will briefly describe a non-linear model of the SDTSVM algorithm, based on kernel
function [22,23]. In most practical data sets, data are often non-linear and separable. The main
idea of the non-linear SVM is to create non-linear kernel classifiers which map the data onto a
higher-dimensional feature space, expecting that in the higher-dimensional space, the data could
become more easily separated. Equation (2) has been obtained by using the kernel function given in
Equation (1).

K(xi, xj) = (Φ(xi), Φ(xj)) (1)

max
α

LD(α) =
m

∑
i=1

αi −
1
2

m

∑
i=1

m

∑
j=1

yiyjαiαjK(xi, xj) (2)

Subject to
m

∑
i=1

yiαi = 0

0 ≤ αi ≤ C, i = 1, 2, · · · , m

Some widely used kernel functions include polynomial, radial basis function (RBF) and sigmoid
kernel, which are presented by Equations (3)–(5) respectively.

Polynomial kernel:
K(xi, xj) = (1 + xi · xj)

d (3)
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Radial basis function kernel:

K(xi, xj)= exp (−γ‖xi − xj‖2) (4)

Sigmoid kernel:
K(xi, xj)= tan h (kxi · xj − δ) (5)

The RBF kernel function is usually used for two reasons. First, this kernel maps samples onto a
higher-dimensional space; thus, it can handle the case when the relation between class labels and the
attributes is nonlinear. The second reason is that the RBF kernel only requires two parameters C andγ,
making this an easily-processed method.

2.2. The Classification Order Determination Method of the ISDTSVM Algorithm

2.2.1. The Principle of the Conventional Skewness Decision Tree SVM Algorithm

Figure 3 illustrates the conventional Skewness Decision Tree SVM for a k-class classification
problem. The classification order is determined by the class label sort. First, class 1 is separated from
classes 1, 2, 3, . . . , k. Then, class 2 is separated from classes 2, 3, . . . , k. Finally, class k − 1 is separated
from classes k − 1, k.

Figure 3. Illustration of the conventional Skewness Decision Tree Support Vector Machine (SVM).

2.2.2. The Realization Method of the ISDTSVM Algorithm

For a k-class classification problem, the classification order is determined by the sum of the
Euclidean distances between the multi-class sample centers. The larger the sum of Euclidean distances,
the earlier separation. The related calculation expression are presented as follows:

(1) The center of the class

If class i has n samples, the center of the class xi is given by Equation (6).

xi =
n

∑
j=1

xij/n (6)

where, xij is the jth simple of class i, xij ∈ Rd.

(2) The Euclidean distances between the class centers

The Euclidean distances between class i and class j is given by Equation (7).

dij =
√
(xi − xj)2, i, j = 1, 2, · · · , k (7)

(3) The sum of the Euclidean distances between the class centers
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The sum of Euclidean distances between the class centers is given by Equation (8).

Sumd(i) =
k

∑
j=1

dij, i = 1, 2, · · · , k (8)

The ISDTSVM algorithm can overcome the influence of the interference points by calculating the
Euclidean distances between the classes centers, compared to Euclidean distance between the nearest
sample vectors between classes. It is presented as follows:

Assuming there are three types of sample signals, one of which has two interference points
for points A and B. The two-dimensional spatial distribution of the three types of sample signals is
presented in Figure 4. In Figure 4, dc12 is the Euclidean distance between the center of class 1 and class
2, dc13 is the Euclidean distance between the center of class 1 and class 3, dc23 is the Euclidean distance
between the center of class 2 and class 3, dn11 is the Euclidean distance between the nearest sample
vector of class 1 and class 2, dn13 is the Euclidean distance between the nearest sample vector of class 1
and class 3 and dn23 is the Euclidean distances between the nearest sample vector of class 2 and class 3.

Figure 4. Two-dimensional spatial distribution of the three types of sample signals.

As can be seen in Figure 4, dc12 > dc13 > dc23 and dn13 > dn23 > dn12 can be obtained and class 1
is the easiest to be separated. Due to dc12 > dc13 > dc23 and dn13 > dn23 > dn12 presented in Figure 4,
it can be stated that dc12 + dc13 > dc12 + dc23 > dc13 + dc23 and dn13 + dn23 > dn13 + dn12 > dn12 + dn23.
Therefore, class 1 is the easiest to be separated by using the sum of the Euclidean distances between
the class centers. Whereas, it can be concluded that class 3 is the easiest to be separated by using the
sum of the Euclidean distances between the nearest sample vectors between the classes. The result
obtained by the sum of the Euclidean distances between the class centers is consistent with what can
be seen in reality. It shows that the ISDTSVM algorithm can overcome the influence of the interference
points by calculating the Euclidean distances between the class centers.

The procedure of performing the ISDTSVM algorithm is described as follows:

Step 1 According to Equation 6, the center of the classes is obtained, labeli = 0.
Step 2 Calculating the Euclidean distances between the class centers. dij (i, j = 1, 2, · · · , k) are obtained

by Equation (7) and a symmetric matrix Dk×k is obtained as well.
Step 3 According to Equation (8), Sumd(i), the sums of the Euclidean distances between classes are

obtained by calculating the sum of each row in a symmetric matrix Dk×k.
Step 4 Sorting the Sumd(i), labeli = labeli + 1. The class label with maximum Sumd(i) is for the labeli.

Elements of line i and column i of Dk×k is assigned to be zero. k = k− 1, repeating Step 3 to
Step 4 until labeli = k.

Step 5 Multi-class classification is conducted using the conventional Skewness Decision Tree SVM.
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3. Inertia Weight PSO Algorithm

Let us assume that a population is composed by m particles in D dimension space and a particle
is viewed as a point in the D dimension space, representing a solution described by its position and
speed. The position of the ith particle can be expressed as Xi = [Xi1, Xi2, · · · , XiD ], i = 1, 2, · · · , m.
The speed can be expressed as Vi = [Vi1, Vi2, · · · , ViD]. The optimal position of ith particle can be
expressed as Pi = [Pi1, Pi2, · · · , PiD]. The optimal position of the entire population can be expressed as
Pg = [Pg1, Pg2, · · · , PgD]. For the tth iteration, the position and speed of each particle can be updated
by Equation (9): {

Vt+1
id = ωt ·Vt

id + c1 · rand · (Pt
id − Xt

id) + c2 · rand · (Pt
gd − Xt

id)

Xt+1
id = Xt

id + Vt+1
id , d = 1, 2, · · · , D

(9)

Equation (9) is so-called as the basic PSO, where t is the number of iterations ω is the inertia weight
coefficient, c1 and c2 are the acceleration constant, the values are generally selected as c1 = 1.5, c2 = 1.7,
rand is the random number falling within a normal distribution in [0, 1], Vid is the current speed of ith
particle and Vid ∈ [−Vmax, Vmax], where Vmax is the maximum speed limit. When Vid > Vmax, taking
Vid = Vmax; when Vid < −Vmax, taking Vid = −Vmax. The iteration termination criteria of the PSO
algorithm is usually given by that the number of iterations reaching to the maximum limit or the
tolerance that is less than a specified required value.

The global and local search ability of the particle can be adjusted by changing the size of
ω. The larger the ω value, the stronger the global search ability. On the other hand, it has a
stronger local search ability, as its dynamic weight has a better optimization ability than a fixed
one. Therefore, the linear decrease dynamic inertia weight strategy is employed. Its formula is given
by the Equation (10):

ωt = ωmax −
ωmax −ωmin

tmax
× t (10)

where ωmax and ωmin are the maximum and minimum values respectively, generally ωmax = 0.9,
ωmin = 0.4. Inertia weight ω will increase with the number of iterations, as indicated in Equation (10)
from the initial value ωmax gradient to ωmin linearly; t and tmax are the current iteration number and
the maximum number of iterations.

4. ISDTSVM Coupled with an Inertia Weight PSO Algorithm

For the ISDTSVM coupled with Inertia Weight PSO algorithm, the parameter optimization process
is presented in Figure 5. The initialization parameters of ISDTSVM and the PSO algorithm, by several
test evaluations are as follows: the range of C is 0~100, the range of γ is 0~10, the maximum iteration
number is 200, the swarm size population number is 20 and ωmax = 0.9, ωmin = 0.4andc1 = 1.5, c2 = 1.7.

The initial position and speed of the particle are randomly generated. The fitness function is
based on a classification accuracy of the ISDTSVM trained with the data subset. In the five-fold
cross-validation, the data set is divided into five data subsets. The position and speed of each particle
can be updated by the Equation (9). The iteration termination criteria of the PSO algorithm was given
by the number of iterations that reached the maximum iteration number.
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Figure 5. The SVM parameter optimization process using an inertia weight Particle Swarm
Optimization (PSO) algorithm.

5. Experimental Results and Discussion

5.1. Experimental Results of the UCI Datasets

The proposed ISDTSVM algorithm was used for the classification of the multi-class UCI data sets.
The features of the multi-class UCI data sets are presented in Table 1.

Table 1. The features of the University of California Irvine (UCI) data sets.

UCI Data Sets Samples Number of Attributes Data Categories

Vowel 528 10 11
Zoo 104 17 7

Wine 178 13 3

The optimized results of the SVM parameters C and γ (replaced by the letter: g) based on the UCI data sets using an
inertial weight PSO algorithm are presented in Figure 6.

Figure 6. Cont.
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Figure 6. SVM parameters optimized results of the UCI data sets.

Accuracy of the k-fold cross-validation was taken in to account as a criterion to evaluate
the effectiveness of a classification algorithm. The five-fold cross-validation were carried out.
The classification testing results of the UCI data sets are presented in Table 2 by using the ISDTSVM
algorithm and the conventional SDTSVM algorithm with optimized parameters (Figure 6) and
two kinds of kernel functions. As can be observed, for the Vowel, Zoo and Wine data sets,
the ISDTSVM algorithm improves the average classification accuracy by 3%, 3% and 1% respectively.
The classification accuracy of the radial basis function kernel was higher than the polynomial kernel.
The classification results of the Wine data sets are presented in Table 3 using the SDTSVM algorithm
with all of the possible classification orders and radial basis function kernel. As can be observed,
the determined classification order by the ISDTSVM algorithm has the highest classification accuracy.

Table 2. The classification results of the UCI data sets using the Improved Skewness Decision Tree
Support Vector Machine (ISDTSVM) and the conventional Skewness Decision Tree Support Vector
Machine (SDTSVM) algorithm with different kernel functions and a five-fold cross-validation.

UCI Data Sets Kernel Functions Average Accuracy of
Conventional SDTSVM

Average Accuracy
of ISDTSVM

Classification Order
of ISDTSVM

Vowel Radial basis function
(C = 4.81, γ = 0.86) 96% 99% 1→8→10→2→3→9→7

→5→4→6→11
Vowel Polynomial (d = 3) 95% 97%
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Table 2. Cont.

UCI Data Sets Kernel Functions Average Accuracy of
Conventional SDTSVM

Average Accuracy
of ISDTSVM

Classification Order
of ISDTSVM

Zoo Radial basis function
(C = 1.65, γ = 0.25) 95% 98% 6→4→1→2→3

→5→7
Zoo Polynomial (d = 1) 93% 96%

Wine Radial basis function
(C = 0.31, γ = 0.23) 97% 98%

3→1→2

Wine Polynomial (d = 2) 97% 97%

Table 3. Classification results of the Wine data sets for the three classification orders using the SDTSVM
algorithm with a radial basis function and a five-fold cross-validation.

Classification Order Kernel Functions Average Accuracy of SDTSVM

1→2→3 Radial basis function
(C = 0.31, γ = 0.23) 97%

2→1→3 Radial basis function
(C = 0.31, γ = 0.23) 97%

3→1→2 Radial basis function
(C = 0.31, γ = 0.23) 98%

5.2. Experimental Results of Steel Cord Conveyor Belt Defects

The typical defects of the steel cord conveyor belt include a splice twitch, broken rope and
rope fatigue. Splice signals identification is the basis for quantitative detection of the splice twitch.
Therefore, the splice signals were identified as a defect signal. The proposed ISDTSVM algorithm
with inertia weight PSO algorithm was applied to the classification of steel cord conveyor belt defects.
The diagnosis procedure flow chart of steel cord conveyor belt defects is presented in Figure 7. The key
steps were noise reduction, feature extraction and classification of defects signals.

Figure 7. Diagnosis procedure flow chart of the steel cord conveyor belt defects signals.

5.2.1. Collection of the Defects Signals

The scheme of the weak magnetic signals collection experiment platform is presented in Figure 8.
First, the weak magnetic loading module was installed to magnetize the wire rope in the steel cord
conveyor belt. Then, the operating velocity of the belt was 0.5 m/s. The signals were collected by
the weak magnetic testing device and transmitted to the upper computer by the TCP/IP protocol,
as presented in Figure 9. The main parameters of the weak magnetic testing device were defined.
More specifically, the sensitivity of the sensor was 0.5 V/Gs, the sample interval was 0.0005 mm and
the data transmission rate was 100 Mbps.
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Figure 8. Scheme of the weak magnetic signals collection experiment platform.

Figure 9. Installing picture of the weak magnetic testing device

5.2.2. Noise Reduction and Normalization of the Defects Signals

Weak magnetic signals of the steel cord conveyor belt defects could easily be disturbed by strong
and non-stationary noise in coal mine. Therefore, the noise of the defects signals was reduced using
a noise reduction method, combining the wavelet packet and the RLS (Recursive Least Squares)
adaptive filtering [24]. The noise reduction principle of the filtering algorithm is presented in Figure 10.
x(n) was the input signal that includes the useful signal s(n) and the noise signal N1(n). The sum of the
multi-layer high frequency detail signal for x(n) was decomposed by the wavelet packet. N2(n) was
used as the noise reference signal of the RLS adaptive filter algorithm. Finally, the noise of the defect
signals were reduced by the RLS adaptive filtering algorithm.

Figure 10. Noise reduction principle for a combination of the wavelet packet and the Recursive Least
Squares (RLS) adaptive filter.

In order to eliminate the effect of the signals amplitude on classification, the signals after noise
reduction were normalized. The normalized signals of the splice, the broken rope defect and the rope
fatigue defect before and after noise reduction are presented in Figures 11–13.
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Figure 11. Normalized weak magnetic signals of a splice before and after noise reduction.

Figure 12. Cont.
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Figure 12. Normalized weak magnetic signals of the broken rope defect before and after noise reduction.

Figure 13. Cont.
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Figure 13. Normalized weak magnetic signals of the rope fatigue defect before and after noise reduction.

5.2.3. Feature Extraction and Reduction of the Defects Signals

The frequency domain and time domain features of the weak magnetic signals of the steel cord
conveyor belt defects were extracted. The spectral amplitudes corresponding to the different defects
are presented in Figure 14. The peaks are observed at similar frequencies, with slight discrepancies at
the amplitude. Therefore, the time domain features are selected for the classification.

Figure 14. Cont.
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Figure 14. Amplitude spectrum for the weak magnetic signals of the steel cord conveyor belt defects.

First, twelve common time domain fault features were extracted, which were the peak-to-peak
values, root mean square amplitudes, mean amplitudes, variance, root amplitudes, waveform width,
kurtosis, wave index, peak index, pulse index, margin index and the kurtosis index. Then, the features
were reduced by a neighborhood rough set algorithm. The four time domain features, after reduction
were root mean square amplitudes, variance, kurtosis and waveform width. The root mean square
amplitudes mainly reflected the signals energy, the variance mainly reflected the degree of the signals
dispersion and the kurtosis mainly reflected signal sharpness and impact characteristics. As can
be observed in Figures 11–13, the normalized signal features of the splice, broken rope defect and
rope fatigue defect were significantly different in waveform width, signals energy, degree of signals
dispersion, signal sharpness and impact, the waveform width and kurtosis of splice signals were
usually larger than the broken rope defect and the rope fatigue defect. Therefore, according to
the features reduction and waveform analysis in Figures 11–13, the four domain features, finally
determined, were root mean square amplitude, variance, kurtosis and waveform width.

For a given the sample signals xi and the number N, the four time domain features calculation
expressions are presented as follows:

(1) Root Mean Square Amplitude (RMSA)

Xrms =

√√√√ 1
N

N

∑
i=1

xi
2 (11)

(2) Variance

σx =
1
N

N

∑
i=1

(xi − x)2 (12)

where x is the average value of xi.

(3) Kurtosis

β =
1
N

N

∑
i=1

xi
4 (13)

(4) Waveform width

Given the position number Nr5 for the first raising edge at 5% of the maximum value of |xi| and
the position number Nf 5 for the last falling edge at 5% of the maximum value of |xi|. The collection
interval dci was 0.0005 mm. The waveform width Pwide was given by Equation (14).
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Pwide = (Nf 5 − Nr5 ) × dci (14)

The distributions of the four time domain features of the partial sample signals are presented in
Figure 15. As can be seen in Figure 15, the four time domain features distribution results of the splices,
broken rope defects and the rope fatigue defects were significantly different, which was consistent
with the features reduction and waveform analyses (Figures 11–13). As can be observed in Figure 15,
the splice could be identified well by the waveform width and the rope fatigue could be identified
well by the other three features. However, according to the splice structure, rope fatigue and broken
rope defects presented in Figures 11a, 12a and 13a, the length of the splice, fracture width of broken
rope defect and the fatigue length of the rope fatigue defect could lead to changes of the waveform
width. It may cause overlapping waveform width distribution for three types of weak magnetic
signals in actual operating conditions. Therefore, in order to improve the classification accuracy of the
steel cord conveyor belt in actual working conditions, four time domain features were used together
for classification.

Figure 15. Features distribution for three types of normalized weak magnetic signals.

5.2.4. Classification of the Defects Signals

One hundred and sixty-eight sample feature vectors of the normalized signals for the steel cord
conveyor belt defects, were obtained. The sample sets were composed by seventy-four sample feature
vectors of splices, twenty sample feature vectors of the rope fatigue defects and seventy-four samples
feature vectors of the broken rope defects. That is that the samples size is imbalanced. The detailed
parameter configuration of the inertia weight PSO algorithm was as follows: The range of C was 0~100,
the range ofγwas 0~10, the maximum iteration number was 200, the initial population number was 20
and ωmax = 0.9, ωmin = 0.4 and c1 = 1.5, c2 = 1.7. The SVM parametersCandγwere optimized using
the inertial weight PSO algorithm under an imbalanced samples condition and the corresponding
results of the steel cord conveyor belt defects signals are presented in Figure 16.
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Figure 16. Parameter optimal results under the unbalanced samples condition.

Classification results of the steel cord conveyor belt defects using the ISDTSVM algorithm and
the conventional SDTSVM algorithm with different kernel functions and five-fold cross-validation
are presented in Table 4. As can be observed, the ISDTSVM algorithm improved the classification
accuracy of the steel cord conveyor belt defect signals by 4%. The classification accuracy of the radial
basis function kernel was higher than the polynomial kernel. The tree structure was obtained in
Figure 17 using the ISDTSVM algorithm. In order to verify the classification effect of the ISDTSVM
algorithm, the classification results for the three classification orders of the steel cord conveyor belt
defect signals are presented in Table 5 using the SDTSVM algorithm with optimized parameters
presented in Figure 16 and were validated by a five-fold cross-validation. As can be observed in
Table 5, the classification accuracy of the classification order obtained by the ISDTSVM algorithm
was the highest in the three classification orders. The ISDTSVM algorithm significantly improved the
classification accuracy.

Figure 17. The tree structure obtained by the ISDTSVM algorithm.

Table 4. Classification results of the steel cord conveyor belt defects signals using the ISDTSVM and
the conventional SDTSVM algorithm with different kernel functions and five-fold cross-validation.

Kernel Functions Average Accuracy of
Conventional SDTSVM Average Accuracy of ISDTSVM

Radial basis function
(C = 26.64, γ = 0.97) 90% 94%

Polynomial (d = 4) 89% 92%

Table 5. Classification results of the steel cord conveyor belt defects signals for three classification
orders using the SDTSVM algorithm with a radial basis function kernel and a five-fold cross-validation.

Classification Order Average Accuracy of SDTSVM

Splice→Rope fatigue→Broken rope (determined by ISDTSVM
algorithm) 94%

Rope fatigue→Splice→Broken rope 90%
Broken rope→Splice→Rope fatigue 91%
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5.3. Discussions

Regarding the problem of the classification accuracy of the SDTSVM algorithm being highly
dependent on the parameters and the classification order, an improved SDTSVM algorithm was
proposed. In the proposed model, the classification order of the ISDTSVM algorithm was determined
by the sum of the Euclidean distances between the multi-class samples centers and the parameters
were optimized by the inertia weight PSO algorithm.

As presented in Figures 6 and 16, the classification accuracy of the trained data sets was higher
than 94% for the UCI data sets and the steel cord conveyor belt defects signals using the inertia weight
PSO algorithm. As presented in Tables 2 and 4, for the Vowel, the Zoo and the Wine data sets, as well
as the steel cord conveyor belt defects, the ISDTSVM algorithm improved the classification accuracy
by 3%, 3%, 1% and 4% respectively, compared to the conventional SDTSVM algorithm.

In order to verify the impact of the imbalanced samples on the classification of the steel cord
conveyor belt defects, experimentation was performed on the steel cord conveyor belt defects samples
with a different imbalanced ratio (IR) [25]. The positive class was chosen for the fewest samples and
the rest of the samples was a negative class. For the imbalanced classes classification evaluation,
metrics such as accuracy, balanced accuracy and F1 were used [26]. A half of the samples were used
for training and the other half of samples were used for testing. The steel cord conveyor belt defects
samples with the different imbalanced ratio (IR) were classified using the ISDTSVM algorithm and the
corresponding results are presented in Table 6. As can be observed, the lower IR samples had a higher
accuracy, balanced accuracy and F1. The results showed that the imbalanced samples could decrease
the classification accuracy of the ISDTSVM algorithm.

Table 6. The classification contrast results of the steel cord conveyor belt defects with different
imbalanced ratio using the ISDTSVM algorithm.

Data Sets Number of Three
Types of Samples IR Accuracy Balanced

Accuracy F1

Steel cord conveyor belt defects 20,20,20 2 97% 98% 95%
Steel cord conveyor belt defects 74,20,74 7.4 94% 97% 80%

On the whole, the SVM parameter C and γ could be optimized well using the inertia weight
PSO algorithm and the optimal classification order could be determined by the sum of the Euclidean
distances between the multi-class samples centers in the ISDTSVM algorithm. The ISDTSVM algorithm
could efficiently improve the classification accuracy of the steel cord conveyor belt defects. It was
noted that the imbalanced samples could reduce the classification accuracy when using the ISDTSVM
algorithm. The ISDTSVM algorithm is recommended for further improvements, when there are
imbalanced data sets.

6. Conclusions

In this study, we proposed an ISDTSVM algorithm. Compared to the conventional SDTSVM
algorithm, the classification order was determined by the sum of the Euclidean distances between the
multi-class sample centers and the parameters were optimized by the inertia weight PSO algorithm.
Experiments were conducted on the multi-class UCI data sets and the steel cord conveyor belt defects
signals using the ISDTSVM algorithm and the conventional SDTSVM algorithm. For the Vowel,
the Zoo and the Wine data sets, as well as the steel cord conveyor belt defects, the ISDTSVM algorithm
improved the classification accuracy by 3%, 3%, 1% and 4% respectively, compared to the conventional
SDTSVM algorithm. The classification accuracy of the steel cord conveyor belt defects reached 94%
using the proposed ISDTSVM algorithm. The experiment results showed that the inertia weight PSO
algorithm could optimize the SVM parameters quite well and the proposed ISDTSVM algorithm could
improve the classification accuracy significantly. It could be applied efficiently to the classification of
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the steel cord conveyor belt defects. It has an important significance for preventing fracture accidents
of steel cord conveyor belts.

Compared to the conventional SDTSVM algorithm, although the proposed ISDTSVM algorithm
could improve the classification accuracy by considering the distribution characteristics of the samples.
The algorithm has limitations for outliers, noise and imbalanced data sets. In the future, we will
study the ISDTSVM algorithm combined with the FSVM algorithm and how the algorithm works for
imbalanced data sets.
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