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Featured Application: The proposed control methodology could be applied to not only the joint
position tracking control for industrial robotic manipulators such as serial, parallel robots, and
an electrohydraulic series elastic manipulator, but also other mechanical systems that belong to
the class of general nonlinear second-order system. For example, it could be applied for the
stabilization or trajectory tracking of mechanical systems as a piezo positioning stage, magnetic
levitation systems, or for the chaos control, synchronization, and anti-synchronization of chaotic
complex systems.

Abstract: In this study, a robust control strategy is suggested for industrial robotic manipulators. First,
to minimize the effects of disturbances and dynamic uncertainties, while achieving faster response
times and removing the singularity problem, a nonsingular fast terminal sliding function is proposed.
Second, to achieve the proposed tracking trajectory and chattering phenomenon elimination, a robust
control strategy is designed for the robotic manipulator based on the proposed sliding function
and a continuous adaptive control law. Furthermore, the dynamical model of the robotic system
is estimated by applying a radial basis function neural network. Thanks to those techniques, the
proposed system can operate free of an exact robotic model. The suggested system provides high
tracking accuracy, robustness, and fast response with minimal positional errors compared to other
control strategies. Proof of the robustness and stability of the suggested system has been verified
by the Lyapunov theory. In simulation analyses, the simulated results present the effectiveness
of the suggested strategy for the joint position tracking control of a 3-degree of freedom (3-DOF)
PUMA560 robot.

Keywords: non-singular fast-terminal sliding-mode control; industrial robotic manipulator; external
disturbance; dynamic uncertainty; adaptive control law

1. Introduction

Literature regarding robotic manipulators has introduced many control systems focused on
achieving high performance against various uncertainties, including external noise. These control
methods were derived to fundamentally control the motion of robot manipulators, and
include the proportional-derivative (PD) controller [1], nonlinear PD controller [2], and the
proportional-integral-derivative (PID) controller [3,4]. The advantages of the cited control systems
were to provide a simple and basic approach to implementation, as they do not require an exact
dynamic model. However, these systems could not obtain the desired performance in the presence of
disturbances and dynamic uncertainties. Several advanced control approaches have been proposed to
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advance system performance, such as the fuzzy controller [5–7] and neural network controller [8–10],
but they demand complicated calculations, and the effectiveness of each solution still has several
limitations. The control scheme design strategy is based on the robot dynamic model, where the whole
dynamic model is computed and compensated explicitly to achieve the desired performance. Therefore,
other enhanced methods were suggested to improve the motion tracking for robot manipulators,
including a computed torque controller (CTC) [11,12], adaptive controller [13–15], and sliding mode
controller (SMC) [16–20]. Among those controllers, SMC has been confirmed to offer high robustness
against uncertainties and disturbances for nonlinear systems. Therefore, the SMC has been widely
applied in real applications [16–20]. However, the traditional SMC still possesses drawbacks such as
requiring an exact dynamic model, singularity problems, a chattering phenomenon, and finite-time
convergence. Some research efforts have focused on overcoming these disadvantages. For the system
states to approach the sliding variable within a finite-time, the use of the terminal sliding mode
control (TSMC), based on the nonlinear sliding surface, has been reported in the literature [13,21–23].
Nonetheless, the TSMC convergence time is slow when compared to the conventional SMC, and still
contains a singularity glitch. To solve convergence time and singularity issues, several fast TSMC
(FTSMC) [24–26] and nonsingular TSMC (NTSMC) [27–29] approaches have been proposed. Practically,
private algorithms, such as FTSMC or NTSMC, have only treated an individual weakness or failed to
solve the other disadvantages of the classical SMC. Consequently, the nonsingular fast TSMC (NFTSMC)
has been introduced [30–34]. Here, NFTSMC can solve many disadvantages of the classical SMC or other
control algorithms based on TSMC. However, chattering behavior has not been removed by applying
a high-frequency switching control law to the control input of the above methods, which include
TSMC, FTSMC, NTSMC, and NFTSMC. Therefore, some effective techniques have been introduced to
handle this topic by application of the saturation function (refer to [35]), full-order sliding mode control
(FOSMC) [36,37], or high-order sliding mode control (HOSMC) [35,38].

One of the main tasks in the design of a control method based on SMC or TSMC is to develop
an exact dynamic model of the robot manipulator, which one does not readily know in advance for
real robot systems. To estimate this unknown dynamic model, several computing approaches have
been proposed such as neural networks [39–41] and fuzzy logic systems [42–44] due to their universal
approximation capabilities.

While each disadvantage of the classical SMC and TSMC has been treated individually, this report
focuses on simultaneous resolution of the disadvantages of SMC and TSMC, including the requirement
for an exact dynamic model, as well as the presence of a singularity problem, chattering phenomenon,
and finite-time convergence.

Consequently, the goal of this research is to develop a robust control strategy for robotic
manipulators based on an adaptive neural non-singular fast-terminal sliding-mode control
(ANNFTSMC) scheme. The main advantages of the suggested control strategy include:

• The inheritance of NFTSMC advantages in terms of non-singularity, finite-time convergence, fast
transient response, low steady-state errors, and high position tracking accuracy.

• The achievement of smooth control inputs with chattering behavior elimination.
• The removal of demand for an exact dynamic model by applying an adaptive radial basis function

neural network to approximate an unknown robot function.
• Better tracking performance and less impact by disturbances and uncertainties compared to

classic SMC and other control methods based on TSMC.
• Improved robustness and stability of the robot system, as demonstrated by Lyapunov theory.

The remainder of the report is structured as follows. Following the introduction, the problem
statements are presented, succeeded by the design approach for the proposed control strategy, where
the proposed strategy is utilized to allow joint position tracking control simulation for a 3-degree of
freedom (3-DOF) robot manipulator. Here, its tracking performance is compared with SMC and TSMC
to analyze the effectiveness of the proposed control strategy. Finally, conclusions are presented.
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2. Problem Statements

2.1. Radial Basis Function Neural Network

Previous research on the universal approximation theory proved that any nonlinear function over
a compact set with arbitrary accuracy can be approximated by the radial basis function neural network
(RBFNN). Here, RBFNNs have several advantages, including ease of design, good generalization,
strong tolerance to input noise, and online learning ability. Compared with a multiplayer neural
network, an RBFNN is simpler and converges faster. An RBFNN includes three layers: the input layer,
hidden layer, and output layer, all of which are expressed in Figure 1.

Figure 1. Structure of radial basis function neural network.

The output of the RBFNN can be computed as

H(υ) = φTΨ(υ) + ξ(υ) (1)

where υ ∈ Rn and H(υ) are the neural network input and output, respectively. Here, φT ∈ Rn×m is the
weight matrix connecting the hidden layer and the output layer, Ψ(υ) is the nonlinear function of the
hidden nodes, and ξ(υ) ∈ Rn is an approximation error of the neural network (NN).

A Gaussian fit is selected for the nonlinear function as follows:

Ψ(υ) = exp

(
−(υ− µl)

T(υ− µl)

δ2
l

)
, l = 1, 2, . . . , m, (2)

where δ and µ correspond to the width and center of the Gaussian function, respectively.

2.2. Dynamic Model of the Robot Manipulator

For an n-link rigid robotic manipulator, the dynamic model can be described as (refer to [45,46])

M(q)
..
q + Cm

(
q,

.
q
) .
q + G(q) + Fr

( .
q
)
+ τd(t) = τ(t), (3)

where q,
.
q and

..
q ∈ Rn correspond to the position, velocity, and acceleration of the robot manipulator,

respectively. Additionally, M(q) ∈ Rn×n is the invertible inertia matrix, Cm
(
q,

.
q
)
∈ Rn×1 is the matrix

from the centrifugal force and Coriolis, G(q) ∈ Rn×1 is the gravitational force matrix, Fr
( .
q
)
∈ Rn×1



Appl. Sci. 2018, 8, 2562 4 of 17

denotes the friction matrix, τ(t) ∈ Rn×1 is the designed actuation input of actuators, and τd(t) ∈ Rn×1

is a load disturbance matrix.
To simplify the approach and analysis, Equation (3) is given as

..
q = Ξ

(
q,

.
q
)
+ B(q)τ(t) + ∆u

(
q,

.
q, t
)
. (4)

where Ξ
(
q,

.
q
)
= M−1(q)

[
−Cm

(
q,

.
q
) .
q− G(q)

]
is the nominal dynamic model of the robot manipulator

without perturbations and uncertainties, ∆u
(
q,

.
q, t
)

= M−1(q)
[
−Fr

( .
q
)
− τd(t)

]
represents the

unknown perturbation and uncertainty terms, and B(q) = M−1(q).
The hypothesis here is that the control variables will follow the desired trajectory, with high

performance, in finite-time under a robust control strategy. In this case, the proposed system does not
need an exact robotic model.

The following assumptions are crucial for the design approach.

Assumption 1. The inertia matrix M(q), is an invertible, positive definite, and symmetric matrix that adheres
to the bounded condition,

θ1 ≤ M(q) ≤ θ2, (5)

where θ1 and θ2 represent positive constants.

Assumption 2. The unknown perturbations, uncertainties, and approximation errors of NN have an
upper-bound satisfying the following relation,∣∣∆u

(
q,

.
q, t
)∣∣ ≤ Ω, (6)

where Ω is an unknown positive constant.

3. Design Procedure for a Control Strategy

In this section, a new control strategy is suggested for a robot manipulator using Equation (3),
which is described by the two following main tasks.

3.1. Design Non-Singular Fast-Terminal Sliding Variable

Based on the TSMC design approach, a state variable termed as the NFTSM variable was
previously designed, where the novel NFTSM variables are proposed from the tracking positional
error as

si =
.
ςi + h1isign[ςi] + h2iς

[αi ]
i , (7)

where h1i, h2i are positive values, αi > 1, and the variable ςi is selected as

ςi = ei +

t∫
0

(
Γ1iei

[2−ϑi ] + Γ2iei + Γ3iei
[ϑi ]
)

dσ, (8)

where ei = qi − qir (i = 1, 2, . . . , n) is the tracking positional error, qir is described as the desired path
value, ςi is the sliding surface variable, Γ1i, Γ2i, Γ3i are positive coefficients satisfying the relation
4Γ1iΓ3i > Γ2

2i, 0 < ϑi < 1 (i = 1, 2, . . . , n) and ei
[ϑi ] is as described in [47]

ei
[ϑi ] = |ei|ϑi sign[ei]. (9)

Remark 1. Once the tracking positional error |ei| is much greater than 1, Γ1iei
[2−ϑi ] + Γ2iei contributes to the

task by offering a fast convergence. While the tracking positional error |ei| is much smaller than 1, Γ3iei
[ϑi ]

contributes by producing finite time convergence.



Appl. Sci. 2018, 8, 2562 5 of 17

According to the SMC manner, once the state variable proceeds in sliding mode, the following
constraints are imposed (refer to [16–20]):

si = 0 and
.
ςi = 0, (10)

ςi = 0 and
.
ςi = 0. (11)

Combining Equation (10) constraints with Equation (7) yields

.
ςi = −h1isign[ςi]− h2iς

[αi ]
i , (12)

and combining Equation (11) constraints with Equation (8) gives

.
ei = −Γ1iei

[2−ϑi ] − Γ2iei − Γ3iei
[ϑi ]. (13)

It must be proved that once the second-order sliding motion takes place, i.e., si = 0, the first-order
sliding motion takes place in finite-time, i.e., ςi = 0, and the state variable system of Equation (13)
reaches zero in finite-time. The following theorems have been established for this proof.

Theorem 1. Consider the dynamic system shown in Equation (12). The original point ςi = 0 is globally balanced
in finite-time and the state variable of the system (10) converges to zero in finite-time Tsi ≤ ς2

i (0)/
√

2h1i.

Proof. The positive-definite Lyapunov functional is investigated as

V1 =
ς2

i
2

. (14)

With Equation (12), the time derivative of Equation (14) is computed as

.
V1 = ςi

(
−h1isign[ςi]− h2iς

[αi ]
i

)
= −h1i|si| − h2is

[αi+1]
i

≤ −h1i|si|
= −
√

2h1iV
1/2
1

. (15)

It can be seen that (15) has the form
.

V1 +
√

2h1iV
1/2
1 ≤ 0. Therefore, the defined finite-time is

given by [48]:

Tsi ≤
ς2

i (0)√
2h1i

. (16)

This completes the proof. �

Theorem 2. Consider the dynamic system (13). The original point ei = 0 consists of globally balanced points
in finite-time and the state variable of the system (13) as it converges to zero in finite-time Tei ≤ T f

ei . T f
ei is

defined as

T f
ei =

2
(1− ϑi)

π

2
− tan−1 Γ2i√

4Γ1iΓ3i − Γ2
2i

 1√
4Γ1iΓ3i − Γ2

2i

. (17)

Proof. The Lyapunov function candidate is investigated as

V2 = ei
2. (18)
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With Equation (13), the time derivative of Equation (18) is calculated as

.
V2 = 2ei

.
ei

= 2ei

(
−Γ1iei

[2−ϑi ] − Γ2iei − Γ3iei
[ϑi ]
)

= 2
(
−Γ1iei

[3−ϑi ] − Γ2iei
2 − Γ3iei

[1+ϑi ]
)

= 2
(
−Γ1iV

(3−ϑi)/2
2 − Γ2iV2 − Γ3iV

(ϑi+1)/2
2

) . (19)

�

To arrive at a conclusion from Equation (19), the following Lemma is used.

Lemma 1. [49]: For any real numbers z1 > 0, z2 > 0, and 0 < ϕ < 1, an extended Lyapunov function
condition of finite-time stability can be given in the form of a fast-terminal sliding mode as

.
L(x) + z1L(x) +

z2Lϕ(x) ≤ 0, where the settling time can be estimated by

T ≤ 1
z1(1− ϕ)

ln
z1L1−ϕ(x(0)) + z2

z2
. (20)

From Equation (19), ϑi + 1/2 < 1 indicates that
.

V2 ≤ 0. Based on Lemma 1, the original point ei = 0
is a globally balanced point in finite-time. In the next step, proof that the error state variable of the
system (13) converges to zero in finite-time will be given.

Equation (19) can be shown as

.
V2 = 2V(ϑi+1)/2

2

(
−Γ1iV

1−ϑi
2 − Γ2iV

(1−ϑi)/2
2 − Γ3i

)
. (21)

Equation (21) can be expressed as

dV2 = 2V(ϑi+1)/2
2

(
−Γ1iV

1−ϑi
2 − Γ2iV

(1−ϑi)/2
2 − Γ3i

)
dt

⇒ dt = − dV2

2V
(ϑi+1)/2
2

(
Γ1iV

1−ϑi
2 +Γ2iV

(1−ϑi)/2
2 +Γ3i

)
= − 1

1−ϑi

dV
(1−ϑi)/2
2(

Γ1iV
1−ϑi
2 +Γ2iV

(1−ϑi)/2
2 +Γ3i

)
. (22)

Setting V2(Tei ) = 0 and taking the integral of Equation (22) during the time period where
0→ Tei gives

Tei =
2

(1− ϑi)

1√
4Γ1iΓ3i − Γ2

2i

tan−1 2Γ1iV
(1−ϑi)/2
2 (ei(0))√
4Γ1iΓ3i − Γ2

2i

− tan−1 Γ2i√
4Γ1iΓ3i − Γ2

2i

. (23)

It can be seen that Tei is limited by T f
ei = 2

(1−ϑi)

(
π
2 − tan−1 Γ2i√

4Γ1iΓ3i−Γ2
2i

)
1√

4Γ1iΓ3i−Γ2
2i

. In fact,

V2(Tei ) = 0 means ei(Tei ) = 0. In addition, it can be seen that the upper-bound of T f
ei is only dependent

on the design constants, as Γ1i, Γ2i, Γ3i, ϑi and the tracking positional error in Equation (13) approach
zero in finite-time. Therefore, the proof of Theorem 2 is complete.

The proposed control strategy forces the error state variables to reach sliding variables in finite
time, as will be presented next.
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3.2. Design an Adaptive Neural Non-Singular Fast-Terminal Sliding-Mode Control for Robotic Manipulators

To achieve the desired control performance for the system in Equation (3), the control method is
performed as follow:

Substituting Equation (8) into Equation (7) provides

s =
.
e + Γ1e[2In−ϑ] + Γ2e + Γ3e[ϑ] + h1sign[ς] + h2ς[α], (24)

where s =
[

s1, . . . , sn

]T
, In is the unit matrix, ϑ = diag(ϑ1, · · · , ϑn), α = diag(α1, · · · , αn), Γ1 =

diag(Γ11, · · · , Γ1n), Γ2 = diag(Γ21, · · · , Γ2n), Γ3 = diag(Γ31, Γ32, · · · , Γ3n), h1 = diag(h11, · · · , h3n),

h2 = diag(h21, · · · , h2n), sign[ς] =
[

sign[ς1], . . . , sign[ςn]
]T

, e = [e1, . . . , en]
T. e[2In−ϑ], e[ϑ], and

ς[α] are vectors defined as

e[ϑ] = diag(sign[e]) · |e|ϑ =
[

e[ϑ1]
1 , e[ϑ2]

2 , · · · , e[ϑn ]
n

]T
. (25)

To simplify the analysis, the following notion is applied

de[ϑ]

dt
= ϑdiag

(
|e|ϑ−In

)
· .

e. (26)

Using Equation (26), the time derivative of Equation (24) is derived as

.
s =

..
e + Γ1(2In − ϑ)diag

(
|e|In−ϑ

) .
e + Γ2

.
e + Γ3ϑdiag

(
|e|ϑ−In

) .
e + h2αdiag

(
|ς|α−In

) .
ς. (27)

From Equation (4),
..
e is presented as

..
e =

..
q− ..

qd
= Ξ

(
q,

.
q
)
+ B(q)τ(t) + ∆u

(
q,

.
q, t
)
− ..

qd
. (28)

Substituting Equation (28) into Equation (27) gives

.
s = Ξ

(
q,

.
q
)
+ B(q)τ(t) + ∆u

(
q,

.
q, t
)
− ..

qd + Π(e, ς), (29)

where Π(e, ς) = Γ1(2In − ϑ)diag
(
|e|In−ϑ

) .
e + Γ2

.
e + Γ3ϑdiag

(
|e|ϑ−In

) .
e + h2αdiag

(
|ς|α−In

) .
ς.

To obtain the desired performance, the proposed control algorithm is designed for system (3) as

τ(t) = B+(q)
(
τeq(t) + τs(t)

)
, (30)

where B+(q) = BT(q)
[
B(q)BT(q)

]−1, the equivalent control law is constructed as

τeq(t) = −
(
Ξ
(
q,

.
q
)
+ Π(e, ς)− ..

qd
)
, (31)

and the switching control term is designed as

τs = −(Ω + ρ1)sign(s) (32)

in which Ω and ρ1 are positive constants.
Substituting control laws (30)–(32) into Equation (29) provides

.
s = −(Ω + ρ1)sign(s) + ∆u

(
q,

.
q, t
)
. (33)

The positive-definite Lyapunov functional is selected as
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V3 =
1
2

sTs. (34)

With Equation (33), the time derivative of Equation (34) is derived as

.
V3 = sT .

s
= sT(−(Ω + ρ1)sign(s) + ∆u

(
q,

.
q, t
))

= −Ω|s| − ρ1|s|+ ∆u
(
q,

.
q, t
)
s ≤ −ρ1|s|

. (35)

Accordingly, based on the Lyapunov criterion [47], it can be verified that the stability of the
tracking error is secured under control laws (30)–(32) despite the presence of external disturbances
and system uncertainties.

Unfortunately, robot manipulators have complicated dynamic models with many parametric
uncertainties (e.g., friction, sensor noise, payload, perturbations). Therefore, it is not trivial to
precisely calculate the uncertainty upper-bounds and provide an exact robot dynamic function in the
equivalent control law. To overcome these difficulties, a robust control strategy will be constructed
for robotic manipulators based on an adaptive neural non-singular fast terminal sliding mode control
(ANNFTSMC) scheme. Here, an adaptive radial basis function neural network will be utilized to
approximate an unknown robot function, while an adaptive law will be used to estimate the uncertainty
upper bounds and estimated error of the NN. In this report, RBFNN is used to approximate the
dynamic robot model as follows:

f(x) = Ξ
(
q,

.
q
)
, (36)

where x = [x1, x2]
T , assign x1 = q, and x2 =

.
q.

Define f̂(x) as an approximated function of f(x), f̂(x) can be described by an NN, as follows

f̂(x) = φ̂TΨ(x). (37)

Here, φ̂ is the adaptable parameter vector.
The optimal parameter φ∗ can be described, as follows:

φ∗H = argmin

{
sup
x∈Θx

∣∣∣f(x)− f̂
(
x, φ̂
)∣∣∣}. (38)

Accordingly, RBFNN (37) can exactly approximate the arbitrary value of f(x) which is given by
the following Lemma.

Lemma 2. For any given real continuous function f(X) on the compact set ΘX ∈ Rn and arbitrary positive
coefficient ξ > 0, there is a neural approximator existence f̂(X) that possesses a similar form as Equation (37),
such that

sup
X∈ΘX

∣∣∣f(X)− f̂
(
X, φ̂

)∣∣∣ < ξ. (39)

Therefore, the robot dynamic model can be described as

..
q = φ∗TΨ(x) + B(q)τ(t) + W, (40)

where W =∆u
(
q,

.
q, t
)
+ ξ is the lumper uncertainty, including disturbances, dynamic uncertainties,

and NN approximation error. In this step, the lumper uncertainty is assumed to be bounded by an
unknown positive constant, |W| ≤ Φ.

The proposed control law as depicted in Figure 2 is designed as follows:

τ(t) = B+(q)
(
τeq(t) + τas(t)

)
. (41)
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Figure 2. Block diagram of the proposed control method. RBR = radial basis function; NFTSM =
nonsingular fast terminal sliding mode control.

Here, the equivalent control law is constructed as

τeq(t) = −
(

φ̂TΨ(x) + Π(e, ς)− ..
qd

)
, (42)

and τas(t) is an adaptive control term for replacing the control law τs(t) in Equation (32), describing
τas(t) as

τas = −
(
Φ̂ + ρ1

)
sign(s), (43)

and the adaptive updating rules are given as

.
Φ̂ =

1
γ
|s|, (44)

.
φ̂ =

1
ω

sΨ(x), (45)

where Φ̂ is the estimated value of the design parameter Φ, ρ1 is a positive constant, and γ, ω indicate
the adaptive gains.

The control design approach for the robot system is summarized in Theorem 3 below.

Theorem 3. For the system (3), if the suitable NFTSM variables have been selected as (7) and (8) and the control
input signal is constructed as (41)–(43) with its parameter updating rules designed as (44) and (45), then the
sliding variable motion is a certainty, and the tracking error variables converge to zero.

Proof. Define the adaptive estimation error and NN weight approximation error, respectively,
as follows

Φ̃ = Φ̂−Φ, (46)

φ̃ = φ∗ − φ̂. (47)

�
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The time derivative of the sliding surface in Equation (29) is rewritten as

.
s = φ∗Ψ(x) + B(q)τ(t) + W − ..

qd + Π(e, ς). (48)

Substituting control laws (41)–(43) into Equation (48) provides

.
s = φ̃TΨ(x)−

(
Φ̂ + ρ1

)
sign(s) + W. (49)

The positive-definite Lyapunov functional is selected as

V4 =
sTs
2

+
γΦ̃TΦ̃

2
+

ωφ̃T φ̃

2
. (50)

With the result of Equation (49), the time derivative of Equation (50) is derived as

.
V4 = sT .

s + γΦ̃T
.

Φ̃−ωφ̃T
.
φ̂

= sT(φ̃TΨ(x)−
(
Φ̂ + ρ1

)
sign(s) + W

)
+ γ

(
Φ̂−Φ

) .
Φ̂−ωφ̃T

.
φ̂

= sT φ̃TΨ(x)− Φ̂|s| − ρ1|s|+ Ws + γ
(
Φ̂−Φ

) .
Φ̂−ωφ̃T

.
φ̂

. (51)

Applying the updating laws (41)–(43) to (51) yields

.
V4 = −Φ̂|s| − ρ1|s|+ Φs +

(
Φ̂−Φ

)
|s|

= −ρ1|s|+ Ws−Φ|s|
≤ −ρ1|s|

. (52)

If the parameter ρ1 is selected to be greater than zero,
.

V4 will be negative-definite. Based on the
Lyapunov principle [47],

.
V4 becoming negative-definite indicates that s and Φ̃ reach zero. Therefore,

the tracking error variables converge to the sliding variables. Therefore, Theorem 3 is proven.

Remark 2. In practical systems, the parameter drift problem typically occurs under the adaptive control rule
(44). Consequently, the bounded approach is implemented to set up the adaptive estimator as

.
Φ̂=

{
0 if |s| ≤ v

1
γ |s| if |s| > v

, (53)

in which v > 0 is an arbitrary positive value.

Remark 3. [35]: The chattering phenomenon can be significantly alleviated by replacing the sign(·) function
with a saturation function in the control input signal, such as

sat
( s

ε∗

)
=

{
sign(s) if |s| ≥ (ε∗)2

s
ε∗ if |s| < ε∗

(54)

in which 0 < ε∗ < 1 is a minor positive coefficient called boundary layer thickness, and ε∗ = 0.1.

4. Simulation Analyses

To demonstrate the effectiveness of the proposed control strategy, the strategy was applied to
a pathway tracking control for the first three joints of a PUMA560 manipulator, and its tracking
performance was compared with those of a classical SMC [16,17] and NFTSMC [49,50]. The dynamic
model with the crucial parameters found in a 3-DOF PUMA560 robot manipulator was explained by
Armstrong et al. [51]. We utilized the MATLAB/Simulink environment for all simulation analysis
with the sampling rate set to 10−3 s. In this work, only the first three joints of a robot manipulator
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were investigated (the last three joints were blocked). The simulations were implemented to compare
the controllers in terms of their positional accuracy, response speed, and the resulting chattering
phenomenon in their control inputs.

To ascertain the robustness of all control methods, we evaluated the system performance in three
operation stages, where disturbances and uncertainties were modeled as follows:

Fr
( .
q
)
+ τd(t) =

 0.9
.
q1 + 1.0 sin(3q1) + 1.7 sin

( .
q1
)

1.8
.
q2 + 1.85 sin(2q2) + 1.65 sin

( .
q2
)

−2.1
.
q3 + 2.5 sin(2q3) + 0.57 sin

( .
q3
)
. (55)

Stage 1: Robot system was assumed to run under normal operation from time 0 s to 15 s.
Stage 2: Robot system was assumed to run under operation condition, but there was an external
disturbance impacting the first joint between 15 s and 50 s. This external disturbance had a value
defined as

(
15 sin(q1q2) + 1.5 cos

( .
q1q2

)
+ 5.5 cos

( .
q1

.
q2
))

.
Stage 3: Robot system was assumed to run under operation condition, but there was a partial loss
(75%) of control input effectiveness at the second joint between 25 s and 50 s.

The desired joint pathways for the position tracking were

qr =
[

cos
( t

5π

)
− 1, sin

( t
5π + π

2
)
, sin

( t
5π + π

2
)
− 1

]T
. (56)

The RBFNN architecture consisted of seven nodes, the initial weight matrix of the network
was selected as 0, the width and center of the Gaussian function was set as δ = 0.2, and the center
of the Gaussian function µ was selected in range (−1.5 ÷ 1.5) with µl = 0.5. The matrix used
in an adaptive law of RBFNN was selected as ω = 15I7, and the NN input was selected as υ =[

e
.
e qr

.
qr

..
qr

]
.

The SMC control input was set as

τ(t) = −B−1(q)
(
Ξ
(
q,

.
q
)
+ η

( .
q− .

qr
)
− ..

qr + (Φ2 + ρ2)sign(s)
)
. (57)

Here, η, Φ2, ρ2 are positive constants, s is a linear sliding function, and qr is defined as a desired
trajectory value.

The NFTSMC control input was set as

τ(t) = −B−1(q)
(

Ξ
(
q,

.
q
)
− ..

qr + β
h
d
( .
e
)2− d

h + (Φ3 + ρ3)
s

‖s‖+ ν

)
. (58)

Here, β, Φ3, ρ3 are positive constants, s is a nonlinear sliding function, ν is a small positive scalar,
qr is defined as a desired trajectory value, and d, h are positive odd integers satisfying the condition
1 < d/h < 2.

The control parameter selection for the varying control strategies, including classical SMC,
NTSMC, and the proposed control strategy is shown in Table 1.

The averaged tracking errors were calculated according to the following equation Eav
i =√

1
n

n
∑

k=1

(
‖ei‖2

)
i = 1, 2, 3 in which n is the number of simulation steps.

The trajectory tracking performances, including tracking positions and tracking errors at each of
the first three joints with three controllers, are illustrated in Figures 3 and 4. In Stage 1 (from 0 s to 15 s),
three of the control systems give similar good path tracking performance. In Stage 2 (from time greater
than 15 s) and in Stage 3 (from time greater than 25 s), it is clear that the classical SMC provides the
poorest path tracking performance, where robot operation becomes unstable when a large disturbance
or uncertainty is applied. From Table 2 and Figure 4, it is observed that NFTSMC provides less path
tracking error and faster transient response than classical SMC. However, tracking performance is
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also diminished upon application of a large disturbance. It is noteworthy that the proposed sliding
surface is designed based on the sliding function integral in Equation (8), and this integral portion
has a significant role in providing fast transient response and robustness against uncertainty and
disturbances. Therefore. the proposed control strategy gives the best path tracking performance and
fastest transient response among the compared control strategies, due to the role of the proposed
surfaces, an adaptive compensator, and a main contribution of the proposed controller.

Table 1. The control parameter selection for the varying control strategies. SMC = sliding mode
controller; ANNFTSMC = adaptive neural non-singular fast-terminal sliding-mode control.

Control Strategy Control Parameters Parameter Value

Classical SMC η, Φ2, ρ2 2, 9.9, 1

NFTSMC
d, h, β 5, 3, 2

Φ3, ρ3, ν 9.9, 1, 0.1

Proposed Control Strategy
(ANNFTSMC)

h1, h2 diag(10, 10, 10), diag(6, 6, 6)
Γ1, Γ2, Γ3 diag(3, 3, 3), diag(3, 3, 3), diag(2, 2, 2)

ϑ, α diag(0.4, 0.4, 0.4), diag(1.2, 1.2, 1.2)
γ, ρ1, v, ε∗ 0.5, 0.1, 0.01, 0.1

Table 2. The averaged tracking errors under control input signals of the control strategy.

Error Control Strategy Eav
1 Eav

2 Eav
3

SMC 0.1943 0.8708 0.0060
NFTSMC 0.1542 0.1218 0.0038

ANNFTSMC 0.0031 0.0031 0.0029

Figure 3. Trajectory tracking positions: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.
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Figure 4. Trajectory tracking errors: (a) at Joint 1, (b) at Joint 2, and (c) at Joint 3.

The control input signals for all control types, including classical SMC, NFTSMC, and the
suggested system are shown in Figure 5. In Figure 5a, it is clear that the NFTSMC offers a continuous
control signal by using a boundary technique [35]. However, the weakness of this technique is
that a choice must be made between chattering phenomenon removal and path tracking precision.
Consequently, this technique decreases the robustness of the system while also increasing the tracking
error. In Figure 5b, the SMC offers a discontinuous control signal with serious chattering behavior.
On the contrary, the suggested system offers a continuous control signal for the robot manipulator
without the loss of its effectiveness, as shown in Figure 5c.

The adaptations of the estimated parameters are shown in Figure 6. These adaptive gains are
estimated according to the variation of the influences of disturbances and uncertainties, and they will
attain a constant value once the error variables converge to the sliding surface in a stable phase.

From the simulation performance, we conclude that the proposed controller gives the best
performance compared to a classical SMC and NFTSMC in terms of tracking precision, transient
response, chattering deletion, and small steady state error.
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Figure 5. Control input signals: (a) FNTSMC, (b) classical SMC, and (c) the suggested control
methodology. FNTSMC = fast nonsingular terminal sliding mode control.

Figure 6. Time history of adaptive gain.

5. Conclusions

In this report, a robust trajectory tracking control strategy was developed for robot manipulators.
From the simulation results and performance comparison with two other control strategies for a 3-DOF
PUMA560 robot manipulator, our control strategy offered the best performance in terms of tracking
positional accuracy, small steady-state errors, fast convergence, and chattering phenomenon rejection.
The suggested control solution has the following benefits: (1) inherits the advantages of the NFTSMC,
including non-singularity, finite-time convergence, fast transient response, low steady-state errors,
and high position tracking accuracy; (2) achieves smoothness with elimination of chattering behavior;
(3) does not demand an exact dynamic model for the robot manipulator by applying an adaptive
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radial basis function neural network to approximate an unknown robot function; (4) compared to the
classical SMC and another control methods based on TSMC, the proposed control strategy offers better
tracking performance and stronger resistance against disturbances and uncertainties; (5) robustness
and stability of the robot system was demonstrated fully by Lyapunov theory.
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