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Abstract: Bearings are commonly used machine elements and an important part of mechanical
transmission. They are widely used in automobiles, airplanes, and various instruments and
equipment. Bearing rollers are the most important components in a bearing and determine the
performance, life, and stability of the bearing. In order to control the surface quality of the rollers,
a machine vision system for bearing roller surface inspection is proposed. We briefly introduced
the design of the machine vision system and then focused on the surface inspection algorithm.
We proposed a multi-task convolutional neural network to detect defects. We extracted the features of
the defects through a shared convolutional neural network, then classified the defects and calculated
the position of the defects simultaneously. Finally, we determined if the bearing roller was qualified
according to the position, category, and area of the defect. In addition, we explored various factors
affecting performance and conducted a large number of experiments. We compared our method with
the traditional methods and proved that our method had good stability and robustness.

Keywords: bearing roller; surface inspection; convolutional neural networks; machine vision

1. Introduction

Bearings are commonly used mechanical components. A bearing’s main function is to support
mechanical rotation and reduce the friction coefficient during its movement. Since the roller is the most
important part of the bearing, its surface quality has a significant impact on the performance and even
the life of the bearing, thus, the surface quality of the roller must be extremely high. Bearing rollers are

shown in Figure 1 below.
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Figure 1. Bearing rollers.
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Rollers are the main pressure-bearing part in rolling bearings and are easily damaged due to
defects and other factors. If there are defects on the roller surface, the stability of the bearing will be
heavily reduced during use. Therefore, in mechanical design, the geometric accuracy and surface
roughness of the roller are typically one level higher than that of the ferrules and raceways. Among the
rolling bearings, deep groove ball bearings are mainly used in small- and medium-sized equipment,
while roller bearings are widely used in medium- and large-sized machines. They are widely used in
passenger transportation, aerospace, and other transportation fields, as well as agricultural machinery,
industrial machinery, medical equipment, and other related machinery industries. The bearing roller
is the main research object of this paper.

Defects inevitably occur on the surface of bearing rollers in the production process. The defects are
mainly distributed on the cylindrical surface, chamfers, and end surfaces. Common defect categories
include: Damage and scratches caused by mechanical collision; corrosion caused by mechanical aging;

and material lacking, at the chamfer, and grind lacking caused in the production process. As can be
seen from Figure 2 below.

() (4) (k) )

Figure 2. Common defects on the bearing roller: (a,b) Scratch; (c—f) damage; (gh) corrosion;
(i,j) material lacking at the chamfer; (k) grind lacking; and (1) stamp lacking.

The main defect categories are as follows:

Scratch, as shown in Figure 2a,b. A defect caused by a roller being scratched by other hard objects.

2. Damage, as shown in Figure 2c—f. We describe defects with large areas and irregular shapes
as damage.

3. Corrosion, as shown in Figure 2g,h. The defects caused by corrosion.

4. Material lacking at the chamfer, as shown in Figure 2i,j. The roller is sunken at the chamfer,
making the contour not a circle.
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5. Grind lacking, as shown in Figure 2k. The defects caused by insufficient grinding.
6.  Stamp lacking, as shown in Figure 21. The defects caused by insufficient stamping.

Figure 2a,c,d,g,ik ] are images of the end surfaces of the roller, and the rest are images of
the cylindrical surface of the roller. These defects have a great influence on the performance and
stability of the bearing and must be detected. Visual inspection is a good solution because it can
reduce a lot of manual detection. At present, visual inspection technology has been used in many
scenarios, such as chip pin and circuit solder inspection [1], workpiece vision measurement [2],
plastic bottle defect detection [3], metal product surface defect detection [4-6], equipment parts
identification and classification [7], gear and bearing surface inspection and measurement [8], bearing
defect inspection [9], optical character recognition [10], and agricultural product identification [11].
Despite being used in large numbers, there are still many problems with visual inspection in the
application of roller surface inspection. In the actual production process, it still relies more on manual
inspection, and the inspection efficiency and level are relatively low.

Traditional methods used in manufacturing, such as edge detection [12,13], segmentation [14],
and line detection [15,16], can hardly extract the internal structures and accurately classify each defect
category. Generally, a defect is regarded as a target without distinction, and the difference in reflection
between the target and the background is used to separate the two, and then judge whether the bearing
roller is qualified according to the position and area of the target. Internal features of defects are not
utilized at all. For this reason, it is easy to treat some textures, marks, oil stains, etc. as defects, resulting
in a low accuracy and low recall rate of the detection process. Sometimes we need to know exactly how
many defect categories exist and calculate the frequency of each defect category in order to properly
adjust the production process. And this is not possible for the traditional surface inspection method
that is used in manufacturing.

The appearance of deep learning makes up for the disadvantages of traditional algorithms.
Since deep learning algorithms have shown state-of-the-art performance in classification and object
detection tasks [17], deep neural networks can be utilized to learn the difference between different
categories of defects, and to learn the commonality between the same category of defect, from a large
amount of data, so that accurate classification can be achieved.

For example, Daniel Weimer et al. explored how convolutional neural network architecture
and different hyper-parameter settings affect the feature extraction in industrial inspection [18].
Yiting Li et al. conducted research on the surface defect detection algorithm based on
MobileNet-SSD, which proved that defect detection can be achieved using lightweight networks [19].
Xian Tao et al. designed a cascaded autoencoder architecture for segmenting and localizing defects [20],
and showed that their method meets the robustness and accuracy requirements for metallic defect
detection. Jinhua Lin et al. used a deep convolution neural network to detect defects on castings.
They established a convolutional neural network to extract defect features from a suspicious area
and, finally, the accuracy of detection was more than 96% [21]. S. Nahavand et al. used intelligent
algorithms to detect defects on a metal surface [22]; Xian Tao et al. developed a machine vision device
to detect defects on an electrical connector using convolutional neural networks, and they discussed
the effects of data augmentation on defect recognition [23]; Yuan et al. used a modified segmentation
method and deep neural networks to detect defects on the cover glass of mobile phones, and used
GAN to generate new data in order to overcome the drawbacks presented when a huge amount of
data is unavailable [24].

This paper introduces a real-time machine vision system for bearing roller surface inspection,
which can classify and locate the major categories of defects occurring on the surface of a bearing roller,
and determine whether each bearing roller is qualified based on the position, category, and area of
the defect. In order to meet industrial requirements, we propose a multi-task convolutional neural
network framework for classifying and locating defects simultaneously. The simplified pipeline lays
the foundation for future industrial applications. The system can replace the manual inspection, and
its performance is better than the traditional algorithms.
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Compared with the existing surface inspection research that is based on deep learning, our method
can achieve real-time performance because we use a multi-task learning strategy. The classification
task is performed simultaneously with the localization task, making the process of the entire model
simpler and more efficient. Our system is an entire surface inspection system for bearing roller defect
detection and quality evaluation, which has industrial application value.

The rest of the paper is organized as follows: Section 2 introduces the design of the visual
inspection system, including the hardware system and software system; Section 3 elaborates on the
defect detection method based on the convolutional neural network; Section 4 gives the implementation
and results of the experiment; and the Section 5 summarizes the whole paper.

2. System Overview

The visual inspection system mainly consisted of two parts: a hardware system and a
software system.

The electrical part of the system was mainly composed of the PLC (Programmable Logic
Controller) and the industrial computer. The PLC implements motion control and digital I/O control.
The industrial computer mainly implements image acquisition, image processing, image analysis, and
output. The hardware of the industrial computer was Intel Core i7-6700k CPU, NVIDIA GTX-1080
GPU, 128GB RAM, and the operating system was Windows 10. The mechanical structure is shown in
Figure 3 below. It mainly consisted of a feeding device, a feeding conveyor, a pushing mechanism,
four cameras, four ring light sources, a strip light source, a cam, a receiving device, etc.

Plane-array Fine=anray
camera camera
Ring light ‘

source Line-array
camera

Ring light Strip light
source ores

Plane-array Conveyor
camera Workplace 1~ Workplace 2 Workplace 3 belt

Figure 3. The surface inspection system.

The bearing roller has two end surfaces and a cylindrical surface, so three workplaces were
required for image acquisition. The conveyor conveyed the rollers to workplace 1, workplace 2, and
workplace 3 in sequence, and triggered the corresponding image acquisition function. At these three
workplaces, we used a total of four industrial cameras. At workplace 1 and workplace 2, the roller
was stationary. We use two plane-array cameras, with a resolution of 2448 x 2050, to capture the two
end surfaces of the roller. At workplace 3, the rollers began to roll under the action of the mechanism.
We used two line-array cameras, with a resolution of 4K, to capture the cylindrical surface. As the
cylindrical surface is the working surface of the bearing roller, we used two line-array cameras to
prevent defects from being missed due to the rolling of the roller. The selection of the cameras was
determined by the working distance and image definition requirements.

Visual inspection has strict requirements on illumination, and stable illumination can ensure the
stability of the image quality. For defect features, it is important to choose a targeted light source.
We set up two ring light sources, a high-angle light source, and a low-angle light source at workplace 1.
The two ring light sources were arranged in front and rear. Since the end surface of the bearing roller
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contains planes and chamfers, it is not possible to illuminate both parts with only one light source,
so we used two light sources to simultaneously illuminate the chamfer and the plane of the roller.
The low-angle light source in front was responsible for illuminating the chamfer, and the high-angle
light source behind was responsible for illuminating the plane. The light source setting at workplace
2 was the same as at workplace 1. At workplace 3, we used a strip light source to illuminate the
cylindrical surface.

The software system was programmed in C# and C++. C# writes the user interface, and C++
implements the underlying algorithm. The defect detection algorithm was developed using the
PyTorch deep learning computing platform. Commonly used image processing algorithms, such as
threshold segmentation and morphological processing, were implemented using OpenCV.

3. Surface Inspection Process

Bearing rollers have two end surfaces and a cylindrical surface. Since the cylindrical surface is
the working surface of the bearing roller, a roller must be judged as unqualified if there are defects on
it. If the defects occur on the outer circumference of the end surfaces, such as material lacking at the
chamfer and stamp lacking, it will also affect the working surface, and the roller must also be judged
as unqualified. For the defects inside the end surfaces, we can calculate the defect area to determine
whether the roller is qualified.

Because the material lacking at the chamfer, represented by Figure 2i,j above, and the stamp
lacking, represented by Figure 21, can be first detected and excluded in the inspection process described
below, our detection algorithm primarily detected and analyzed four categories of defects, which were
damage, scratch, corrosion and grind lacking. Details of these defect categories are shown in Figure 4
below. Defects other than those mentioned above are not discussed because of their low frequency
of occurrence.

(a) (b) (©) (d)
Figure 4. Details of common defect categories: (a) Damage; (b) corrosion; (c) grind lacking; and
(d) scratch.

Image acquisition was performed at a suitable working distance. For each bearing roller, a total
of two images were captured on both end surfaces, and the image was cropped to a resolution of
416 x 416. For the cylindrical surface, of each bearing roller, two images were captured and the
resolution was also 416 x 416 after cropping.

We note that, although the shapes of the same defect category are different, there are similarities
in features that can be extracted and classified by convolutional neural networks. In this section, we
will describe in detail the method for identifying various defects on bearing rollers. The completed
process pipeline is shown in Figure 5 below.

The process consisted of the following three stages: First, contour detection. It is used to determine
if the outer contour of the end surface is a standard circle and exclude the roller with a non-circular
contour. Second, defect detection. It uses a multi-task learning convolutional neural network to classify
and locate defects. Third, roller quality evaluation. It is used to determine whether the bearing roller is
qualified according to the position, category, and area of the defect.
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Figure 5. Surface inspection process. CNN: Convolutional Neural Networks; ROI: Region of Interest.

3.1. Contour Detection

In this part, we fitted the outer contour of the end surfaces of the roller by using the Hough
transform [25]. The pipeline can be seen from Figure 6 below.

Samples Average Hough circle detection Result
Defect
detection
No
Calculate Greater
standard than
deviation threshold
Yes
Failed
Contour extracted

Figure 6. Contour detection process.

We performed the Hough circle detection 10 times for each end surface, and then took the average
of the radius and the average of the center coordinates as the actual radius and center coordinates of
the outer contour of the end surface. Then we used the Canny algorithm to extract the outer contour
and calculated the standard deviation of the distance between the actual center coordinates and all
points on the contour. The formulas were as follows:

10
Xs = ) X

i=1

10
Ys = 421 Ysi

o 1)
rs = Z Tsi

where (x;,5;) and 7,; are the center coordinates and the radius of the i-th circle detected by Hough circle
detection. (xs,ys) and 75 are the actual center coordinates and the actual radius of the outer contour of
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the end surface, d; is the distance between the j-th point on the contour and the coordinate (xs,ys), and
std is the standard deviation of d.

If the std was less than the set threshold (set to 0.4 by experiment), it meant that the outer contour
of the current end surface was a circle, and the sample would be sent into the shared convolutional
neural network to extract a feature map for defect classification and localization. On the contrary, if
there was a defect at the contour of the end surface, and the outer contour was not a circle, then the
bearing roller would be judged as unqualified.

3.2. Features Extraction Using CNN

In this part, we designed a 26-layer convolutional neural network for feature extraction.
The design reference for this network comes from the VGG [26] and the Resnet [27]. Firstly, we used
small convolution kernels, instead of large convolution kernels, in order to reduce the computation
and increase the network depth as well as the nonlinear mapping, so that the model’s data-fitting
ability would be stronger. Secondly, we also used the 1 x 1 convolution kernel to compress parameters
that were output from the 3 x 3 convolution kernel to reduce the computation of the network. Finally,
we referred to Resnet to add shortcuts to the network in order to alleviate the gradient disappearance
during training. The structure is shown in Table 1 below. We pre-trained the network on the ImageNet
dataset [28] to improve the generalization capabilities.

Table 1. Network structure.

Layer Type Kernel Size/Stride Output Size
Convolutional 3x3x32 416 x 416
Max Pooling 2x2 208 x 208
Convolutional Residual 3x 364 X 2 208 x 208
3 x3x64
Max Pooling 2x2 104 x 104
, . [ 3x3x128 ]
Convolutional Residual | 3x3x128 | X 2 104 x 104
Convolutional 3 x3/2,256 52 x 52
. . [1x1x128 ]
Convolutional Residual | 3x3x25 | X 2 52 x 52
Convolutional 3 x3/2,512 26 X 26
. . [ 1x1x256 ]
Convolutional Residual | 3x3x512 | x 3 26 X 26
Convolutional 3 x3/2,1024 13 x 13
. . 1x1x512
Convolutional Residual { 3% 3 x 1024 } 2 13 x 13
Avgpool Softmax Global, 4

3.3. Defect Classification and Localization

We classified the defects and calculated the position of the defects based on the feature map
extracted by the CNN. We used a multi-task CNN architecture to unify classification and localization
in order to simplify the entire inspection process. The loss function of the entire CNN was linearly
weighted by the loss function of the classification task and the loss function of the localization task, as
shown below:

Liotar = Leis + aLioc 2)

where L, is the loss function of the classification task, Lj, is the loss function of the localization task,
and « is the weight of L;,..

3.3.1. Classification

The feature map was extracted by the convolutional neural network, and the dimension of the
feature map was 13 x 13 x 1024. Each position of 13 x 13 represented a specific area in the original
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image. We followed the Single Shot MultiBox Detector (SSD) [29] and Faster R-CNN [30] to associate
6 anchor boxes at each location of the feature map. Each anchor box was responsible for predicting
whether there was a defect at the position or not. If there was a defect, it would then predict the defect
category and calculate the probability of the defect belonging to a certain defect category. In this paper,
there were four categories of defects. The loss function of the classification task was defined as follows:

Lis(x,0) = —§ T xlog(e) ~ 4 T log()
i€Pos icNeg
N exp(cf})
‘T L)

®)

where N is the total number of anchor boxes, i refers to the anchor box index, j refers to the ground-truth
box index, p refers to the category index, and 0 represents the background. xf} = 1 when category p

of i-th anchor box and category p of j-th ground-truth box match, otherwise x!; = 0. ¢! indicates the

)
predicted probability of the category p corresponding to the i-th anchor box.

3.3.2. Localization

If there was a defect in the current position, we calculated the IoU of each anchor box with the
ground-truth box, and removed the anchor boxes whose IoU was smaller than the set threshold by
non-maximum suppression, leaving the anchor box whose IoU was larger than the set threshold.
The boxes left were our predicted boxes. loU was defined as:

_ Area(Gr N Pg)
IoU(Gr, Pg) = Area(Gr U Pp) (4)
where Gr is the ground-truth box and Pg is the predicted box.

Each predicted box contained four predicted values, which were the center coordinates (x, y) of
the box, and the length and width of the box. Through continuous iteration, the loss was gradually
reduced, and the position of the predicted box was constantly approaching the ground-truth box.
The loss function was as follows:

* 1 *
Lige(x,t,t*) = N Z XZng(ti/ tr) %)

i€Pos

where Lyeq is Smooth L1 loss, N is the total number of anchor boxes, and xZ« = 1 when category p of i-th
anchor box and category p of j-th ground-truth box match, otherwise xZ = 0. t; is a four-dimensional
vector that represents the position of the predicted box. ¢ is a four-dimensional vector that represents
the position of the ground-truth box.

ty = (x —Xa)/Wa, ty = (Y —Ya) /ha,
tw =log(w/wa), tp, = (h/ha) ,

ty= (" —xa)/wa,  ty=(Y" —Va) /ha,
b = log(w* /wa), = (h*/hy) ,

(6)

where x, y, denote the box’s center coordinates and w, /1, denote its width and height, respectively.
Variables x, x;, and x* are for the predicted box, anchor box, and ground-truth box, respectively
(likewise for y, w, and h).

3.4. Roller Quality Evaluation

For defects that occured on the cylindrical surface, no matter which kind of defect it was and
what the defect area was, the bearing roller was judged as unqualified. For defects that occurred on
the end surfaces, step 3.1, described above, had already excluded defects, such as material lacking at
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the chamfer and stamp lacking, that caused the outer contour to not be circular in shape. For corrosion,
scratch, damage, and grind lacking defects, the bearing roller was judged based on the defect area.
The defects with bounding boxes were equivalent to the ROIs (Region of Interest), and the ROIs were
analyzed separately using the image processing method. Accordingly, we calculated the defect area on
each end surface separately. The process is shown in Figure 7 below.

ROIs Segmentation Area Calculation X
CNN output Failed
W ‘J
" Corrosion Yes
Total
Area Greater
than
threshold
No
Scratch
. [ ] Passed
Grind lacking

[Where A is the coefficient for different defects|

Figure 7. Roller quality determination process.

Different defects have different impacts on the performance of the roller. Damage has the greatest
impact on the performance, followed by scratch, corrosion, and grind lacking. Our surface inspection
system had different tolerances for different defects and; therefore, we defined four coefficients for
the four defects. When calculating the total defect area, it was necessary to multiply the area of the
different defects by the corresponding coefficient. For damage, scratch, corrosion, and grind lacking,
the coefficients were defined as 3, 1.5, 1, and 0.8, respectively. The coefficients were defined by multiple
experiments based on the inspection effect, and different coefficients could be defined according to
different situations.

After performing median filtering, Otsu thresholding [31], and morphological processing on
the ROIs, defects were segmented from the background, and then we calculated the total area of all
the defects. If the total defect area was greater than the set threshold, which was about 5% of the
end surface area, the bearing roller would be judged as unqualified. The roller would be judged as
qualified only when the defect area of each end surface was smaller than the threshold.

3.5. Data Augmentation

Both classification and localization depend on the CNN model, and the deep CNN model is
easily over-fitting due to its powerful fitting ability, especially when the amount of data is not large.
For bearing rollers, the probability of occurrence of defects is relatively low, and the amount of data
that can be collected is relatively small, so it is necessary to appropriately augment the original data.
We adopted several commonly used augmentation methods, including image rotation, image flipping,
image cropping, adding blur, and adding noise. The augmentation results are shown in Figure 8 below.
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Figure 8. Data augmentation: (a) Original image; (b) rotation; (c) image flipping; (d) center cropping;
(e) adding blur, and (f) adding gaussian noise.

4. Experiment
4.1. Experimental Configuration

4.1.1. Dataset Description

Our dataset was collected from the bearing rollers with different sizes on the production line.
There were 3200 images in the dataset. There were one or more defects on each sample. The specific
quantities are shown in Table 2 below. The images were down sampled to match the input size of
416 x 416. We shuffled the data and then divided the data into three parts: 70%, as the training set;
15%, as the validation set; and 15%, as the test set. We made sure that all three parts of the dataset
had the same data distribution by way of shuffling. The training set was used for model training,
the validation set was used for selecting the model hyper-parameters, and the test set was used for
evaluating the model performance. The training set, validation set, and the test set were strictly
labeled manually.

Table 2. Defect data statistics.

Defect Categories  Training Set  Validation Set Test Set Total
Damage 692 145 149 986
Grind lacking 492 108 107 707
Corrosion 630 138 136 904
Scratches 620 132 137 889

4.1.2. Evaluation Indicators

In the following experiments, we quantitatively evaluated the performance of the defect detection
algorithm and the performance of the entire surface inspection system. For the defect detection
algorithm, we used mAP (Mean Average Precision) to evaluate its performance, and we used detection
time to evaluate the efficiency of the algorithm. We also compared the multi-class classification
performance of our algorithm and the pattern recognition algorithms, and we used the micro F1 score
to evaluate the performance of the different methods. For the entire surface inspection system, we used
the F1 score to evaluate its performance. The formulas for calculating the F1 score were as follows:
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TP

precision = TP+EP
- _TIP
recall = 75y %
F1 score — 2x precision xrecall

precision+recall

where TP represents the number of positive samples that are judged to be positive samples, FP
represents the number of negative samples that are judged to be positive samples, and FN represents
the number of positive samples that are judged to be negative samples. The formulas for calculating
the micro F1 score were as follows:

. " TP
Micro_ P = <&t hi
- Y TP+yr FP,

) " TP,
Micro R = —xi=t TP (8)
— T TPty FN;

2x Micro_Px Micro_R
Micro_P+Micro_R

Micro_F1_score =

where i represents the i-th category of defect, TP represents the number of positive samples that
are judged to be positive samples, FP represents the number of negative samples that are judged
to be positive samples, and FN represents the number of positive samples that are judged to be
negative samples.

4.2. Performance of the Defect Detection Algorithm under Different Settings

The defect detection results are shown in Figure 9 below. The red box belongs to damage, the
green box belongs to scratch, the yellow box belongs to grind lacking, and the blue box belongs to
corrosion. The category of the defect and the probability are displayed above the box.

(a) (b) (c)

Figure 9. Cont.
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® (h) )

Figure 9. Defect detection results: (a) Corrosion and damage; (b) grind lacking and damage;
(c,d) corrosion; (e) grind lacking; (f) scratch; (g,h) damage; (i) damage and scratch. The red box
belongs to damage, the green box belongs to scratch, the yellow box belongs to grind lacking, and the
blue box belongs to corrosion.

4.2.1. Influence of Different « on Performance

We used cross-validation to select the appropriate «. Table 3 gives the results of the task under
different «. It can be seen from the table that the best score was achieved when « = 1.05.

Table 3. Influence of « on performance.

[0 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
mAP (%) 80.65 81.21 82.02 83.19 83.68 84.24 83.25 82.42 81.97

The AP (Average Precision) of each category when o = 1.05 is shown in Table 4:

Table 4. AP of each defect category.

Defect Categories Damage Corrosion  Grind Lacking Scratch
AP (%) 82.85 84.18 85.07 84.86

The detection results of different o are shown in Figure 10 below. The yellow boxes represent the
ground-truth label. The Figure only shows the detection results when « = 0.8, « = 0.9, « = 1.05, and
o =1.2. It can be seen from the Figure that when « = 0.8, « = 0.9, and « = 1.2, the detection results
deviated from the ground-truth label, especially when « = 0.8, and the result was more accurate when
o =1.05.
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(d)
Figure 10. Detection results under different o: (a) x = 0.8; (b) x = 0.9; (¢) o« = 1.05; and (d) x = 1.2.

4.2.2. Influence of Data Augmentation on Performance

We used a variety of data augmentation strategies and ended up using the following methods to
get the best results:

Each sample had a 20% chance of performing a specified angular rotation (60°, 120°, 180°, 240°,
and 300°), with a 50% chance of flipping, a 5% chance of adding gaussian noise, a 5% chance to add
blur, and a 30% chance of performing center cropping. The results are shown in Table 5 below.

Table 5. Influence of data augmentation on performance.

Augmentation mAP (%)
No augmentation 74.41
Rotation + flipping + center cropping 82.07
Rotation + flipping + center cropping + add noise 83.62
Rotation + flipping + center cropping + blur 83.44
Rotation + flipping + center cropping + add noise + blur 84.18

When using the best data augmentation method, the APs for each defect category are shown in
Table 6 below.

Table 6. AP of each defect category.

Defect Categories Damage Corrosion  Grind Lacking Scratch

AP (%) 81.92 84.23 84.75 85.02

4.2.3. Influence of Different Resolutions on Performance

We compared the influence of different resolutions on the detection performance. The results are
shown in Table 7 below.
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Table 7. Influence of different resolutions on performance.

Resolution mAP(%) Detection Time
288 x 288 74.06 13.9 ms
320 x 320 77.25 16.9 ms
352 x 352 79.79 21.7 ms
384 x 384 82.14 25.6 ms
416 x 416 84.89 29.4 ms

It can be seen from the results that increasing the resolution had a significant impact on the
mAP and detection time. As the resolution increased, the mAP increased but the detection time
decreased. That was because the increase in resolution lead to an increase in computation. Therefore,
it is necessary to select an appropriate resolution according to actual needs.

4.2.4. Influence of Model Pre-Training on Performance

Inspired by transfer learning [32-35], we pre-trained our CNN model on the ImageNet data set
and compared the same model without pre-training. The results are shown in Table 8 below.

Table 8. Influence of model pre-training on performance.

Pre-Trained Not Pre-Trained
mAP (%) 84.42 76.78

It can be concluded from the results that the pre-trained model had a better generalization ability
and had a positive effect on improving the mAP.

4.2.5. Influence of Different Base Networks on Performance

We compared our network with Resnet-50, VGG-19, and MobileNet [36]. The results are shown
in Table 9 below, and the detection results are shown in Figure 10 below.

Table 9. Influence of different base networks on performance.

Base networks Resnet-50 VGG-19 MobileNet Our CNN Model

mAP (%) 85.65 83.86 78.45 84.19
Detection Time 83.3 ms 142.9 ms 11.2ms 28.6 ms

As can be seen from the table, the best mAP was achieved using Resnet-50, but processing an
image was more time consuming. VGG-19 achieved a mAP of 83.86% but took even longer to process
a single image. MobileNet had a fairly high processing efficiency, but the mAP was the lowest among
all the base networks. Our network achieved a better balance between the mAP and data processing
efficiency due to less parameters and computation. Our mAP was close to that of using Resnet-50, and
the detection time had a great advantage compared with Resnet-50 and VGG-19.

It can be seen from Figure 11 below that the detection results using MobileNet deviated from
the ground-truth label the most. Using our CNN model, the Resnet-50, or the VGG-19 as the feature
extractor was more accurate.
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(d)

Figure 11. Detection results under different base networks: (a) Resnet-50; (b) VGG-19; (c) MobileNet;
and (d) our CNN model.

4.2.6. Influence of Different Factors on Performance

We summarized all the influencing factors, as shown in Table 10 below. We got the best results
when using more image augmentation, higher resolution, and the pre-trained model.

Table 10. Summary of influencing factors.

Defect Detection Network

More

augmentation v v v v
High resolution 4 Vv Vv Vv
Pre-trained
network v v v v
mAP(%) 67.18 6945 6584 7617 7408 73.69 84.49

4.3. Comparison between Pattern Recognition Methods and Our Method

To evaluate the performance of the classification module of our method, we compared the
accuracy of the defect classification between our method and traditional methods whose codes are
publicly available. (1) GLCM (Grey-Level Co-Occurrence Matrices) [37]: The GLCM feature refers
to a common method of describing texture features by studying the spatial correlation properties of
grayscale, and the texture features are a combination of energy, contrast, entropy, and correlation.
(2) HOG (Histogram of Oriented Gradients) [38]: The HOG feature is a feature descriptor used for
object detection in image processing. The algorithm first divided the image into small connected
regions, which we call cell units. Then we collected the gradient or edge direction of each pixel in the
cell unit to get a histogram. Finally, these histograms were combined to form a feature descriptor.

After obtaining the features described above, we used the SVM (Support Vector Machine) and
the MLP (Multi-layer Perceptron) to classify the features. The MLP consisted of a two-layer neural
network, a hidden layer, and an output layer. The hidden layer had 15 hidden units and the output
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layer had 4 output units. We evaluated the performance of the defect classifier quantitatively using the
micro F1 score. The micro F1 score was introduced in Section 4.1.2.

The results are shown in the Table 11. It can be seen from the Table that the traditional method
could only achieve a micro F1 score of about 70, whereas our method achieved a score of over 90 in the
classification task. That was because we used deep convolutional neural networks to learn the internal
features of the defects, which had a positive impact on the classification task.

Table 11. Performance of classification using different methods.

Method Micro F1 Score
GLCM + MLP 75.53
GLCM + SVM 70.83

HOG + MLP 72.29
HOG + SVM 69.44
Our method 90.97

4.4. Performance of the Surface Inspection System

As the detection of a defect does not mean that a bearing roller fails, it is necessary to determine
whether the roller is qualified according to the category, position, and area of the defect. In the following
experiments, we inspected three different sized bearing rollers. We used the F1 score to evaluate the
performance of the entire bearing roller surface inspection system. We obtained 1800 bearing rollers
from the production line by manual screening, 600 for each size, including 300 qualified products
(positive) and 300 unqualified products (negative). Then we used our surface inspection system to test
these bearing rollers, and checked the precision and recall rate to calculate the F1 score. The F1 score
was introduced in Section 4.1.2.

To evaluate the actual performance of our surface inspection system, we compared our approach
to the traditional method currently being used in the production line. The traditional method captured
the images and adjusted the resolution to 500 x 500, then it performed median filtering and divided the
ROIs on the image, and then it performed threshold segmentation [39] and morphological processing in
the ROIs to segment the defects. After the segmentation, defects were separated from the background.
Finally, the traditional method determined whether the bearing roller was qualified by calculating
whether the area of the defect exceeded the set threshold. The results of the comparison experiment
are shown in Table 12 below.

Table 12. Comparison between the traditional method and our method.

Method Traditional Method Our Method
Diameter (mm) 10 12 15 10 12 15
Precision (%) 86.70 86.94 86.40 92.81 92.67 92.59
Recall (%) 81.38 81.56 80.85 90.64 90.21 90.08
F1 score 83.96 84.16 83.53 91.71 91.42 91.32
Detection time 1.98s 2.07s 2.16s 2.00s 2.08s 2.16s

It can be seen from the results that the accuracy and recall rate of the traditional method, which
was currently being used in the manufacturing, were lower than our method; the recall rate especially
was very low. The main reason for this is that traditional methods can easily misjudge some non-defects
(e.g., textures, oil stains, marks, etc.) as defects, so that some qualified products will be misjudged
as unqualified, resulting in a low precision and a low recall rate. The recall rate and accuracy of our
method were relatively higher because our method classifies defects well.
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5. Conclusions

In this paper, we proposed a machine vision system for bearing roller surface inspection. In order
to control the quality of the product, a multi-task convolutional neural network was designed to detect
the defects. The features of the defects were extracted through the shared convolutional neural network,
and then the defects were classified and the position of the defects were calculated simultaneously.
Finally, we determined if the bearing roller was qualified base on the position, category, and area
of the defects. We conducted a large number of experiments, and compared our method with the
traditional surface inspection methods used in manufacturing. The quantitative experimental results
showed that our method was superior in accuracy and robustness, and meet the requirements of
industrial manufacturing.

The limitation of our proposed approach is that deep learning requires a large amount of labeled
data and depends on the performance of the hardware. In the future, we will continue to optimize the
algorithm and network structure to reduce the computational cost and, thus, allow them to be truly
widely used in industrial manufacturing. And we will try to use semi-supervised learning or GAN
(Generative Adversarial Networks) to generate new data to solve the problem of insufficient data.
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