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Abstract: The compressive deconvolution (CD) problem represents a class of efficient models that is
appealing in high-resolution ultrasound image reconstruction. In this paper, we focus on designing an
improved CD method based on the framework of a strictly contractive Peaceman–Rechford splitting
method (sc-PRSM). By fully excavating the special structure of ultrasound image reconstruction,
the improved CD method is easier to implement by partially linearizing the quadratic term of subproblems
in the CD problem. The resulting subproblems can obtain closed-form solutions. The convergence of
the improved CD method with partial linearization is guaranteed by employing a customized relaxation
factor. We establish the global convergence for the new method. The performance of the method is
verified via several experiments implemented in realistic synthetic data and in vivo ultrasound images.

Keywords: linearized Peaceman–Rechford splitting method; compressive deconvolution; convex
minimization; compressive sensing

1. Introduction

Ultrasound imaging has become a very important medical imaging scheme, as it is noninvasive,
harmless, and cost-effective compared with computed tomography (CT) and nuclear magnetic
resonance (MRI).

Moreover, ultrasound requires little energy, which makes ultrasound imaging a good candidate for
hand-held applications. An extremely promising application scenario for ultrasound imaging is breast
cancer localization, where cancer regions have statistically different acoustic properties compared with
benign areas [1].

Compressive sensing (CS) can accelerate the acquisition rate without decreasing the reconstructed
signal quality and maintain the image quality with fewer data. Based on CS theory, one can effectively
implement the reconstruction under the condition of the restricted isometry property (RIP) [2,3].
The applicability of CS, such as 2D and 3D ultrasound imaging [4] or duplex Doppler [5], has attracted
an increasing number of researchers to propose new theories and methods. Among them, several
ultrasound imaging devices [6–10] have been proposed in which acquisition and compression are
processed simultaneously. The main idea is to combine CS and deconvolution into ultrasound imaging
and form the compressive deconvolution problem as follows:

y = ΦHx + ν, (1)
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where y ∈ RM involves M linear measurements acquired by projecting one RF image Hx ∈ RN

onto the CS acquisition matrix Φ ∈ RM×N , with M � N. H ∈ RN×N represents a block circulant
with a circulant block (BCCB) matrix modeling the 2D convolution between the 2D point spread
function (PSF) of the ultrasound system, and the tissue reflectivity function (TRF), ν ∈ RM, represents
a zero-mean additive white Gaussian noise.

Some sequential approaches such as YALL1 [11] are prone to first reformulate (1) into an
unconstrained optimization model:

a = arg min
a
{‖y−ΦΨa‖2

2 + 2µ‖a‖1}. (2)

When the blurred RF image r̃ = Ψa is restored, the TRF x will be inferred by minimizing:

min
x∈RN

α‖x‖1 + ‖r̃− Hx‖2
2. (3)

The above two-step manipulation is the most intuitive way but inevitably yields larger estimation
errors as illustrated in [12]. As such, Chen et al. [13] investigate the following model by solving CS
and deconvolution problems simultaneously:

min
x,a∈RN

‖w‖1 + α‖x‖q
q +

1
2µ
‖y− Aa‖2

2 (4)

s.b. Hx = Ψa, w = a, A = ΦΨ

where q denotes the shape parameter of the generalized Gaussian distribution.

Define A1 =

(
IN
Ψ

)
, B1 =

(
−IN 0

0 −H

)
, λ =

(
λ1

λ2

)
and p =

(
w
x

)
, Equation (4) can be

solved by alternatively solving three easier sub-problems based on alternating direction method of
multipliers (ADMM):

wk+1 = prox‖·‖1/β

(
ak − λk

β

)
, (5a)

xk+1 ≈ proxαγ‖·‖p
p/β

(
xk − γHT(Hxk +

λk
2

β −Ψak)

)
, (5b)

ak+1 = ( 1
µ AT A + βIN + βΨTΨ)

−1
( 1

µ ATy + λk
1 + ΨTλk

2 + βwk+1 + βΨTHxk+1), (5c)

λk+1 = λk − β(A1ak+1 − B2 pk+1) (5d)

where h(x) = 1
2‖Ψak − Hx − λk

2‖2
2, γ is a Lipschitz parameter, and prox represents the proximal

operator [14]. For the above three sub-problems, wk+1 has a closed solution and xk+1 has
an approximate closed solution, but ak+1 is not easy to compute, even though the effective
Sherman–Morrison–Woolbury inversion manipulation can be introduced. For non-orthogonal sparse
basis Ψ, approximation algorithms such as Newton’s method are quite time-consuming [15]. In terms
of saving such computing time, some accelerating strategies and new iterative schemes need to be
investigated and explored. Meanwhile, since the compressive deconvolution (CD) method is an inexact
ADMM by solving xk+1 approximately, it is extremely important to present a strict and complete
convergence analysis.

Motivated by these observations and based on the semi-proximal Peaceman–Rechard splitting
method in our previous work [16], in this paper, we propose an improved CD method, referred to
as semi-proximal symmetric ADMM. Define υ = Ψa, and the improved compressive deconvolution
(ICD) method has the following iterative scheme:
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wk+1 = proxτ‖·‖1/β

(
υk − τΨT(Ψw +

λk
1

β − υk)

)
, (6a)

xk+1 = proxαγ‖·‖p
p/β

(
xk − γHT(Hxk +

λk
2

β − υk)

)
, (6b)

λk+ 1
2 = λk − ρβ(A2υk − B2 pk+1), (6c)

υk+1 = ( 1
µ ΦTΦ + 2βIN)

−1
( 1

µ ΦTy + λk
1 + λk

2 + βΨwk+1 + βHxk+1), (6d)

λk+1 = λk+ 1
2 − $β(Aυk+1 − Bpk+1), (6e)

where A =

(
IN
IN

)
, B =

(
−Ψ 0

0 −H

)
, ρ ∈ (0, 1) and $ ∈ (0, 1].

Compared with the CD method presented in [13], the contributions of this article can be
summarized as follows:

1. Based on the iterative scheme of the strictly semi-proximal Peaceman–Rechard splitting method,
we present an ICD method that will reduce the number of iterations while only involving
additional dual update (i.e., λ1+ 1

2 ) and requiring almost the same computational effort for each
iteration.

2. We prove that the ICD method will converge under mild conditions, while the convergence
analysis is not given in the previous CD method.

3. We introduce some elaborate manipulations that can directly generalize the CD method to more
general scenarios with a non-orthogonal sparse basis Ψ.

The rest of this paper is organized as follows. In Section 2, we first present some preliminaries
that are useful for subsequent analysis. Then, we illustrate the ICD method to rebuild the sparse
coefficients from the measurements of ultrasound imaging, and the convergence analysis is given.
In Section 3, we give extensive ultrasound experiments that can be used to evaluate the performance
of the proposed reconstruction algorithm in comparison with CD algorithm. Finally, we make some
concluding remarks in Section 4.

2. Method

2.1. Preliminaries

2.1.1. Variational Reformulation of Equation (4)

In this section, inspired by He and Yuan’s approach [17], we equivalently convert the convex
minimization model expressed by Equation (4) to a variational form. It makes sense to perform such
reformulation, because convergence analysis becomes more concise under the variational model.

For succedent analysis of the proposed algorithm, let us denote z1 = υ = Ψa and z2 = p =(
w
x

)
. Then the ultrasound imaging model can be reformulated as

min
z1,z2∈RN

θ1(z1) + θ2(z2) (7)

s.b. Az1 + Bz2 = 0,

where θ1(z1) = 1
2µ‖y − Φz1‖2

2, θ2(z2) = ‖w‖1 + α‖x‖p
p. The Lagrangian function and augmented

Lagrangian function of Equation (7) can be, respectively, expressed as

L(z1, z2, λ) = θ1(z1) + θ2(z2)− λT(Az1 + Bz2) (8)
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and

Lβ(z1, z2, λ) = θ1(z1) + θ2(z2)− λT(Az1 + Bz2) +
β

2
‖Az1 + Bz2‖2, (9)

where λ ∈ RN represents the Lagrangian multiplier. Then hunting for a saddle point of L(z1, z2, λ) is
to seek (z∗1 , z∗2 , λ∗) such that

Lλ∈RN (z∗1 , z∗2 , λ) ≤ L(z∗1 , z∗2 , λ∗) ≤ Lz1∈RN ,z2∈RN (z1, z2, λ∗). (10)

That is, for any (z1, z2, λ), we have

θ1(z1) + θ2(z2)− (θ1(z∗1) + θ2(z∗2))− (z1 − z∗1)
T ATλ∗ − (z2 − z∗2)

TBTλ∗ ≥ 0, (11a)

(λ− λ∗)T(Az1 + Bz2) ≥ 0. (11b)

Then, resolving Equation (4) is equivalent to seeking w = (z∗1 , z∗2 , λ∗) such that

VI(Ω, F, θ) : θ(u)− θ(u∗) + (w− w∗)TF(w∗) ≥ 0, ∀w ∈ Ω (12)

where

u =

(
z1

z2

)
, w =

 z1

z2

λ

 , θ(u) = θ1(z1) + θ2(z2) and F(w) =

 −ATλ

−BTλ

Az1 + Bz2

 . (13)

Especially, the mapping F(w) defined in Equation (13) is affine with a skew-symmetric matrix,
it is monotone. We express by Ω∗ the solution set of VI(Ω, F, θ).

2.1.2. Notations

We denote the 2-norm of a vector by ‖ · ‖ and let ‖z‖2
G = zTGz for z ∈ RN and G ∈ RN×N . For a

real symmetric matrix S, S � 0 (S � 0) represents S, which is positive semidefinite (positive definite).
For ease of the analysis, we define the following matrices as

H =

 R 0 0
0 ρ+$−ρ$

ρ+$ βBTB − ρ
ρ+$ BT

0 − ρ
ρ+$ B 1

(ρ+$)β
IN

 (14)

M =

 In 0 0
0 IN 0
0 −$βB (ρ + $)IN

 (15)

and

Q =

 R 0 0
0 βIN −ρBT

0 −B 1
β IN

 . (16)

Below we prove three assertions regarding the matrices just defined. These assertions make it
possible to present our convergence analysis for the new algorithm compactly with alleviated notation.

Lemma 1. Given R � 0, let β > 0, µ, ρ ∈ (0, 1), and $ ∈ (0, 1]. The matrices H, M, and Q defined,
respectively, in Equations (15) and (16) have the relationships as follows:

H � 0, HM = Q (17)
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and

G := QT + Q−MTHM � 0. (18)

Proof. We consider two cases.
(I). ρ ∈ (0, 1), $ ∈ (0, 1). We only need to check that

H̄ =

 R 0 0
0 ρ + $− ρ$ ρ

0 ρ 1

 � 0. (19)

Note that {
ρ + $− ρ$ = ρ + $(1− ρ) > 0,

ρ + $− ρ$− ρ2 = (ρ + $)(1− ρ) > 0.

Then we have
H̄ � 0. (20)

For any w = (x1, z2, λ) 6= 0, since ρ, $ ∈ (0, 1), the assertion H � 0 is verified.
With the matrices H, M, and Q at hand, we easily obtain

HM =

 R 0 0
0 ρ+$−ρ$

ρ+$ βBTB − ρ
ρ+$ BT

0 − ρ
ρ+$ B 1

(ρ+$)β
IN


 IN 0 0

0 IN 0
0 −$βB (ρ + $)IN


=

 R 0 0
0 βIN −ρBT

0 −B 1
β IN

 = Q. (21)

The second assertion HM = Q is proved. Consequently, we have

MTHM = MTQ =

 IN 0 0
0 IN −$βBT

0 0 (ρ + $)IN


 R 0 0

0 βIN −ρBT

0 −B 1
β IN

 (22)

=

 R 0 0
0 (1 + $)βBTB −(ρ + $)BT

0 −(ρ + $)B ρ+$
β IN

 . (23)

Using Equations (15) and (16), and the above equation, we have

G = QT + Q−MTHM

=

 2R 0 0
0 2βIN −(1 + ρ)BT

0 −(1 + ρ)B 2
β IN

−
 R 0 0

0 (1 + $)βBTB −(ρ + $)BT

0 −(ρ + $)B ρ+$
β IN


=

 R 0 0
0 (1− $)βBTB ($− 1)BT

0 ($− 1)B 2−ρ−$
β IN

 .

Note that β > 0 and ρ, $ ∈ (0, 1). Thus, for any w = (z1, z2, λ) 6= 0, we have{
1− $ > 0

(1− $)(2− ρ− $)− (1− $)2 = (1− $){(1− $) + (1− ρ)} − (1− $)2 > 0
.
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Therefore, the matrix G is positive definite.
(II). ρ ∈ (0, 1) and $ = 1. Note that

H =

 R 0 0
0 β

ρ+1 BTB − ρ
ρ+1 BT

0 − ρ
ρ+1 B 1

(ρ+1)β
IN

 .

Thus, it is positive definite, and

G =

 R 0 0
0 0 0
0 0 1−ρ

β IN

 .

G is only positive semi-definite. Here, we would emphasize that we do not require the positive
definiteness of G. Instead, positive semi-definiteness of G is enough for our algorithmic analysis.

2.2. Algorithm

In this section, we will present our new algorithm to solve Equation (4). However, we first present
the iterative scheme by using the standard strictly contractive Peaceman–Rechford splitting method
with two different relaxation factors:

zk+1
1 = arg min

z1∈RN
Lβ(z1, zk

2, λk), (24a)

λk+ 1
2 = λk − ρβ(Azk+1

1 − Bzk+1
2 ), (24b)

zk+1
2 = arg min

z2∈RN
Lβ(zk

1, z2, λk+ 1
2 ), (24c)

λk+1 = λk+ 1
2 − $β(Azk+1

1 − Bzk+1
2 ). (24d)

By introducing a customized proximal term, especially for ultrasound imaging, our improved
compressive deconvolution (ICD) method has the iterative scheme:

zk+1
1 = arg min

z1∈RN
Lβ(z1, zk

2, λk) + 1
2‖ z1 − zk

1 ‖
2
R, (25a)

λk+ 1
2 = λk − ρβ(Azk+1

1 − Bzk+1
2 ), (25b)

zk+1
2 = arg min

z2∈RN
Lβ(zk

1, z2, λk+ 1
2 ), (25c)

λk+1 = λk+ 1
2 − $β(Azk+1

1 − Bzk+1
2 ), (25d)

where R =

(
β
τ − βΨTΨ 0

0 β
γ − βHTH

)
is a customized semi-definite matrix. Note that the

equivalence of Equations (25b)–(25d) and Equations (6c)–(6e) is evident, while the relationship between
the closed-form solution expressed by Equation (25a) and Equations (6a) and (6b) is not evident.
We illustrate the latter in Appendix A.

2.3. Global Convergence

To make the analysis more elegant, we reformulate ICD Equations (25a)–(25d) into the form
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zk+1
1 = arg min

z1∈Rn
{θ1(z1)− (λk)

T
Az1 +

β

2
‖ Az1 + Bzk

2 ‖2 +
1
2
‖ z1 − zk

1 ‖2
R} (26a)

λk+ 1
2 = λk − ρβ(Azk+1

1 + Bzk
2) (26b)

zk+1
2 = arg min

z2∈Rn

{
θ2(z2)− (λk+ 1

2 )
T

Bz2 +
β

2
‖ Azk+1

1 + Bz2 ‖
2
}

(26c)

λk+1 = λk+ 1
2 − $β(Azk+1

1 + Bzk+1
2 ). (26d)

Now we analyze the convergence for our proposed ICD method expressed by Equation (26).
We prove its global convergence from the contraction perspective. In order to further alleviate the
notation in our analysis, we define an auxiliary sequence w̃k as

w̃k =

 z̃k
1

z̃k
2

λ̃k

 =

 zk+1
1

zk+1
2

λk − β(Azk+1
1 + Bzk

2)

 (27)

where (zk+1
1 , zk+1

2 ) is produced by Equations (26a) and (26c), and we immediately have

zk+1
1 = z̃k

1, zk+1
2 = z̃k

2, λk+ 1
2 = λk − ρ(λk − λ̃k),

and

λk+1 =λk+ 1
2 − $β(Az̃k

1 + Bz̃k
2)

=λk − ρ(λk − λ̃k)− $[β(Az̃k
1 + Bzk

2)− βB(zk
2 − z̃k

2)]

=λk − ρ(λk − λ̃k)− $[λk − λ̃k − βB(zk
2 − z̃k

2)]

=λk − [(ρ + $)(λk − λ̃k)− $βB(zk
2 − z̃k

2)].

Moreover, we have the following relationship: zk+1
1

zk+1
2

λk+1

 =

 zk
1

zk
2

λk

−
 IN 0 0

0 IN 0
0 −$βB (ρ + $)IN


 zk

1 − z̃k
1

zk
2 − z̃k

2
λk − λ̃k

 ,

which can be reformulated as a compact form under the notation of wk and w̃k:

wk+1 = wk −M(wk − w̃k), (28)

where M is defined in Equation (15).
Now we start to prove some properties for the sequence {w̃k} defined in Equation (27). We are

interested in estimating how accurate the point w̃k is to a solution point w∗ of VI(F, Ω, θ). The main
result is proved in Theorem 1. Now, we try to find a lower bound in terms of the discrepancy between
‖w− wk+1‖2

H and ‖w− wk‖2
H for any w ∈ Ω.

Theorem 1. Let {wk} be generated by Equation (26) and let {w̃k} be defined in Equation (27). Let H and G
be defined in Equations (19) and (18), respectively. Then, for any w ∈ Ω, we have

θ(ũk)− θ(u) + (w̃k − w)TF(w) ≤ 1
2
(‖w− wk‖2

H − ‖w− wk+1‖2
H)−

1
2
‖wk − w̃k‖2

G. (29)

Proof. Refer to Appendix B.
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The next lemma demonstrates the contraction property of the sequence {wk} generated by
Equation (26).

Lemma 2. Let {wk} be generated by Equation (26) with 0 < ρ < 1 and 0 < $ < 1, and let {w̃k} be defined
in Equation (27). Let H and G be defined in Equations (18) and (19), respectively. Then, for any w∗ ∈ Ω∗,
we have

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H − ‖wk − w̃k‖2
G. (30)

Lemma 3. Let the sequence {wk} be generated by Equation (26) with 0 < ρ < 1 and $ = 1. Then we have

‖wk+1 − w∗‖2
H ≤ ‖wk − w∗‖2

H − {‖zk
1 − z̃k

1‖2
R

+
(3ρ + 1)(1− ρ)

1 + ρ
β‖zk

2 − z̃k
2‖2 + (1− ρ)β‖z̃k

1 − z̃k
2‖2}. (31)

With the above lemmas, we can finally obtain the global convergence theorem of ICD method for
solving VI(Ω, F, θ) as follows:

Theorem 2. The sequence {wk} generated by Equation (26) converges to some w∞ that is a solution of
VI(Ω, F, θ).

3. Numerical Results

3.1. Numerical Simulations

3.1.1. Simulated US Images

Two ultrasound data sets, named group1 and group2, were obtained by 2D convolution between
spatially invariant PSFs and the TRFs [15]. The results were quantitatively evaluated in terms of
peak signal-to-noise ratio (PSNR), image structural similarity SSIM [18], improvement in SNR (ISNR),
and the normalized root mean square error (NRMSE). The metrics are expressed as follows:

PSNR = 10 log10
NL2

‖x− x̂‖2 , (32)

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
, (33)

ISNR = 10 log10
‖x− y‖2

‖x− x̂‖ , (34)

NRMSE =

√
‖x− x̂‖2

‖x‖2 , (35)

where x, y, x̂ are respectively the original image, the RF image, and the reconstructed image. L denotes
the maximum intensity value in x. σx and σx̂ are the mean and variance values of x and x̂; c1 = (k1C)2

and c2 = (k2C)2 are two variables stabilizing the division with a weak denominator. C represents the
dynamic range of the pixel-values and k1, k2 denote constants. Herein, k1 = 0.01, k2 = 0.03, and C = 1.

3.1.2. In Vivo US Images

We consider two real in vivo US images [19]: (a) Mouse bladder: The observed image is with the
size 400× 256 as shown in Figure 1. The number of homogeneous regions was set to K = 3 in this
experiment, which is sufficient to represent the anatomical structures of the image. (b) Skin melanoma:
The second in vivo image (of size 400× 298) represents a skin melanoma tumor, as shown in Figure 2.
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Figure 1. Results on group1 with CS ratio = 0.6.
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Figure 2. Results on group2 with CS ratio = 0.6.

Since the ground truth of the TRF and the label map are not available for in vivo US data,
the quality of the deconvolution results is evaluated using the contrast-to-noise ratio (CNR) [20]:

CNR =
|µ1 − µ2|√

σ2
1 + σ2

2

, (36)

where µ1 and µ2 are the mean of pixels located in two regions extracted from the image, while and are
the standard deviations of the same blocks. All code was written in MATLAB and performed on a
ThinkPad computer equipped with Windows 7, 2.60 GHz and 2 GB of memory. Based on the same

stopping criterion, ‖x
k−xk−1‖
‖xk−1‖ < 10−3 is adopted.
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3.2. Results

The quantitative results reported in Figures 1–8 confirm that, given the same maximum number
of iteration (we set ItMax = 1 × 104), the ICD method can achieve better reconstruction quality gain
than CD method for both simulated and real US images. Moreover, based on Figures 9 and 10, ICD
method converges faster than the existing CD method for all CS ratios. We should remark that, for the
group2 data set, the metric of the SINR achieved via the CD method is negative. This may be because
the CD method is unstable under low CS ratios.
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Figure 3. Results on Mouse bladder with CS ratio = 0.4.
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Figure 4. Results on Skin melanoma with CS ratio = 0.4.
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Figure 5. Deconvolution quality assessment for group1.
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Figure 6. Deconvolution quality assessment for group2.
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4. Discussions and Conclusions

In this paper, we proposed an improved compressive deconvolution method by introducing two
different parameters in updating the dual variable to improve its convergence rate. We established
the relationship between the two parameters under which we proved the global convergence of the
algorithm. The ultrasound simulations show that the proposed method can achieve reconstruction
US image with better quality gain under the same maximum number of iteration. Moreover,
the ICD method has a much faster convergence rate compared with the conventional compressive
deconvolution method. It should be noted that parameters such as ρ and $ are based only on empirical
values, and a much greater deconvolution gain can be obtained if the parameters are adaptively
optimized. This is the direction in which our research will continue.
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Appendix A. Proof of the Equivalence of Equations (25a) and (6a)–(6b)

Proof. From Equation (25a) and the definitions around Equation (7), it is not difficult to verify

wk+1 = arg min
w∈Rn

‖w‖1 − λk
2(υ

k −Ψw) +
β

2
‖Ψw− υk‖2

2 +
β

2
‖w− wk‖2

1
τ−ΨTΨ

= arg min
w∈Rn
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2
‖Ψw +
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β
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2 +
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2
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= arg min
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2
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2
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1
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= arg min
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β
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2

=proxτ‖·‖1/β

(
υk − τΨT(Ψw +

λk
1

β
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)
.

The above equation is exactly Equation (6a). Similarly,

xk+1 = arg min
x∈Rn
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2(υ
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)
.
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The above equation is exactly Equation (6b), so the proof is complete.

Appendix B. Proof of Theorem 1

To prove this main result, we require two lemmas. The first key lemma provides a lower bound
on a specially constructed functional in terms of a quadratic term involving the matrix Q defined
in Equation (16) (It should be noted that the proof framework is based on He and Yuan’s classical
scheme [17]: First, carefully construct a semi-positive matrix (18) based on customized relaxation
factors ρ and $ and then find the discrepancy between the current iterative point and the optimal point
through their professional variational inequalities scheme (Inequality (A1)). The contractive property
of iterative sequences is finally proven via their specially constructed identity. Since the proof line is
straightforward and is similar to our previous work [16], we give convergence lemmas and theories
without detailed proof.).

Lemma A1. For a given wk ∈ Ω, let wk+1 be generated by Equation (26) and let w̃k be defined in Equation (27).
Then we have w̃ ∈ Ω and

θ(u)− θ(ũk) + (w− w̃k)TF(w̃k) ≥ (w− w̃)TQ(wk − w̃k), ∀w ∈ Ω (A1)

where Q is defined in Equation (16).

In the next lemma, we further analyze the right-hand side of Inequality (A1) and reformulate it as
the sum of some quadratic terms. This new form is more convenient for our further analysis.

Lemma A2. Let wk be generated by Equation (26) and let w̃k be defined in Equation (27). Let Q, H, and G be
defined in Equations (19), (18), and (21), respectively. Then, for any w ∈ Ω, we have

(w− w̃k)TQ(wk − w̃k) =
1
2
(‖w− wk+1‖2

H − ‖w− wk‖2
H)) +

1
2
‖wk − w̃k‖2

G. (A2)
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