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Abstract: Current studies show that traditional deterministic models tend to struggle to capture the
non-linear relationship between the concentration of air pollutants and their sources of emission
and dispersion. To tackle such a limitation, the most promising approach is to use statistical models
based on machine learning techniques. Nevertheless, it is puzzling why a certain algorithm is
chosen over another for a given task. This systematic review intends to clarify this question by
providing the reader with a comprehensive description of the principles underlying these algorithms
and how they are applied to enhance prediction accuracy. A rigorous search that conforms to
the PRISMA guideline is performed and results in the selection of the 46 most relevant journal
papers in the area. Through a factorial analysis method these studies are synthetized and linked
to each other. The main findings of this literature review show that: (i) machine learning is mainly
applied in Eurasian and North American continents and (ii) estimation problems tend to implement
Ensemble Learning and Regressions, whereas forecasting make use of Neural Networks and Support
Vector Machines. The next challenges of this approach are to improve the prediction of pollution
peaks and contaminants recently put in the spotlights (e.g., nanoparticles).
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1. Introduction

Worsening air quality is one of the major global causes of premature mortality and is the main
environmental risk claiming seven million deaths every year [1]. Nearly all urban areas do not comply
with air quality guidelines of the World Health Organization (WHO) [2,3]. The risk populations
that suffer from the negative effects of air pollution the most are children, elderly, and people with
respiratory and cardiovascular problems. These health complications can be avoided or diminished
through raising the awareness of air quality conditions in urban areas, which could allow citizens to
limit their daily activities in the cases of elevated pollution episodes, by using models to forecast or
estimate air quality in regions lacking monitoring data.

Air pollution modelling is based on a comprehensive understanding of interactions between
emissions, deposition, atmospheric concentrations and characteristics, meteorology, among others;
and is an indispensable tool in regulatory, research, and forensic applications [4]. These models
calculate and predict physical processes and the transport within the atmosphere [5]. Therefore, they
are widely used in estimating and forecasting the levels of atmospheric pollution and assessing
its impact on human and environmental health and economy [6–9]. In addition, air pollution
modelling is used in science to help understand the relevant processes between emissions and
concentrations, and understand the interaction of air pollutants with each other and with weather [10]
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and terrain [11,12] conditions. Modelling is not only important in helping to detect the causes of air
pollution but also the consequences of past and future mitigation scenarios and the determination of
their effectiveness [4].

There are a few main approaches to air pollution modelling—atmospheric chemistry,
dispersion (chemically inert species), and machine learning. Different complexity Gaussian models
(e.g., AERMOD, PLUME) are widely used by authorities, industries, and environmental protection
organizations for impact studies and health risk investigations for emissions dispersion from a single or
multiple point sources (also line and area sources, in some applications) [13,14]. These models are based
on assumptions of continuous emission, steady-state conditions and conservation of mass. Lagrangian
models study a trajectory of an air parcel, the position and properties of which are calculated according
to the mean wind data over time (e.g., NAME) [5,14]. On the other hand, Eulerian models use a gridded
system that monitors atmospheric properties (e.g., concentration of chemical tracers, temperature
and pressure) in specific points of interest over time (e.g., Unified Model). Chemical Transport Models
(CTMs) (e.g., air-quality, air-pollution, emission-based, source-based, source, etc.) are prognostic
models that process emission, transport, mixing, and chemical transformation of trace gases and
aerosols simultaneously with meteorology [15]. Complex and computationally costly CTMs can be of a
global (e.g., online: Fim-Chem, AM3, MPAS, CAM-Chem, GEM-MACH, etc.; and offline: GEOS-Chem,
MOZART, TM5) and regional (e.g., online: MM5-Chem, WRF-Chem, BRAMS; and offline: CMAQ,
CAMx, CHIMERE) scale [16,17].

These models combine atmospheric science and multi-processor computing techniques, highly
relying on considerable resources like real-time meteorological data and an updated detailed emission
sources inventory [18]. Unfortunately, emission inventory inputs for boundary layers and initial
conditions may be lacking in some regions, while geophysical characteristics (terrain and land use)
might further complicate the implementation of these models [19]. To deal with complex structure of
air flows and turbulence in urban areas Computer Fluid Dynamics (CFD) methods are used [20].
However, recent studies show that the traditional deterministic models struggle to capture the
non-linear relationship between the concentration of contaminants and their sources of emission
and dispersion [21–24], especially in a model application in regions of complex terrain [25]. To tackle
the limitations of traditional models, the most promising approach is to use statistical models based on
machine learning (ML) algorithms.

Statistical techniques do not consider physical and chemical processes and use historical data
to predict air quality. Models are trained on existing measurements and are used to estimate or
forecast concentrations of air pollutants according to predictive features (e.g., meteorology, land use,
time, planetary boundary layer, elevation, human activity, pollutant covariates, etc.). The simplest
statistical approaches include Regression [26], Time Series [27] and Autoregressive Integrated Moving
Average (ARIMA) [28] models. These analyses describe the relationship between variables based
on possibility and statistical average. Well-specified regressions can provide reasonable results.
However, the reactions between air pollutants and influential factors are highly non-linear, leading to
a very complex system of air pollutant formation mechanisms. Therefore, more advanced statistical
learning (or machine learning) algorithms are usually necessary to account for a proper non-linear
modelling of air contamination. For instance, Support Vector Machines [29], Artificial Neural
Networks [30], and Ensemble Learning [31] have been applied to overcome non-linear limitations
and uncertainties to achieve better prediction accuracy. Although statistical models do not explicitly
simulate the environmental processes, they generally exhibit a higher predictive performance than
CTMs on fin spatiotemporal scales in the presence of extensive monitoring data [32–34].

Different machine learning approaches have been used in recent years to predict a set of air pollutants
using different combinations of predictor parameters. However, with a growing number of studies,
it is puzzling why a certain algorithm is chosen over another for a given task. Therefore, in this study
we aim to review recent machine learning studies used in atmospheric pollution research. To do so,
the remainder of the paper is organized into three sections. First, we explain the method used to select
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and scan relevant journal articles on the topic of machine learning and air quality, which conforms to
the PRISMA guideline. This section also describes the strategy used to analyze the manuscripts and
synthetize the main findings. Second, the results are presented and discussed from a general to a detailed
and synthetic account. Finally, the last section draws conclusions on the use of machine learning algorithms
for predicting air quality and the future challenges of this promising approach.

2. Method

2.1. Search Strategy

Relevant papers were researched in SCOPUS. The enquiry was limited to this scientific search
engine, because it compiles, in a single database, manuscripts which are also indexed in the
most significant databases in engineering (e.g., IEEE Xplore, ACM, etc.). The first step of the
literature review consisted of completing the website document search with a combination of keywords.
The used formula was as follows: {‘Machine Learning’} AND {‘Air Quality’ OR ‘Air Pollution’} AND
{‘Model OR ‘Modelling’}. The exploration was limited to the period of 2010–2018. Another limitation
was to focus only on journal papers, since they represent the most achieved work. The result of this
first step provides us with 103 documents.

The second step consisted of filtering the studies, by reading the title and the abstract. Papers
were excluded from our selection if they addressed the topics as follows: Physical sensors (and not
computational models); health/epidemiological studies (i.e., predictive models to estimate the impact
on health and not to estimate and/or forecast the concentration of pollutants); social studies; biological
studies; indoor studies; sporadic calamity (e.g., smog disaster). After applying these rejection criteria,
the documents were reduced to 50.

In the last step, all 50 papers were fully read. After a consensus between the authors of this
systematic review, four papers were rejected. Three manuscripts were excluded, because they
represented a very similar study that was previously carried out by the same authors. The other paper
was consensually considered out of scope after reviewing the full document. Consequently, a total of
46 manuscripts were included for a further qualitative and quantitative synthesis. Figure 1 represents
the flow diagram of the search method for the systematic review. It is based on the PRISMA
approach that provides a guideline to identify, select, assess and summarize the findings of similar but
separate studies. This method promotes a quantitative synthesis of the papers, which is carried out
through a factorial analysis.
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2.2. Analyzed Parameters

All the papers are analyzed according to 14 aspects. The first parameter concerns the motivation
of the study. The second is the type of modelling, which is divided into two categories—estimation and
forecasting models. An estimation model uses predictive features (e.g., contaminant covariates,
meteorology, etc.) to estimate the concentration of a determined pollutant at the same time.
A forecasting model takes into account historical data to predict the concentration of a pollutant in the
future. The third analysis is based on the type of machine learning algorithm used. The main categories
are artificial neural networks, support vector machines, ensemble learning, regressions, and hybrid
versions of these algorithms. The fourth analysis describes the method applied by the authors.
The fifth point focuses on the nature of the predicted parameter. Again, two groups are identified.
On the one hand, there are authors interested in predicting specific air contaminants, which are:
Micro and nano-size particulate matter (PM10, PM2.5, PM1); nitrogen oxides (NOx = NO + NO2);
Sulphur oxides (SOx); carbon monoxide (CO); and ozone (O3). On the other hand, some authors work
on a prediction of air quality in general by searching for the Air Quality Index (AQI), which may
include the concentrations of several pollutants. The sixth parameter identifies the geographic location
of the study. The seventh gives details of the characteristics of the dataset, such as—time span; quantity
of monitoring stations; and number of instances. Furthermore, the eighth point provides information
on the specificity of the dataset in terms of the used predictive attributes. The main features are related
to—pollutant covariates; meteorology; land use; time; human activity; and atmospheric phenomena.
The ninth and tenth factors address the evaluation method and the performance of the tested
algorithms, respectively. The assessment is mainly based on a comparison of the accuracy between the
models and/or a comparison of the prediction of the actual value. The most popular evaluation criteria
are the ratio of correctly classified instances (Accuracy), the Mean Absolute Error (MAE), the Root
Mean Square Error (RMSE), and the coefficient of determination (R2). The Accuracy represents the
overall performance of a classifier by providing the proportion of the whole test set that is correctly
classified, as described in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP, TN, FP and FN stand for True Positives, True Negatives, False Positives and False
Negatives, respectively. The higher the Accuracy value is, the better is the model performance.
The MAE shows the degree of difference between the predicted values and the actual values. The RMSE
is another relative error estimator that focuses on the impact of extreme values based on the MAE.
The R2 represents the fitting degree of a regression. The MAE, RMSE and R2 are calculated according
to Equations (2)–(4), respectively.

MAE =
1
n

n

∑
i=1
|Ei −Ai| (2)

RMSE =

(
1
n

n

∑
i=1

(Ei −Ai)
2

) 1
2

(3)

R2 =

 ∑n
i=1
(
Ai −A

) (
Ei − E

)√
∑n

i=1
(
Ai −A

)2
∑n

i=1
(
Ei − E

)2

2

(4)

where n is the number of instances, Ai and Ei are the actual and estimated values, respectively. A and
E stand for the mean measured and mean estimated value of the contaminant, respectively. Amax and
Amin are the maximum and minimum observed pollutant values, respectively. R2 is a dimensionless
descriptive statistical index ranging from 0 (no correlation) to 1 (perfect correlation). MAE and RMSE
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values are in # cm−3. The lower the MAE and RMSE is, the better is the predictive performance of
the model.

The eleventh parameter considers the computational cost of the method. Finally, the last three
points discuss the outcomes of the proposed approach, its limitation, and its scope of applicability.

2.3. Synthesis of Results

The results are synthetized according to descriptive statistics and a factorial analysis.
First, we describe the most used algorithms over time in order to define the current tendencies.
Second, we quantify the types of algorithms applied for the prediction of the principal contaminants.
Third, we identify the evolution of the modelling performance for each pollutant over the last decade.
Finally, since several parameters are considered for the description of the selected papers, we perform
a factorial analysis to summarize the main outcomes of this systematic review. The most appropriate
method to identify the relationships between the qualitative factors that characterize each study is the
Multiple Correspondence Analysis (MCA). First, a data table is created from the parameters identified
in Section 2.2 (see Figure A1 of Appendix A). Each row (i) corresponds to each paper and each column
(j) corresponds to each qualitative variable (e.g., types of modelling, algorithms, etc.). The total number
of papers and qualitative variables are identified as I and J, respectively. Next, this data table is fed
to the R software, in order to proceed with the analysis through the MCA library. The initial table is
transformed into an indicator matrix called the Complete Disjunctive Table, in which rows are still the
papers, but the columns are now the categories (e.g., estimation model vs. forecasting model) of the
qualitative variables. The total number of categories is identified as kj. The entry of the intersection
of the i-th row and the k-th column, which is called yik, is equal to 1 (or true) if the i-th paper has
category k of the j-th variable and 0 (or false) otherwise. All the papers have the same weight, which is
equal to 1/I. However, the method highlights papers that are characterized by rare categories by
implementing Equation (5).

xik =
yik
pk

(5)

where pk represents the proportion of papers in the category k. Then, the data are centralized by
applying Equation (6).

xik =
yik
pk
− 1 (6)

The table of the xik is used to build the points cloud of papers and categories. Since, the variables
are centered, the cloud has a center of gravity in the origin of the axes. The distance between a paper i
and a paper i′ is given by Equation (7).

d2
i,i′ =

K

∑
k=1

pk
J

(xik − xi′k)
2 =

1
J

K

∑
k=1

1
pk

(yik − yi′k)
2 (7)

where xik and xi′k are the coordinates of the papers i and i′, respectively. This equation shows that
the distance is 0 if two papers are in the same set of categories (or profile). If two papers share many
categories, the distance will be small. However, if two papers share several categories except a rare
one, the distance between them will be relatively large due to the pk value. Next, the calculation of the
distance of a point from the origin (O) is given by Equation (8).

d(i, O)2 =
K

∑
k=1

pk
J
(xik)

2 =
1
J

K

∑
k=1

yij

pk
− 1 (8)

The equation shows that a distance gets larger when the categories of a paper are rarer, because its
pk are small. In other words, the more a paper possesses rare categories, the further it is from the origin
of the plot axes. To conclude the process, the point cloud must be projected into a smaller-dimensional
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space, which is usually reduced to two dimensions. To do so, the cloud (NI) is projected onto a
sequence of orthogonal axes with maximum inertia as calculated in Equation (9).

Inertia(NI) = max
I

∑
i=1

1
I

d2(i, O) (9)

In terms of the first two dimensions obtained, we end up with a factor plane for the papers and
categories that is the best bi-dimensional representation of them.

3. Results and Discussion

This section is organized in three parts. First, a general description of the results of the systematic
review is provided. These results are mainly based on descriptive statistics regarding the number
of studies that uses a machine learning approach over the last decade, the geographic distribution
of these studies across the world, and most popular algorithms implemented. The second part
provides a detailed development of the 46 papers selected following the method defined in Section 2.1.
These papers are grouped into six categories for a more comprehensive description. The definition
of the groups is based on the principal motivation of the study. Category 1 groups the manuscripts
that are interested in identifying the most relevant predictors and understanding their non-linear
relationship with air pollution. Category 2 corresponds to a set of papers that deals with image-based
monitoring and the way to tackle low spatial resolution from non-specific/low resolution sensors.
Category 3 is specialized on a family of studies that considers land use and/or spatial heterogeneity
as a feature. Category 4 focuses on hybrid models as well as extreme and deep learning. Category 5
is a bunch of work, which resulted in an applicative system. Finally, Category 6 addresses the new
challenge of predicting the concentration of nanoparticle matter.

3.1. General Description

Figure 2 shows the evolution of the number of journal papers using a machine learning approach
to model air quality, since 2010. The number of studies in this field shows an increasing trend over the
last eight years. An important boom can be observed from 2015. The average number of studies has
been multiplied by a factor of 5, since the period 2011–2015. This high value tends to remain stable
during the last two years. It is of note that the literature review was performed in September 2018,
which supposes a possibly superior number of documents by the end of the present year.
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While the number of machine learning approaches for predicting atmospheric pollutants has
increased dramatically, this growth has not been uniformed globally. Figure 3 shows that the number
of studies is much higher in the northern hemisphere, specifically in Eurasia and North America.
In addition, the more complex list of pollutants has been studied in Asia and Europe, including
all criteria pollutants and even a specific pollutant or an overall Air Quality Index (AQI). While the
biggest number of studies has been concentrated in China (13 studies) and United States (seven studies),
other parts of the world have more limited published research. Especially unstudied regions of the
world are South America and Oceania, both with one study, focusing on a single specific pollutant.
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Figure 3. Number of papers per country and types of atmospheric contaminants studied by continent.
The world map is colored by number of studies per country (yellow–brown), while the grey color
indicates regions with no studies. The pollutant studies were considered per continent: O3—ozone,
PM10—particulate matter with aerodynamic diameters ≤10 µm, BC—black carbon, PM2.5—particulate
matter with aerodynamic diameters ≤2.5 µm, AQI—Air Quality Index, NO2—nitrogen dioxide,
NOx—nitrogen oxides (NO + NO2), SO2—sulfur dioxide, CO—carbon dioxide, NanoPM—nano
particles (particles with diameter in nm).

The systematic review shows that the most used algorithms in descending order are: Ensemble
Learning Methods, Artificial Neural Networks, Support Vector Machines, and Linear Regressions
(Figure 4). Two papers use more peculiar approaches related to Decision rules and Lazy methods.
Ensemble Learning is a class of machine learning techniques that creates multiple predictors
to address the same problem and make a single prediction by combining the results from
the predictors. Thus, the result of the predictive model is obtained by taking an average or the
majority voting. The multiple predictors are created by introducing stochasticity into the data or the
prediction algorithm. In the first case, different datasets and respective predictors are produced from
the original database. In the second case, the randomness is introduced by using different types of
algorithms (e.g., Decision Trees and Neural Network) to solve a single problem. The advantage of
using an Ensemble Learning method is to provide a better accuracy, if we compare to the performance
of each predictor taken individually (also called weak predictors). Bagging (or Bootstrap Aggregation)
is the simplest way to introduce stochasticity in the data. In this technique, several datasets are
created by taking random samples with replacement. Then, one specific predictor is produced for
each dataset, and theses predictors are aggregated to give the final model. Boosting is another way
to create stochasticity by sequentially training each weak classifier. These predictors are weighted in
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some way that is usually related to the accuracy of each predictor. It means that observations which
are incorrectly predicted get a higher weight. So, the best predictor is the one that has to perform
better on these critical observations. Finally, Stacking is the method used to make a prediction from
a battery of different possible algorithms. After applying these algorithms to the dataset, they are
assessed by cross-validation, for instance, in order to give a weight to each method according to its
performance. Random Forest is one of the most popular Ensemble Learning techniques and constitutes
the majority of the papers classified under this label in our literature review. This method is based on
an ensemble of Decision Tree predictors. The first step implements bagging on trees. Then, a second
step adds stochasticity to split the tree by using the random subspace method or the random split
selection, which consists of applying at each node the algorithm with a subset only of the features to
split the node.
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Figure 4. Proportion of machine learning algorithms used. ‘Ensemble’ stands for Ensemble
Learning (mainly Random Forest). ‘NN’ stands for any algorithm based on an Artificial
Neural Networks approach. ‘SVM’ stands for Support Vector Machine (it also includes Support
Vector Regression). ‘Regression’ stands for Multiple Linear Regression. ‘Others’ includes Decision
Rules and Lazy methods.

Artificial Neural Networks (NN) are inspired by the working of the human being’s nervous system.
The simplest neural network architecture is called Perceptron. This method classifies inputs by using a
linear combination of the observations of the dataset, as defined in Equation (10).

x =
J

∑
j=0

wjoj (10)

where o is an observation characterized by several features (from 0 to J) and wj is the weight applied to
each feature. For instance, in the case of two classes, if x is greater than 0 the observation is classified
in class 1, otherwise it is classified in class 2. In an NN, the weights are learned. The algorithm starts
by setting all weights to 0. Then, a loop is applied until all observations in the training data are
classified correctly. In this loop, for each observation o, if o is classified incorrectly and if it belongs to
class 1, it is added to the weight vector, otherwise it is subtracted. No modification is applied if the
observation is classified correctly. Nevertheless, the NN implemented in the selected papers consist of
at least three types of layers (i.e., Multilayer Perceptron)—input layer, hidden layer, and output layer.
The input is composed with the features (e.g., contaminant covariates, meteorology, etc.). The output
is the variable to be predicted (i.e., concentration of a contaminant or value of an air quality index).
And the hidden layer consists of additional nodes between the two previous layers that enables
multiple kinds of connections. When the number of hidden layers is large the NN is called Deep
Learning Neural Network. Each node (or neuron) performs a weighted sum of its input and thresholds
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the result. Instead of using the binary threshold of the basic Perceptron, the Multilayer Perceptron
usually applies a smooth activation function based on a sigmoid. In such an implementation, as the
inputs become more extreme, they approach the step function, which corresponds to the hard-edge
threshold used in the basic Perceptron. Finally, the learning stage consists of getting the best weights
to minimize the error between the predictive output and the actual output. This is an iterative process
using a steepest descent method, in which the gradient is determined by a backpropagation algorithm
that seeks to minimize the cost function J(θ) defined in Equation (11).

J(θ) =
1
m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2
(11)

where m is the number of observations, y is the actual output and hθ(x) is the predicted output.
Support Vector Machine (SVM) is another algorithm that draws a boundary through the widest

channel between two classes, which is the maximum separation from each class. This boundary
line is obtained by selecting the critical points (or support vectors) that define the channel and
taking the perpendicular bisector of the line joining those two support vectors. In the case of a
multidimensional dataset the boundary is defined by a hyperplane. Equation (12) shows that the
calculation of the maximum margin hyperplane depends only on the value of the support vectors and
not the remaining observations.

x = b +
I

∑
i=0

αiyia(i)× a (12)

where a(i) are the support vectors and I is the number of these vectors. In cases where classes
are not linearly separable, a function is used to transform the data into a high dimensional space
(e.g., a polynomial function). A kernel trick is used to reduce the computational cost of this transformation.
The most current kernel types are —linear kernel (Equation (13)), polynomial kernel (Equation (14)),
and radial basis function kernel (Equation (15)).

K(x, y) = x× y (13)

K(x, y) = (x× y + 1)d (14)

K(x, y) = e−γ||x−y||2 (15)

It is important to choose the right kernel and to tune its parameters correctly to get a good
performance from a classifier. A usual parameter tuning technique includes k-fold cross-validation.
SVM is a popular alternative to artificial neural networks.

Finally, a fair number of papers applies a Regression method as machine learning algorithm to
predict air quality. Features derived from the dataset are used as input of the Regression model to
predict continuous valued output. As in the NN approach, the prediction is obtained by learning the
relationship (or weights) between the inputs and the output. These weights are acquired by fitting
a linear or nonlinear curve to the data points. In order to correctly fit the curve, it is necessary to
define the goodness-of-fit metric, which allows us to identify the curve that fits better than the other
ones. The optimization technique used in regression, and in several other machine learning methods
(e.g., NN), is the gradient descent algorithm that aims to minimize the cost function J(θ) defined in
Equation (11).

3.2. Detailed Description

This section consists of a detailed explanation of the selected papers. It is organized into six
categories based on the main motivation of the study. In each group, we first present manuscripts
on estimation models and, second, studies that involve forecasting models. An estimation model is
defined as an approach that seeks to estimate the value of a pollutant (or index of contamination) from
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the measurement of other predictive parameters at the same time step. It is mostly used to give an
approximation of the concentrations on an extended geographic area. On the contrary, the objective
of a forecasting model is to predict the concentration levels of the contaminants in the near future.
We call both estimation and forecasting prediction or predictive models.

3.2.1. Category 1: Identifying Relevant Predictors and Understanding the Non-Linear Relationship
with Air Pollution

Category 1 is the biggest group and accounts for total of 16 articles—twelve in estimation modeling
and four in forecasting. In the estimation modeling there are five cases of Random Forest (RF) or
tree-based Ensemble learning algorithms (e.g., M5P), four regression models, one lazy learning,
and two SVM. The latter was once used in forecasting studies, NN was used twice and M5P once.
This category highly concentrates on identifying the most contributing parameters to a successful
prediction of atmospheric pollution. A variety of tests are used to differentiate between the influential
predictors, like Principal Component Analysis (PCA), Quantile Regression Model (QRM), Pearson
correlation, etc.

Among the most recent studies we find Grange et al. [22]. This study aims to (i) build a predictive
model of PM10 based on meteorological, atmospheric, and temporal factors and (ii) analyze PM10 trend
during the last ten years. The Random Forest model, a simple, efficient, and easy interpretable method,
is used. First of all, many out-of-bag samples (randomly sampling observations with replacement and
sampling of feature variables) of the training set are used to grow different Decision Trees (DT), and then
all the trees are aggregated to form a single prediction. The algorithms are trained and run on 20 years
of data in Switzerland from 31 monitoring stations. Daily average data of meteorology (wind speed,
wind direction, and temperature), synoptic scale, boundary layer height, and time are used. The model
is validated by comparison between the observed and predicted value, resulting in average value in
31 sites: r2 = 0.62. The best predictors are—wind speed, day of the year (seasonal effect), and boundary
layer height, whereas the worst predictors are day of the week, and synoptic scale. The model
performance is low and the predictive accuracy is inconsistent (0.53 < r2 < 0.71) for different locations,
especially varying for the rural mountain sites.

Another study also relies on RF to build a spatiotemporal model to predict O3 concentration
across China [35]. First the RF model is built by averaging the predictions from 500 decision/regression
trees, and then Random Forest Regressor from the python package scikit-learn is used to run the
algorithm. For that meteorology, planetary boundary height, elevation, anthropogenic emission
inventory, land use, vegetation index, road density, population density, and time are used from
1601 stations over one year in all of China. The model is validated by comparison of the r2 and RMSE
(predicted value/actual value) to Chemical Transport Models, and shows a good performance of
r2 = 0.69 (specifically, r2 = 0.56 in winter, and r2 = 0.72 in fall). Interestingly, the model results are quite
comparable or even higher than the predictive performance of the CTMs for lower computational costs.
While for the predictive features, meteorological factors account for 65% of the predictive accuracy
(especially humidity, temperature, and solar radiation), also showing a higher predictive performance
when the weather conditions are stronger (i.e., autumn). In this study, anthropogenic emissions
(NH3, CO, Organic Carbon, and NOx) exhibit a lower importance than meteorology and lower accuracy
is registered for the regions with a sparser density of monitoring stations. Therefore, the accuracy
relies on the complexity of the network.

Martínez-España et al. [36] aim to identify the most robust machine learning algorithms
to preserve a fair accuracy when O3 monitoring failures may occur, by using five different
algorithms—Bagging vs. Random Committee (RC) vs. Random Forest vs. Decision Tree vs. k-Nearest
Neighbors (kNN). First, the prediction accuracy of the five machine learning algorithms is compared,
then a hierarchical clustering technique is applied to identify how many models are needed to predict
the O3 in the region of Murcia, Spain. Two years of pollutant covariates (O3, NO, NO2, SO2, NOx,
PM10, C6H6, C7H8, and XIL) and meteorological parameters (temperature, relative humidity, pressure,
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solar radiation, wind speed and direction) are used. The model is validated by the comparison of the
coefficient of determination (predicted value/actual value) between the five models. Random Forest
slightly outperforms the other models (r2 = 0.85), followed by RC (r2 = 0.83), Bagging and DT (r2 = 0.82)
and kNN (r2 = 0.78). The best predictors are NOx, temperature, wind direction, wind speed, relative
humidity, SO2, NO, and PM10. Finally, the hierarchical cluster shows that two models are enough to
describe the studied regions.

Bougoudis et al. [37] aim to identify the conditions under which high pollution emerges and to
use a better generalized model. Hybrid system based on the combination of unsupervised clustering,
Artificial Neural Networks (ANN) and Random Forest (RF) ensembles and fuzzy logic is used to
predict multiple criteria pollutants in Athens, Greece. Twelve years of hourly data of CO, NO, NO2,
SO2, temperature, relative humidity, pressure, solar radiation, wind speed and direction are used.
Unsupervised clustering of the initial dataset is executed in order to re-sample the data vectors;
while ensemble ANN modeling is performed using a combination of machine learning algorithms.
The optimization of the modeling performance is done with Mamdani rule-based fuzzy inference
system (FIS, used to evaluate the performance of each model) that exploits relations between the
parameters affecting air quality. Specifically, self-organizing maps are used to perform dataset
re-sampling, then ensembles of feedforward artificial neural networks and random forests are trained
to clustered data vectors. The estimation model performance is quite good for CO (r2 = 0.95, RF_FIS),
NO (r2 = 0.95, ensemble NN_FIS), NO and O3 (r2 = 0.91, RF) and SO2 (r2 = 0.78, ensemble regression).

Sayegh et al. [38] also employ a number of models (Multiple Linear Regression vs. Quantile
Regression Model (QRM) vs. Generalized Additive Model vs. Boosted Regression Trees) to perform
a comparative study on the performance for capturing the variability of PM10. At the contrary
of the linear regression, which considers variables distribution as a whole, the QRM defines the
contribution (coefficient) of the predictors for different percentiles of PM10 (here 10 percentiles or
quantiles are used) to estimate the weight of each feature. Meteorological factors (wind speed,
wind direction, temperature, humidity), chemical species (CO, NOx, SO2), and PM10 of the previous
day data for one year from Makkah (Saudi Arabia) are used. The model performance is validated with
observed data and the QRM model shows a better performance (r2 = 0.66) in predicting hourly PM10

concentrations due to the contribution of covariates at different quantiles of the dependent variable
(PM10), instead of considering the central tendency of PM10.

Singh et al. [39] aim to identity sources of pollution and predict the air quality by using Hybrid
Model of Principal Components Analysis, Tree-based Ensemble Learning (Single Decision Tree (SDT),
Decision Tree Forest (DTF) and Decision Tree Boost (DTB)) vs. Support Vector Machine Model.
Five years of air quality and meteorological parameter data are used for Lucknow (India). SDT, DTF,
DTB and SVM are used to predict the Air Quality Index (AQI), and Combined AQI (CAQI)), and to
determine the importance of predictor features. The model performance is validated by a comparison
between the models and with the observed data. Decision Tree models—SDT (r2 = 0.9), DTF (r2 = 0.95),
and DTB at r2 = 0.96) outperform SVM (r2 = 0.89).

Philibert et al. [40] aim to predict a greenhouse gas N2O emission using Random
Forest vs. Two Regression models (linear and nonlinear) by employing global data of environmental
and crop variables (e.g., fertilization, type of crop, experiment duration, country, etc.). The extreme
values from data are removed, excluding the boreal ecosystem; input variable features are ranked by
importance; controlling number of input variables to result in better prediction. The model is validated
by a comparison to the regression model and the simple non-linear model (10-fold cross validation).
RF outperforms the regression models by 20–24% of misclassifications.

Meanwhile, Nieto et al. [41] aim to predict air pollution (NO2, SO2 and PM10) in Oviedo, Spain
based on a number of factors using Multivariate Adaptive Regression Splines and ANN Multilayer
Perceptron (MLP). Three years of NOx, CO, SO2, O3, and PM10 data modeling result in a good
estimation of NO2: r2 = 0.85; SO2: r2 = 0.82; PM10 r2 = 0.75 when compared with observed data.
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Kleine Deters et al. [42] aim to identify the meteorology effects on PM2.5, by predicting it using
six years of meteorological data (wind speed and direction, and precipitation) for Quito, Ecuador in
regression modeling. This is a good simplified technique and an economic option for the cities with no
air quality equipment. The model gets validated by regression between observed and predicted PM2.5,
and by a 10-fold cross validation of predicted vs. observed PM2.5, which shows that this method is
a fair approach to estimate PM2.5 from meteorological data. In addition, the model performance is
improved in the more extreme weather conditions (most influential parameters), as previously seen in
Zhan et al. [35].

Carnevale et al. [43] use the lazy learning technique to establish the relationship between
precursor emissions (PM10) and pollutants (AQI of PM10) for the Lombard region (Italy), using
hourly Sulfur Dioxide (SO2), Nitrogen oxides (NOx), Carbon Monoxide (CO), PM10, NH3 data for
one year. The Dijkstra algorithm is deployed in the large-scale data processing system. Eighty percent
of the data are used as an example set and 20% as validation set (every 5th cell). The validation
phase of surrogate models is performed comparing the output to deterministic model simulations,
not the observations. Constant, linear, quadratic and combination approximation based on elevation
of the area (0, 1, 2 and all polynomial approximations) are applied. The performance of the model
is very comparable (r2 = 0.99–1) to the Transport Chemical Aerosol Model (TCAM), a model that is
computationally much costlier, currently used in decision making.

Suárez Sánchez et al. [44] on the other hand, aim to estimate the dependence between primary and
secondary pollutants; and most contributing factors in air quality using SVM radial (Gaussian), linear,
quadratic, Pearson VII Universal Kernels (PUK) and multilayer perceptron (MLP) to predict NOx, CO,
SO2, O3, and PM10. Three years of NO, NO2, CO, SO2, O3, and PM10 data are used in Aviles, Spain.
The model is 10-fold cross validated with the observed data, resulting in best performance using PUK
for NOx and O3 (r2 = 0.8).

Liu et al. [23] also employ SVM to get the most reliable predictive model of air quality (AQI) by
considering monitoring data of three cities in China (Beijing, Tianjin, and Shijiazhuang). Two years of
last-day AQI values, pollutant concentrations (PM2.5, PM10, SO2, CO, NO2, and O3), meteorological
factors (temperature, wind direction and velocity), and weather description (ex. cloudy/sunny,
or rainy/snowy, etc.) are used as predicting features. The dataset is split into a training set and testing
set through a 4-fold cross validation technique. To validate the model performance, the results are
compared to the observed data. The model performance is especially improved when the surrounding
cities’ air quality information is included.

Vong et al. [45] also use SVM to forecast air quality (NO2, SO2, O3, SPM) from pollutants and
meteorological data in Macau (China). The training is performed on three years of data and tested on
one whole year and then just on January and July for seasonal predictions. The Pearson correlation is
used to identify the best predictors for each pollutant and different kernels are used to test which of the
predictors or models get the best results. The Pearson correlation is also employed to determine how
many days of data are optimal for forecasting. The model performance is validated by comparison to
the observed data resulting in best kernel—linear and RBF, in polynomial (summer), confirming that
SVM performance depends on the appropriate choice of the kernel.

In the forecasting model category, there are two articles that use NN, and meteorology and
pollutants as predicting features. Chen et al. [46] aim to build a model that forecasts AQI one day
ahead by using an Ensemble Neural Network that processes selected factors using PEK-based machine
learning for 16 main cities in China (three years of data). First a selection of the best predictors (PM2.5,
PM10, and SO2) is performed, based on Partial Mutual Information (PMI), which measures the degree
of predictability of the output variable knowing the input variable, and then the daily AQI value
is predicted, through PEK-based machine learning, by using the previous day’s meteorological and
pollution conditions. The model is validated by a comparison between actual and predicted value,
resulting in an average value of r2 = 0.58.
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Meanwhile, Papaleonidas and Iliadis [47] present the spatiotemporal modelling of O3 in Athens
(Greece) also using NN, specifically developing 741 ANN (21 years of data). A multi-layer feed
forward and back propagation optimization are employed. The best results are conceived with three
approaches—the simplest ANN, the best ANN for each case of predictions, and the dynamic variation
of NN. The performance of the model is validated with the observed data and between NN approaches,
resulting in r2 = 0.799, performing the best for the surrounding stations. This approach is concluded as
a good option for modeling with monitoring station data due to very common gaps.

Finally, Oprea et al. [48] aim to extract rules for guiding the forecasting of particulate matter
(PM10) concentration levels using Reduced Error Pruning Tree (REPTree) vs. M5P (an inductive
learning algorithm). The principal component analysis is used to select the best predictors, and then
27 months of eight previous-days of PM10, NO2, SO2, temperature and relative humidity data are used
to predict PM10 in Romania. The validation is performed by comparing the results of two models with
the observed values, concluding that M5P provides the more accurate prediction of the short-term
PM10 concentrations (r2 = 0.81, for one day ahead and r2 = 0.79 for two days ahead).

3.2.2. Category 2: Image-Based Monitoring and Tackling Low Spatial Resolution from
Non-Specific/Low Resolution Sensors

This group is composed of a set of seven papers. All of them address estimation issues only.
It is quite logical that no forecasting studies are included in this category, because the principal
objective of this kind of work is to increase the spatial resolution of the current pollution spreading.
To do so, a first paper presents a method to improve the spatial resolution and accuracy of
satellite-derived ground-level PM2.5 by adding a geostatistical model (Random Forest-based Regression
Kriging—RFRK) to the traditional geophysical model (i.e., Chemical Transport Models—CTM) [49].
This is a two-step procedure in which a Random Forest regression models the nonlinear relationship
between PM2.5 and the geographic variables (step 1) then the kriging is applied to estimate the residuals
(or error) of step 1 (step 2). This work is carried out in the USA and is based on a 14 years dataset.
The predictive features include CTM, satellite-derived dataset (meteorology and emissions), geographic
variables (brightness of Night Time Lights—NTL, Normalized Difference Vegetation Index—NDVI,
and elevation), and in situ PM2.5. The accuracy is evaluated by comparing the RFRK to CTM-derived
PM2.5 models and using ground-based PM2.5 monitor measurements as reference. The results
show that the RFRK significantly outperforms the other models. In addition, this method has a
relatively low computational cost and high flexibility to incorporate auxiliary variables. Among the
three geographic variables, elevation contributes the most and NDVI contributes the less to the
prediction of PM2.5 concentrations. The main limitation of the technique is to rely on satellite images
that are subject to uncertainties (e.g., data quality, completeness, and calibration).

A similar approach is proposed by Just et al. [50]. The motivation of this study is to enhance
satellite-derived Aerosol Optical Depth (AOD) prediction, by applying a correction based on
three different Ensemble Learning algorithms: Random Forest, Gradient Boosting, and Extreme
Gradient Boosting (XGBoost) The correction is implemented by considering additional inputs as
predictive factors (e.g., land use and meteorology) than AOD only. This technique is applied to predict
the concentration of PM2.5 in Northeastern USA during a period of 14 years. The accuracy of the
method is assessed by comparing the coefficient of determination (predicted value/actual value)
between the three models. The result shows that XGBoost outperforms slightly the other
two algorithms. In addition, the study demonstrates that including land use and meteorological
parameters in the algorithms improves significantly the accuracy when compared to the raw AOD.
Nevertheless, a limitation of the technique is the fact that it requires lots of features (total number = 52).
Furthermore, Zhan et al. [51] propose an improved version of the Gradient Boosting algorithm by
considering the spatial nonlinearity between PM2.5 and AOD and meteorology. They develop a
Geographically-Weighted Gradient Boosting Machine (GW-GBM) based on spatial smoothing kernels
(i.e., gaussian) to weight the optimized loss function. This model is applied to all China and uses data
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of 2014. The GW-GBM provides a better coefficient of determination than the traditional GBM.
The study shows that the best features in descending order are: day of year, AOD, pressure,
temperature, wind direction, relative humidity, solar radiation, and precipitation.

Xu et al. [52] estimate ozone profile shapes from satellite-derived data. They develop a NN-based
algorithm, called the Physics Inverse Learning Machine. The proposed method is composed of
five steps. Step 1 is a clustering that gets groups of ozone profiles according to their similarity
(k-means clustering procedure). Step 2 generates simulated satellite ultraviolet spectral absorption
(UV spectra) of representative ozone profiles from each cluster. Step 3 consists of improving the
classification effectiveness by reducing the input data through a Principal Component Analysis.
In step 4 the classification model is applied for assigning an ozone profile class corresponding to a given
UV spectrum. And in step 5 the ozone profile shape is scaled according to the total ozone columns.
The algorithm is tested by comparing the predicted value to the observed value. 11 clusters are
obtained, and the estimation error is lower than 10%. This technique can be considered an encouraging
approach to predict ozone shapes based on a classification framework rather than the conventional
inversion methods, even if its computational cost is relatively high.

A slightly different approach is proposed by de Hoogh et al. [53]. This work aims to build global
(1 km × 1 km) and local (100 m × 100 m) models to predict PM2.5 from AOD and PM2.5/PM10 ratio.
It is based on an SVM algorithm to predict the concentration of PM2.5 in Switzerland. The dataset is
composed of 11 years of observations and a broad spectrum of features, such as: Planetary boundary
layers, meteorological factors, sources of pollution, AOD, elevation, and land use. The results show
that the method is able to predict PM2.5 by using data provided by sparse monitoring stations.
Another technique consists of supplementing sparse accurate station monitoring by lower fidelity
dense mobile sensors, with the aim of getting a fine spatial granularity [54]. Seven Regression
models are used to predict CO concentrations in Sidney, Australia. The study is divided into
three stages. First, the models are built from seven years of historical data of static monitoring
(15 stations) and three years of mobile monitoring. Second, the performances of each algorithm
are compared. And third, field trials are conducted to validate the models. The results show that
the best predictions are provided by Support Vector Regression (SVR), Decision Tree Regression
(DTR), and Random Forest Regression (RFR). The validations on the field suggest that SVR has the
highest spatial resolution estimation and indicates boundaries of polluted area better than the other
regression models. In addition, a web application is implemented to collect data from static and mobile
sensors, and to inform users.

Finally, a quite different study uses image processing to predict pollution from a video-camera
analysis [55]. Again, several families of machine learning algorithms are tested and compared.
The method involves four sequential steps, which are: (i) camera records, (ii) image processing,
(iii) feature extraction, and (iv) machine learning classification. The objective is to assess the severity of
the pollution cloud emitted by factories from 12 features characterizing the image, such as— luminosity,
surface of the cloud, color, and duration of the cloud. Although all the algorithms provide a similar
performance, Decision Tree is the only one to be systematically classified among the models with
the best (i) robustness of the parameter setting (= easy to configure), (ii) robustness to the size of the
learning set, and (iii) computational cost. This study introduces interesting performance metrics based
on ‘efficiency’ (higher weight for the correct classification of ‘critical events’ than ‘noncritical events’)
instead of ‘accuracy’ (same weight for any event). In addition, with the objective to tackle the issue of
unbalanced classes and since the authors are more interested in critical events (black cloud), which are
less represented, some ‘noncritical events’ are removed from the learning set in order to get a balanced
representation of the classes. Nevertheless, the application of this method is limited to the assessment
of the contamination produced by plants.
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3.2.3. Category 3: Considering Land Use and Spatial Heterogeneity/Dependence

Four out of five papers classified in this category are estimation models. The most general
manuscript is written by Abu Awad et al. [56]. The objective is to build a land use model to predict
Black Carbon (PM10) concentrations. The approach is divided into two steps. First, a land use regression
model is improved by using a nu-Support Vector Regression (nu-SVR). Second, a generalized additive
model is used to refit residuals from nu-SVR. This study is applied in New England States (USA)
and exploits a 12 years dataset, which stores data from 368 monitoring stations. A broad spectrum of
variables is used as features, such as: Filter analysis, spatial predictors (elevation, population density,
traffic density, etc.), and temporal predictors (meteorology, planet boundary layer, etc.). The model is
tested in cold and warm seasons and is assessed by comparison to actual data. Overall, the results
provide a high coefficient of determination (r2 = 0.8). In addition, it appears that this coefficient is
significantly higher in the cold than in the warm season.

Araki et al. [57] also build a spatiotemporal model based on land use to capture interactions
and non-linear relationships between pollutants and land. The study consists of comparing
two algorithms—Land Use Random Forest (LURF) vs. Land Use Regression (LUR)—to estimate
the concentration levels of NO2. This work takes place in the region of Amagasaki, in Japan, over a
period of four years. Besides land use, the authors use population, emission intensities, meteorology,
satellite-derived NO2, and time as features. The accuracy of LURF outperforms slightly LUR, and the
coefficient of determination gets a same range of values as in the above study. LURF is a bit better
than LUR, because the former allows for a non-linear modelling whereas the latter is limited to a
linear relationship. Another advantage of using random forest is to produce an automatic selection of
the most relevant features. The results show that the best predictors in descending order are—green
area ratio, satellite-based NO2, emission sources, month, highways, and meteorology. The variable
population is discarded from the model. Nevertheless, the interpretation of the regression model is
easier than the random forest-based model, because the former provides coefficients representing the
direction and magnitude of the effects of predictor variables. The variable selection issue related to
LUR is tackled in the study carried out by Beckerman et al. [58]. They develop a hybrid model that
mix LUR with deletion, substitution, and addition machine learning. Thanks to this method, no more
than 12 variables are used to predict the concentration of PM2.5 and NO2. The case study is applied to
all California and uses data on the period 1999–2002 for PM2.5, and 1988–2002 for NO2. The overall
performance of the model is fair, but the accuracy for estimating PM2.5 is significantly lower than NO2.

Brokamp et al. [31] perform a deeper analysis based on a prediction of the concertation of the
chemical composition of PM2.5. As Beckerman et al. [57], they compare the performance of a LURF
versus LUR approach. The dataset is built from the measurements of 24 monitoring stations in the
city of Cincinnati (USA) during the period 2001–2005. Over 50 spatial parameters are registered,
which include transportation, physical features, socioeconomic characteristics, greenspace, land cover,
and emission sources. Again, LURF outperforms slightly LUR. The originality of this work is to create
models that predict not only the air quality, but also the individual concentration of metal components
in the atmosphere from land use parameters.

Yang et al. [59] is the only study of this category that provides a forecasting model. The approach
is applied in three steps. First, a clustering analysis is performed to handle the spatial heterogeneity
of PM2.5 concentrations. Several clusters are defined, based on homogeneous subareas of the city of
Beijing (China). Second, input spatial features that address the spatial dependence are calculated using
a Gauss vector weight function. And third, spatial dependence variables and meteorological variables
are used as input features of an SVR-based model of prediction. The performance of the proposed
Space-Time Support Vector Regression (STSVR) algorithm is compared to the ARIMA, traditional SVR,
and NN. The best model depends on the forecasting time span. STSVR outperforms the prediction
of the other models from 1 h to 12 h ahead, whereas the global SVR outperforms STSVR from 13 h
to 24 h ahead. This study demonstrates that (i) the relationship between air pollutant concentrations
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and other relevant variables changes over spatial areas, and (ii) as the forecasting time increases,
the prediction accuracy decreases more with STSVR than SVR.

3.2.4. Category 4: Hybrid Models and Extreme/Deep Learning

This set of papers represents one of the rare categories in which forecasting models (10) are
significantly more frequent than estimation models (2). The first estimation study consists of
building a reliable model to predict NO2 and NOx with a high spatiotemporal resolution and
over an extended period of time [60]. This work is carried out in three steps. First, multiple
non-linear (traffic, meteorology, etc.), fixed (e.g., population density) and spatial (e.g., elevation)
effects are incorporated to characterize spatiotemporal variability of NO2 and NOx concentration.
Second, the Ensemble Learning algorithm is applied to reduce variance and uncertainty in the
prediction based on step 1. Third, an optimization process is implemented by tackling possible
incomplete time-varying covariates recording (traffic, meteorology, etc.) in order to get a continuous
time series dataset. The prediction performance is quite high (r2 ≈ 0.85). Traffic density, population
density, and meteorology (wind speed and temperature) account for 9–13%, 5–11%, and 7–8%
of the variance, respectively. Nevertheless, the method is less accurate for the prediction of low
pollution levels.

A different estimation approach is proposed by Zhang and Ding [61]. The authors use an Extreme
Learning Machine (ELM) to tackle the low convergence rate and the local minimum that characterize
the NN algorithms. Their ELM consists of only 2-layer NN. The first layer (hidden layer) is fixed and
random (its weight does not need to be adjusted). The second layer only is trained. They estimate
a broad spectrum of contaminants (NO2, NOx, O3, PM2.5, and SO2) from meteorological and time
parameters. It appears that the ELM is significantly better than NN and Multiple Linear Regression
(MLR), because it provides a higher accuracy and a lower computational cost. An even more advanced
study is carried by Peng et al. [62]. The authors propose an efficient non-linear machine learning
algorithm for air quality forecasting (up to 48 h), which is easily updatable in ‘real time’ thanks to
a linear solution applied to the new data. Five algorithms are compared: MLR, Multi-Layer Neural
Network (MLNN), ELM, updated-MLR, and updated-ELM. This approach involves two steps and
predict three types of contaminants (O3, PM2.5, and NO2). Step 1 consists of the initial training stage
of the algorithm. The 2nd step involves a sequential learning phase, in order to proceed with an
online (daily) update of the MLR and ELM, and only seasonally (trimonthly) update of the MLNN.
The results show that the updated-ELM tends to outperform the other models, in terms of R2 and MAE.
In addition, the linear updating applied to MLR and ELM is less costly than updating a MLNN.
Nevertheless, all the models tend to underpredict extreme values (the non-linear models even more
than the linear models).

Another type of forecasting involves hybrid models. This is the case of the study performed
by Zhang et al. [63], who predict short and long-term CO from a hybrid model composed with
Partial Least Square (PLS), for data selection, and SVM, for modelling. Overall, SVM-PLS seems more
performant than traditional SVM, because both the precision and computational cost of the former is
better than the latter. However, the accuracy is lower for hourly than daily forecasting. Tamas et al. [64]
propose a different hybrid model to forecast air contaminants (O3, NO2, and PM10), with a special focus
on the critical prediction of pollution peaks. The hybrid model is composed with NN and clustering
and it is compared to the Multilayer Perceptron. The proposed algorithm outperforms the traditional
NN, especially in the prediction of PM10 and O3 peaks of pollution. Since performing a forecasting
consists mainly of predicting a time series, Ni et al. [65] propose a hybrid model that implements a NN
and an Autoregressive Integrated Moving Average (ARIMA). The concentration of PM2.5 are predicted
in Beijing (China) from meteorological parameters, chemical variables, and microblog data. Such an
approach allows for a good forecast for a few hours ahead, but the bigger the time lag, the bigger
the error.
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A time series analysis is also used by Li and Zhu [66] to predict the AQI (NO2 + PM10 + O3 + PM2.5)
1 h ahead and from the extraction of conceptual features (randomness and fuzziness of time series data).
A hybrid model based on a technique of Cloud Model Granulation (CMG) and SVR is implemented in
two steps. First, CMG uses probability and fuzzy theory to extract from time series the concept features
of: randomness and fuzziness of the data. And second, after extracting these features, an SVR is used for
the prediction per se. The performance of CMG-SVR is slightly better than the individual application of
the same techniques (CMG and SVR alone) or a NN. Nevertheless, this method is still only able to make a
short-term prediction (about 1 h ahead). The fuzzy approach to forecast PM10 hourly concentration 1 h
ahead is also used by Eldakhly et al. [67]. To tackle the randomness and fuzziness of the data, the hybrid
model applies, first, a chance weight value to the target variable in order to minimize an outliner point
(if any) that can be used, afterward, as a support vector point during the training process. The result of
this study is one of the rare examples that shows a model that outperforms ensemble learning algorithms
(Boosting and Stacking).

Wang et al. [68] propose to optimize the AQI forecasting by applying a ‘decomposition and
ensemble’ technique in three steps: (i) decomposition of the original AQI time series into a set of
independent components (i.e., frequencies or IMFs), (ii) prediction of each component (by ELM),
and (iii) aggregation of the forecast values of all components. The hybrid model takes every
eight successive days as AQI data inputs of the ELM to forecast the ninth day. The originality
of the study is to propose a decomposition of the AQI time series into two phases— by Complementary
Ensemble Empirical Mode Decomposition (CEEMD), for low and medium frequencies, and by
Variation Mode Decomposition (VMD), for high frequencies. This 2-phase decomposition provides
a superior forecasting accuracy than 1-phase decomposition implementations. Fuzzy logic, ELM,
and heuristic are put together in the model developed by Li et al. [66]. This study forecasts the
AQI (based on PM10, PM2.5, SO2, NO2, CO, and O3) of six cities in China. Fuzzy logic is used
as a feature selection, because relevant predictive contaminants are not the same according to
the city. ELM and heuristic optimization algorithms are applied for a deterministic prediction of
the contaminant concentrations. This hybrid model gives a better prediction than other NN and time
series (e.g., ARIMA) algorithms but it is slightly slower than the NNs.

More recently, a bunch of studies have implemented a Deep Learning approach to improve
the accuracy of air pollution forecasting. For instance, Zhao et al. [69] propose a Deep Recurrent
Neural Network (DRNN) method to forecast daily Air Quality Classification (AQC). This technique
is divided into two steps. First, data of six pollutants are pre-processed, in order to group the
concentrations into four categories or Individual Air Quality Index—IAQI (from unhealthy to good).
Second, an RNN based on Long Short-Term Memory (LSTM) is used to perform the forecasting. LSTM
is an RNN, which includes a memory that permits to learn the input sequence with longer time
steps (e.g., problems related to time series). Despite the high expectations, the predictive accuracy of
the model is not significantly better than the performance of the other tested algorithms (SVM and
Ensemble Learning). In addition, the disadvantage of Deep Learning is a high computational cost and
a low interpretability of the model. A more satisfactory result is obtained by Huang and Kuo [70],
who also use a hybrid model based on NN and LSTM to forecast PM2.5 concentrations 1 h ahead, by
processing big data. The authors use a Convolutional Neural Network (CNN) instead of the traditional
NN, because its partially connected architecture allows for a reduced training time. This optimized
model seems to outperform all the principal machine learning algorithms (SVM, Random Forest,
and Multilayer Perceptron). However, the relevance of such a technique still has to be confirmed over
a longer time span forecast.

3.2.5. Category 5: Towards an Application System

With only four papers out of 46, the application category is one of the smallest. This result means
that the majority of the published studies are still very theoretical. A first interesting application
system is proposed by Sadiq et al. [71]. The purpose of their model is to regulate the traffic, in order to
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optimize pollution level while maximize the vehicle flow. The method is based on a hybrid model
that involves problem-solving, multi-agent system, and NN to estimate the concentration of O3 in
Marrakech-City (Morocco). The predictive features are traffic, pollutant covariates, and meteorological
parameters (relative humidity, wind speed, temperature, and solar radiation). The accuracy of the
model is assessed by comparing the predicted values to the measurements at the monitoring stations.
The system is optimized by using the Hadoop framework that manages big data and a multi-agent
software architecture. The objective is to provide the drivers with recommendations on the best path
(sum of the shortest + least polluted road) after applying a search graph algorithm (Dijkstra). An app
of the system is currently available.

Other studies intend to provide a public application to forecast air quality. This is the
case of the work carried out by Tzima et al. [72], who develop a tool that is integratable with
existing Environmental Management Systems implemented in Greece. The machine learning model
implements Decision Rules to forecast pollution peaks of O3 and PM10. The obtained model is a
trade-off between performance and understandability. It is less accurate than a linear regression to
forecast PM10 but it is better than the other tested models to predict O3. A more advanced system is
based on the operational forecasting platform Prev’Air [73]. This platform aims at forecasting maps,
on a daily basis, for O3, NO2, and PM10. This study implements a Ridge Regression method that
reduces the errors of the forecasts (RMSE) for all the contaminants (by 35% for O3, 26% for NO2,
and 19% for PM10). However, the technique presents some limitations to predict pollution peaks.
In that sense, it is not adapted for cities with frequent violations of air quality standards.

The last work consists of a network installation of low-cost pollution sensors [74]. The whole
system is able to store data, to process these raw data for a posterior forecasting, and to present the
prediction through different channels, such as mobile application and Web portal. Different machine
learning methods (SVM, Regression, Model Trees, and NN) are tested, in order to identify the best
algorithm to forecast the concentration levels of O3, NO2, and SO2. It seems that the Model Trees
provide the lowest RMSE. This solution is particularly relevant to tackle low density monitoring
stations and could be advantageously applied in developing countries that suffer high pollution rates.
Overall, the majority of the application systems implement traditional machine learning techniques.

3.2.6. Category 6: Nanoparticles as a New Challenge

In the last category, the studies focus on estimating the concentrations and peaks of nanoparticles.
A number of years of research indicates that the levels of PM2.5 concentrations are dropping in most of
the high- and mid-income countries [75–78]. However, in the case of nanoparticles, the harm comes
not from their mass (particle concentration, usually high for the larger size aerosols), which compared
to micro-sized particles is minute, but the quantity (particle number, usually very high for the
smaller size aerosols) entering the human blood stream and damaging the cardiovascular system.
Recent study indicates that nanoparticles attack the injured blood vessels and may cause heart attacks
and strokes, while long-term exposure causes vascular damage [79]. Therefore, studying these
ultrafine particles (UFP) is quite important due to the increased production of very small particles by
modern engines. However, not many cities have the infrastructure to monitor these complex pollutants.
Therefore, Al–Dabbous et al. [80] aim to build a model that estimates the concentration of nanoparticles
from accessible and routinely-monitored pollution and meteorological factors using a feed-forward
Neural Network with back-propagation. First, different architectures of NN (number of layers
and neurons) are tested through an empiric approach (i.e., trial and error), in order to select the
models that provide the minimum error of prediction according to the features considered, then the
seven best models (each one with different types and number of features) are compared, and finally,
in order to assess the prediction of the models for high-pollution concentrations 75th percentile
values are considered. One month of five pollutant covariates (PM10, SO2, O3, NOx, and CO),
and/or meteorological data (wind speed, and temperature) are used in Fahaheel City (Kuwait).
The model performance is assessed by comparison between the seven models (i.e., type and number
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of features considered) based on the determination coefficient. The models that include meteorology
have the best results r2 = 0.8 (with meteorology), and r2 = 0.74 (without meteorology). The accuracy of
the models is slightly lower for extreme concentrations (>75th percentile values). The study shows
that the concentration in nanoparticles is very sensitive to meteorological factors.

Similarly, Pandey et al. [81] aim to understand the relationships between the concentration
of submicron particles and meteorological and traffic factors in order to estimate nanoparticles
(particulate matter less than 1 µm—PM1, and UFP) in Hangzhou (China). As in the previous
study [80], a short term, three days in winter data of meteorological (temperature, relative humidity,
wind speed and direction, precipitation and pressure), traffic (flow, speed) and time parameters
are used. Tree-based classification models, SVM, Naïve Bayes, Bayesian Network, NN, k-NN, Ripper
and RF are implemented. Correlation with PM and each predictor is performed, to know which single
feature has better predicting power, and based on that the multiple parameter model is used. Data are
split into two (low vs. high) and three (low vs. medium vs. high) ranges of pollution classes.
Model performance is validated against the observed data (precision, area under curve—AUC)
resulting in tree algorithm AUC and f-measure 1 for PM1 (ADTree, RF), and for UFP 0.84 (RF).
This study is a promising example in predicting nanoparticles without actual measurements. It shows
that it is easier to predict PM1, than UFP. Tree algorithms are able to produce almost completely
accurate prediction of PM1, and very good (r2 = 0.844) for UFP. A binary split is better than ternary for
all classifiers. Finally, weather also shows a strong relationship with PM1, while traffic parameter is
important for UFP.

3.3. Synthesis

In order to synthetize the results of this systematic review, an MCA is performed. This factorial
analysis looks for the principal dimension explaining the variability between the papers and to
closely examine relationships between them. The MCA dimensions are quantitative variables which
summarize the qualitative variables that characterize each study. This statistical method suggests links
between these qualitative variables by the observation of their proximity in the point cloud-based
representation of the categories (Figure 5). Here, the total percentage of inertia is 28%, which is an
acceptable value considering the fact the papers are located in a high K–J dimensional space. The x-axis
(F1) shows an opposition between forecasting models and estimation models. On the one hand,
the forecasting models seem more used to predict Air Quality Index (prediction-AQI) and are mainly
based on NN (algorithm-NN) and SVM (algorithm-SVM) algorithms. They do not rely on land use
predictors (land-F), but a lot on the targeted predicted parameter (target-T). Since a forecasting usually
involves a time series analysis, it makes sense to use the targeted parameter as predictive feature for
predicting its evolution over time. Considering the large distance between ‘model-forecasting’ and
‘prediction-NOx’, it is also possible to conclude that this kind of modelling is not used to predict the
nitrogen oxides in the atmosphere. On the other hand, the estimation models constitute the main
approach to predict ozone (prediction-O3) and nanoparticles (prediction-PM01) and are mostly based
on Ensemble Learning algorithms (algorithm-Ensemble). Contrary to forecasting, they do not use the
predicted factor as feature (target-F), because this type of model focuses on estimating the concentration
of a determined pollutant from other sources of contamination or dispersion. This aspect explains
the reason why atmospheric parameters (atmosphere-T), time (time-T), satellite images (image-T),
and land use (land-T) tend to be located on the same side as ‘model-estimation’. The y-axis (F2)
explains less variables than the x-axis (F1). Nevertheless, it highlights a clear opposition between
2 peculiars algorithms that appear only in 2 different papers (algorithm-Rules and algorithm-Lazy).
If we look at the data, it is possible to confirm that these two studies address distinct types of modelling
(estimation vs. forecasting) and predicted parameters (PM10 vs. AQI).
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Figure 5. MCA representation of the point cloud of the categories that characterize the selected papers.
The studies are described from nine variables (J) and 27 categories (K). Variable 1 is the type of
modelling and has two categories: Estimation (model-estimation) and forecast (model-forecasting).
Variable 2 is the type of algorithm and has six categories: Ensemble Learning (algorithm-Ensemble),
Neural Network (algorithm-NN), Support Vector Machine (algorithm-SVM), Multiple Regression
(algorithm-Regression), Decision Rules (algorithm-Rules), and Lazy methods (algorithm-Lazy).
Variable 3 is the predicted parameter and has seven categories: Air Quality Index (prediction-AQI),
PM10 (prediction-PM10), PM2.5 (prediction-PM25), nanoparticles (prediction-PM01), carbon monoxide
(prediction-CO), nitrogen oxides (prediction-NOx), and ozone (prediction-O3). Variable 4 is the
feature target and has two categories: Used (target-T) and not used (target-F). Variable 5 is the feature
pollutant covariates and has two categories: Used (covariates-T) and not used (covariates-F). Variable 6
is the feature atmospheric parameters and has two categories: Used (atmosphere-T) and not used
(atmosphere-F). Variable 7 is the feature land use and has two categories: Used (land-T) and not used
(land-F). Variable 8 is the feature time and has two categories: Used (time-T) and not used (time-F).
Variable 9 is the feature image processing and has two categories: Used (image-T) and not used
(image-F).

Overall, more studies are dedicated to estimation (28) than forecasting (18). There are only
two out of six categories in which the number of forecast motivations is higher than estimation
purposes (Figure 6). This is the case of Category 4, which presents hybrid solutions to predict air
contamination and includes deep and extreme learning. These techniques are usually characterized by
a high performance of prediction, which is particularly adapted to tackle the uncertainty to forecast
concentrations of pollutant in the near or far future. The other group is Category 5, which focuses on
implementing practical applications. Intuitively, it makes more sense to develop an App or a Web portal
that provides the users with a forecasting information that supports the planning of their next activities
than to propose a theoretical assessment of air quality. On the contrary, the other four categories are
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significantly more represented by estimation than forecasting models. Obviously, the group with the
most estimations is Category 1, because it is interested in understanding the relationship between the
sources of contamination and air quality. According to the MCA, it also tends to prefer models that
involve a high interpretability (e.g., Regression or Decision Tree-based models) than accuracy. A similar
interpretation can be made for Category 4, which includes land use parameters and other spatial
heterogeneities of the environment to increase the comprehensiveness of the models. Interestingly,
there are two groups (Categories 2 and 6) in which forecasting models are not represented at all.
Only estimation models are built in Category 2, certainly because the priority of this kind of study is
improving the spatial resolution of the current pollution spreading and not predicting it hours ahead.
Finally, considering that Category 6 is a new challenge, it is natural that the only two studies on the
topic focus on an estimation before carrying out a forecast. The identification of these two unexplored
axes allows us to suggest where the new research should be evolving next.
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Figure 6. Number of types of studies (estimation vs. forecasting) per group. Category 1: Identifying
relevant predictors and understanding the non-linear relationship with air pollution. Category 2:
Image-based monitoring and tackling low spatial resolution from non-specific/low resolution sensors.
Category 3: Considering land use and spatial heterogeneity/dependence. Category 4: Hybrid models
and extreme/deep learning. Category 5: Towards an application system. Category 6: Nanoparticles as
a new challenge.

Finally, the performances of all the studied models were evaluated in general per algorithm and
then each algorithm performance per pollutant for estimation and forecasting studies. For the first
analysis, we selected the most used algorithms: Ensemble, NN, SVM and Regression modeling to
evaluate coefficients of determination resulting from all 46 studies. The best overall performance
is registered for the Ensemble modeling (r2 = 0.79) with a low variability in the results between
different studies. Second best is the Regression modeling (r2 = 0.74) with also low standard deviation.
These two types of algorithms are mostly used in the estimation modeling (see Figure 5), thus resulting
in a better predictive performance. SVM has also showed a good performance (r2 = 0.67 ± 0.15).
This algorithm is used for the forecasting and a few studies on estimation modeling. The lowest
performance was registered from NN modeling (r2 = 0.64 ± 0.27), often used in forecasting studies
(see Figure 5).

In order to further identify a success of forecasting and estimation studies we separated the
resulting available coefficients of determination for each pollutant. Figure 7 shows that in almost all
the cases, with the exception of PM2.5 the estimation modeling results in better accuracy than the
forecasting modeling. However, the variation of the results is significantly higher in the forecasting.
The estimation modeling performs quite well for CO (r2 = 0.76), NOx (r2 = 0.78), O3 (r2 = 0.74) and
PM2.5 (r2 = 0.72). Meanwhile, the forecasting models reach a very high level of performance for
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PM2.5 (r2 = 0.74), which is an important achievement, as CTMs often struggle with this specific
pollutant [49,82]. Interestingly, the worst performance of forecasting is registered for the traffic-related
pollutants CO and NOx.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  21 of 27 

analysis, we selected the most used algorithms: Ensemble, NN, SVM and Regression modeling to 
evaluate coefficients of determination resulting from all 46 studies. The best overall performance is 
registered for the Ensemble modeling (r2 = 0.79) with a low variability in the results between different 
studies. Second best is the Regression modeling (r2 = 0.74) with also low standard deviation. These 
two types of algorithms are mostly used in the estimation modeling (see Figure 5), thus resulting in 
a better predictive performance. SVM has also showed a good performance (r2 = 0.67 ± 0.15). This 
algorithm is used for the forecasting and a few studies on estimation modeling. The lowest 
performance was registered from NN modeling (r2 = 0.64 ± 0.27), often used in forecasting studies 
(see Figure 5).  

In order to further identify a success of forecasting and estimation studies we separated the 
resulting available coefficients of determination for each pollutant. Figure 7 shows that in almost all 
the cases, with the exception of PM2.5 the estimation modeling results in better accuracy than the 
forecasting modeling. However, the variation of the results is significantly higher in the forecasting. 
The estimation modeling performs quite well for CO (r2 = 0.76), NOx (r2 = 0.78), O3 (r2 = 0.74) and PM2.5 
(r2 = 0.72). Meanwhile, the forecasting models reach a very high level of performance for PM2.5 (r2 = 
0.74), which is an important achievement, as CTMs often struggle with this specific pollutant [49,82]. 
Interestingly, the worst performance of forecasting is registered for the traffic-related pollutants CO 
and NOx.  

 

Figure 7. Model performance evaluated with the average and standard deviation of the available r2 
per pollutant of estimation and forecast studies. 

4. Conclusions 

This manuscript examines 46 selected scientific articles focusing on machine learning approach 
to predict air pollution. While machine learning application in atmospheric sciences has been rapidly 
increasing in the last two years, this growth has been restricted to Eurasian and North American 
continents, with only four studies in the southern hemisphere.  

This systematic review shows that there are two kinds of studies that implement a machine 
learning approach for predicting air quality. The first class, the majority, is represented by papers 
that focus on an estimation of the concentration of pollutants. It mostly uses Ensemble Learning or 
Regression algorithms, because they provide an excellent trade-off between interpretability and 
performance of the model. The second class is composed of manuscripts that address forecasting 
problems. This kind of question is clearly treated by the use of NN and SVM techniques. The forecast 
prioritizes the accuracy over the interpretability, which may explain why such powerful algorithms, 
but also considered as a black box, are preferred. Our synthesis shows that the precision of the 
forecasting tends to be lower and more variable than the precision of the estimation. This fact may 
justify the necessity to apply methods that are computationally more demanding (e.g., deep learning) 
to tackle the complexity to predict the value of contaminants hours or days ahead. 

Figure 7. Model performance evaluated with the average and standard deviation of the available r2

per pollutant of estimation and forecast studies.

4. Conclusions

This manuscript examines 46 selected scientific articles focusing on machine learning approach to
predict air pollution. While machine learning application in atmospheric sciences has been rapidly
increasing in the last two years, this growth has been restricted to Eurasian and North American
continents, with only four studies in the southern hemisphere.

This systematic review shows that there are two kinds of studies that implement a machine
learning approach for predicting air quality. The first class, the majority, is represented by papers
that focus on an estimation of the concentration of pollutants. It mostly uses Ensemble Learning
or Regression algorithms, because they provide an excellent trade-off between interpretability
and performance of the model. The second class is composed of manuscripts that address
forecasting problems. This kind of question is clearly treated by the use of NN and SVM techniques.
The forecast prioritizes the accuracy over the interpretability, which may explain why such powerful
algorithms, but also considered as a black box, are preferred. Our synthesis shows that the precision of
the forecasting tends to be lower and more variable than the precision of the estimation. This fact may
justify the necessity to apply methods that are computationally more demanding (e.g., deep learning)
to tackle the complexity to predict the value of contaminants hours or days ahead.

Overall, it seems that machine learning is an appropriate method for the prediction of air pollution.
The best example is the case of fine particulate matter. Estimating such contaminants is particularly
challenging for the traditional CTM approach. With machine learning, the accuracy of both estimation
and forecasting of PM2.5 reaches one of the highest values if compared with the other pollutants.
Nevertheless, the models still have reduced precision for the prediction of extreme concentrations
of atmospheric pollutants. In general, the accuracy for the prediction of high pollution peaks is
lower than for medium and small peaks. Also, the forecasting performance is still limited for
certain chemicals, such as CO and NOx. In addition, the models seem to perform better for more
extreme weather conditions (e.g., fall, winter, windier, etc.). Finally, it is important to note that an
increasing and dangerous form of contamination by nanoparticulate is understudied (only two papers
identified in this selection). Thus, we consider that improving the models that predict pollution peaks
and critical pollutants constitute the next challenges that should be addressed by future machine
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learning algorithms. This conclusion should be moderated by the limitations of this systematic review,
which was restricted to studies published in scientific journals only.
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REFERENCE group model algorithm prediction target covariates atmosphere land time image
Lin et al., 2018 hybrid forecasting SVM AQI T F F F F F
Araki et al., 2018 land use estimation Ensemble NOx T F T T T T
Huang & Kuo, 2018 hybrid forecasting NN PM25 T F T F F F
Li & Zhu, 2018 hybrid forecasting NN AQI T F F F F F
Grange et al., 2018 predictors estimation Ensemble PM10 F F T F T F
Just et al., 2018 spatial resolution estimation Ensemble PM25 F F T T F T
Yang et al., 2018 land use forecasting SVM PM25 T F T F F F
Liu et al., 2018 spatial resolution estimation Ensemble PM25 T F F F F T
Eldakhly et al., 2018 hybrid forecasting SVM PM10 T F T F T F
Zhao et al., 2018 hybrid forecasting NN AQI T F F F F F
Zhan et al., 2018 predictors estimation Ensemble O3 F F T T T F
De Hoogh et al., 2018 spatial resolution estimation SVM PM25 F F T T F T
Chen et al., 2018 predictors forecasting NN AQI T F T F F F
Martínez-España et al., 2018 predictors estimation Ensemble O3 F T T F F F
Xu et al., 2017 spatial resolution estimation NN O3 F F F F F T
Li et al., 2017 hybrid estimation Ensemble NOx F F T T F F
Liu et al., 2017 predictors estimation SVM AQI T F T F F F
Kleine Deters et al., 2017 predictors estimation Regression PM25 F F T F T F
Hu et al., 2017 spatial resolution estimation SVM CO T F F F T F
Al-Dabbous et al., 2017 nanoparticles estimation NN PM01 F T T F F F
Peng et al., 2016 hybrid forecasting NN AQI T F T F F F
Wang et al., 2017 hybrid forecasting NN AQI T F F F F F
Zhang & Ding, 2017 hybrid estimation NN AQI F F T F T F
Ni et al., 2017 hybrid forecasting NN PM25 T T T F F F
Brokamp et al., 2017 land use estimation Ensemble PM25 F F T T F F
Abu Awad et al., 2017 land use estimation SVM PM10 F F T T F F
Zhan et al., 2017 spatial resolution estimation Ensemble PM25 T F T F F T
Sadiq et al., 2016 application estimation NN O3 F T T T F F
Carnevale et al., 2016 predictors estimation Lazy PM10 T T F F F F
Bougoudis et al., 2016 predictors estimation Ensemble AQI T T F F F F
Shaban et al., 2016 application forecasting Ensemble AQI F T T T T F
Tamas et al., 2016 hybrid forecasting NN AQI T F T F F F
Oprea et al., 2016 predictors forecasting Ensemble PM10 T T T F F F
Nieto et al., 2015 predictors estimation Regression AQI T F F F F F
Sayegh et al., 2014 predictors estimation Regression PM10 T T F F F F
Debry & Mallet, 2014 application forecasting Regression AQI T F F F F F
Singh et al., 2013 predictors estimation Ensemble AQI T F T F F F
Papaleonidas & Iliadis, 2013 predictors forecasting NN O3 T T F F F F
Beckerman et al., 2013 land use estimation Regression NOx F T F T F T
Pandey et al., 2013 nanoparticles estimation Ensemble PM01 F F T T T F
Philibert et al., 2013 predictors estimation Ensemble NOx F T F F F F
Vong et al., 2012 predictors forecasting SVM AQI T F T F F F
Yeganeh et al., 2012 hybrid forecasting SVM CO F T F F F F
Suárez Sánchez et al., 2011 predictors estimation SVM AQI T F F F F F
Gacquer et al., 2011 spatial resolution estimation Ensemble AQI F F F F F T
Tzima et al., 2011 application forecasting Rules AQI T F T F F F

Figure A1. Source table used to perform the Multiple Correspondence Analysis (MCA).
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