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Abstract: Online feature selection is a challenging topic in data mining. It aims to reduce the 
dimensionality of streaming features by removing irrelevant and redundant features in real time. 
Existing works, such as Alpha-investing and Online Streaming Feature Selection (OSFS), have been 
proposed to serve this purpose, but they have drawbacks, including low prediction accuracy and 
high running time if the streaming features exhibit characteristics such as low redundancy and 
high relevance. In this paper, we propose a novel algorithm about online streaming feature 
selection, named ConInd that uses a three-layer filtering strategy to process streaming features with 
the aim of overcoming such drawbacks. Through three-layer filtering, i.e., null-conditional 
independence, single-conditional independence, and multi-conditional independence, we can 
obtain an approximate Markov blanket with high accuracy and low running time. To validate the 
efficiency, we implemented the proposed algorithm and tested its performance on a prevalent 
dataset, i.e., NIPS 2003 and Causality Workbench. Through extensive experimental results, we 
demonstrated that ConInd offers significant performance improvements in prediction accuracy and 
running time compared to Alpha-investing and OSFS. ConInd offers 5.62% higher average 
prediction accuracy than Alpha-investing, with a 53.56% lower average running time compared to 
that for OSFS when the dataset is lowly redundant and highly relevant. In addition, the ratio of the 
average number of features for ConInd is 242% less than that for Alpha-investing. 

Keywords: streaming feature; feature selection; conditional independence; markov blanket 
 

1. Introduction 

Feature selection [1-4] is the most referenced method for reducing dimensions of features. It can 
efficiently combat the curse of dimensionality [5] by removing irrelevant and redundant features [6]. 
The final goal is to extract an “optimal subset” of features from the original features [3], so that the 
classifiers can learn from it to improve prediction accuracy and achieve better time complexity 
during classification. As an important direction for feature selection, streaming feature selection 
(SFS) assumes that the number of training instances is fixed while the number of features increases 
over time [2]. For the streaming feature, features flow in one at a time, and each feature is required to 
be processed online upon arrival. However, all the features cannot be present in advance. Therefore, 
traditional batch learning that assumes that the feature selection task is conducted in an off-line 
learning fashion and that all features of the training instances are given a priori is not suitable [3]. 
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Recently, online selection of dynamic features has received significant attention [7]. In some 
situations, online feature selection can be performed upon feature arrival where features arrive 
sequentially over time, especially for online feature selection with streaming features (OSFSF) that 
aim to provide complementary methodology for addressing high dimensional data [5]. The goal of 
OSFSF is to process the streaming features dynamically using the incoming streaming features one 
at a time [8-10]. There are several real-world application scenarios, such as streaming images 
captured through CCTV [11], fleeting hashtags on Twitter [12], feature collection in 
intrusion-detection systems [13], automatic classification of music genres in music television [14], 
and monitoring and analysis of environments [15]. In these applications, feature dimensions keep 
increasing while feature spaces become enlarged over time. Therefore, it is necessary to process 
online feature selection in real time to reduce processing complexity. 

There are several representative research efforts on OSFSF [16], e.g., Alpha-investing, OSFS, and 
SAOLA, but their strategies suffer from limited prediction accuracy or running time if the streaming 
features possess characteristics of low redundancy and high relevance, such as in real time medical 
diagnosis [17]. For such streaming features, many selected features would be generated. 
Experiments indicate that the existing methods highlighted above are restricted to such types of 
streaming features. The Alpha-investing algorithm is unstable, and its prediction accuracy is 
significantly low on most datasets [16]. It selects numerous features from a candidate feature set 
because it does not re-evaluate the selected features. Hence, its performance is limited [6,16,18]. 
Although the OSFS algorithm offers high prediction accuracy in many datasets, its running time 
increases exponentially with an increase in the number of features with low redundancy and high 
relevance [6]. The SAOLA algorithm offers outstanding efficiency in running time and possesses few 
features but has low prediction accuracy [19]. 

To address the limitations of the abovementioned works, we propose a novel online algorithm, 
named ConInd, to process streaming features with low redundancy and high relevance. Unlike 
existing OSFSF studies, we select a subset of relevant features through three-layer filtering according 
to a conditional independence analysis to improve the prediction accuracy, reduce running time, 
and reduce the number of features selected. We use a p-value to measure the conditional 
independence between features within a class attribute to discard irrelevant and redundant features 
from candidate feature sets. In addition, we regard the subset as an approximate Markov blanket. It is 
well known that Markov blankets [20] provide minimal feature sets required for the classification of a 
chosen response variable with maximum predictability. However, it is difficult to discover unique 
Markov blankets in real-life datasets due to violation of the faithfulness condition [21,22]. Therefore, 
we only try to find an approximate Markov blanket with streaming features . Our paper mainly aims 
to solve the following challenges: (1) how to discover an approximate Markov blanket; (2) how to 
provide effective mechanisms for discovering the pattern of running times with increasing feature 
volumes; and (3) how to evaluate the performance of our algorithm and tackle its drawbacks. 

The main contributions that distinguish the proposed method from existing methods are 
threefold: (1) we propose the use of a three-layer filtering strategy to process streaming features to 
filter irrelevant and redundant features, as presented in Section 3.2; (2) through three-layer filtering, 
we can obtain an approximate Markov blanket in low running time with high accuracy, as 
demonstrated in Section 4.3; and (3) we analyze the theoretical properties of the ConInd algorithm 
and validate its empirical performance by conducting an extensive set of experiments, as presented 
in Sections 4 and 5. 

The rest of this paper is structured as follows. Section 2 surveys related work. Section 3 
introduces the preliminaries, including important notations, definitions, and a framework for 
filtering streaming features. Section 4 proposes our the ConInd algorithm and analyzes it. Section 5 
contains our experimental results. Finally, Section 6 concludes the paper. 
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2. Related Work 

Feature selection is a simple, interpretable and especially necessary technique for handling 
high dimensional data [1,3,23-26]. From the label perspective that illustrates whether label 
information is involved in the selection phase, feature selection includes supervised, unsupervised, 
and semi-supervised methods [3]. From the selection strategy perspective that describes how the 
features are selected, it includes wrapper methods, filter methods, and embedded methods [2,3]. 
OSFSF is one of the most important branches of feature selection [27]. The number of features 
changes over time, and it requires real time processing, rather than waiting for all features to arrive. 
The representative works include Grafting [28], Alpha-investing [18], OSFS [6], OGFS [29] and 
SAOLA [19].  

Grafting [28] is an embedded feature selection approach that can discard various irrelevant and 
redundant features. The grafting algorithm is based on an L1 regularized formulation. It can handle 
streaming features but requires that the feature size be known so that it can obtain the value of the 
regularization parameter λ [6]. 

Alpha-investing [18] can handle feature sets with infinite sizes. However, it only evaluates each 
feature once instead of considering the redundancy of selected features. As a result, the prediction 
accuracy is low and unstable [5]. 

OSFS [6] uses the G2 test to denote conditional independence or dependence and then 
identifies irrelevant and redundant features. OSFS can remove irrelevant and redundant features 
from streaming features. Therefore, it can select fewer features and obtain higher prediction 
accuracy than Grafting and Alpha-investing when the volume of redundant features is high. It is 
adaptive, enabling it to deal with extremely high dimensionality feature sets. Therefore, it 
guarantees that strongly relevant features and non-redundant features can be selected as the 
features stream one at a time as well as the removal of features that do not belong to its Marko 
blanket. However, with an increasing number of selected features with weak relevance, the running 
time grows exponentially [6]. 

OGFS [29] uses group structure information as a type of prior knowledge to select features. It 
produces improved feature subsets using two stages: intra-group feature selection and inter-group 
feature selection. However, OGFS needs to choose a small number of positive parameters in 
advance, which is relatively difficult without prior information [5].  

SAOLA [19] can handle feature spaces with extremely high dimensionality using the online 
pairwise comparison strategy. SALOA filters out redundant features using the k-greedy search 
strategy, but it cannot obtain an optimal value at the same time for the relevance threshold [5]. 

Causal feature selection has recently been proposed as an emerging filtering approach that is 
successful in feature selection. In particular, the discovery of Markov blankets from Bayesian 
networks for feature selection has attracted much attention. Tsamardinos and Aliferis bridged the 
gap between the concepts of feature relevance in feature selection and Markov blanket in a Bayesian 
network used for classification [30]. The algorithms include the Grow–Shrink (GS) [20], the Iterative 
Associative Markov Blanket (IAMB) [31], HITON_MB [32], the max–min Markov blanket (MMMB) [33], 
the target information equivalence (TIE*) [34], and the selection via group alpha-investing (SGAI) 
[22]. 

TIE* algorithm can mine all Markov blankets under nonfaithful conditions. However, TIE* 
mines multiple Markov blankets for causal discovery without missing causative variables and is not 
yet customized for feature selection [22,34]. SGAI perform Markov blanket feature selection with 
representative sets for classification under the nonfaithful condition, and outperforms the 
state-of-the-art Markov blanket feature selectors [22].  

For the above algorithms to discover Markov blankets, all features must be made available from 
the beginning [20]. Meanwhile, the algorithms above cannot accurately find Markov blankets, leading 
to the possibility that error nodes may be mined [22]. More crucially, in the context of streaming 
features, the features are generated dynamically and arrive one at a time. The feature selection must 
be done immediately in the course of generating the features. Thus, these algorithms are not 
suitable for mining the Markov blankets of streaming features.  
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Existing methods greatly relieve the burden of processing highly dimensional datasets. 
However, in consideration of the above limitations, we propose an efficient framework for online 
feature selection in a streaming feature space with low redundancy and high relevance. Based on 
this framework, we develop a novel algorithm called ConInd. 

3. Framework for Streaming Features Filtering 

3.1. Notations, Definitions, and Formalizations 

The entire feature set consists of four types of features: irrelevant, redundant, weakly relevant 
but non-redundant, and strongly relevant features [6]. Strongly relevant features are indispensable 
in the sense that they cannot be removed without loss of prediction accuracy. If a strongly relevant 
feature is removed alone, it will result in performance deterioration of an optimal classifier. Weakly 
relevant features can sometimes contribute to prediction accuracy. Therefore, they are divided into 
non-redundant features and redundant features [6]. Irrelevant features are not necessary for 
improving prediction accuracy [20]. A feature is irrelevant if it is not strongly or weakly relevant [3]. 
Definitions of these concepts are provided in Section 3.1.2.  

In the feature selection process, the features selected for class attributes include an optimal 
feature subset [20] that contains all non-redundant features and strongly relevant features [6]. The 
optimal feature subset is called the Markov blanket of class attributes. The Markov blanket criterion 
removes only attributes that are unnecessary, including completely irrelevant and redundant 
features [35]. 

3.1.1. Notation Mathematical Meanings 

Table 1 demonstrates symbols and notations used in this paper. In the present study, we 
consider the problem of OSFSF for datasets with low redundancy and high relevance. S is the set of 
feature spaces containing all available features under the streaming feature condition. Assuming 
that fi denotes the ith input feature and a new incoming feature at time ti, CSFi−1 is the selected 
feature set until time ti−1 (CSFi ⊂ S), and C is the class attribute [19]. Since we process one dimension 
at a time, the research problem at any time ti is how to maintain a minimum size of a feature subset, 
Si, online. 

Table 1. Notation Mathematical meanings. 

Notation Mathematical Meanings 
Xi the data set at time ti, denoted as Xi = [x1, x2, ..., xn]T ∈ Rn×i 
S the set of feature space under the streaming features 
f a feature, f ∈ S 
ti a time point of the ith arriving feature 
fi the ith arriving feature at time ti 

CFS candidate feature set at current time 
C class attribute (target variable) 

P(x) event probability of feature x 
P(.|.) conditional probability 
ρ a threshold 
α significance levels of 0.05 or 0.01 in statistics 

MB(C) Markov blanket of C 
a ⊥ b a is independent of b 

3.1.2. Definitions 
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Definition 1 (Conditional Independence). In a variable set S, two random variables x, y ∈ S are 

conditionally independent given a set of variables i \{ , }S S x y⊆  with respect to a probability distribution P, 

iff there exists an assignment of x and y, s.t. i( | , )P x y S = i( | )P x S , denoted as i|x y S⊥ .  

Conditional independence is a generalization of the traditional notion of statistical 
independence. If two variables x and y are independent, then the joint distribution is the product of 
the marginal: P(x) = P(x) P(y), denoted as x y⊥ . If they are dependent given some conditioning set, 
Si, then we can write P(x,y|Si) = P(x|Si) P(y|Si). Conditional independence is a key concept in 
Bayesian networks because of the factorizations of the allowed joint probability distribution [36]. 

To characterize conditional independence, according to the elements size of Si in Definition 1, 
we can divide conditional independence into three disjoint categories, namely null-conditional 
independence (|Si| = 0), single-conditional independence (|Si| = 1), and multi-conditional 
independence (|Si| > 1).  

Definition 2 (Markov blanket). In a variable set S, the Markov blanket of a class attribute, C, 

denoted as MB(C), is a minimal set of features. The MB(C) makes / ( ( ) { })s S MB C C∀ ∈ ∪ , s.t. 
| ( )s C MB C⊥ . 

The Markov blanket of a node, C, denoted MB(C), is the set of parents, children, and children’s 
parents of C. Using the Markov blanket for feature selection can eliminate conditionally independent 
features without increasing our distance from the desired distribution. The Markov blanket criterion 
only removes attributes that are unnecessary: attributes that are irrelevant to the target variable and 
attributes that are redundant given other attributes [20]. 

Definition 3 (Strong relevance [6]). A feature x is strongly relevant to the class attribute, C, iff 
i { }S S x∀ ⊆ − , s.t. i( | , )P x S C . 

Definition 4 (Weak relevance [6]). A feature x is weakly relevant to the class attribute, C, iff 
i { }S S x∃ ⊆ − , s.t. ( |P x i , )S C . 

Definition 5 (Redundant features [6]). A feature x is redundant to the class attribute, C, iff it is weakly 
relevant to C and has a Markov blanket, MB(x), that is a subset of the Markov blanket of MB(C). 

Definition 6 (Irrelevance [6]). A feature x is irrelevant to a class attribute, C, iff it is i { } S S x∀ ⊆ − ,
i(s.t. P S | , )x C i= ( | )P S C . 

3.1.3. Formalization of Online Feature Selection with Streaming Features 

In traditional feature selection, all candidate features are available before learning starts [37,38]. 
For streaming features, features are generated dynamically and arrive one by one. Hence, it is not 
practical to wait until all features have been generated before feature selection begins [16]. In 
OSFSF, the data stream is fixed, whereas features keep arriving, and each feature is evaluated upon 
arrival. This poses great challenges to traditional feature selection approaches. A sketch of feature 
stream with a fixed data stream is provided in Figure 1. 

( )P x | C≠

( )P x | C≠
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Figure 1. A feature stream with a fixed data stream. 

In Figure 1, let Xi represent the data set at time ti, denoted as Xi = [x1, x2, …, xn]T ∈ Rn×i, where n 
is the number of samples, i is the number of features so far over an i-dimensional feature space, and 
S = [ f1, f2, …, fi ]T ∈ Ri. Let C = [c1, c2, …, cm]T ∈ Rm denote the class label vector with m distinct class 
labels. C denotes the class attribute, and at each time, ti, we just obtain feature fi of S but do not 
know the exact number of i in advance. Therefore, the problem is to derive x to c mapping at each 
time step. This is possible using a subset of the features that have arrived so far. 

3.2. Framework for Filtering Conditional Independence 

The feature selection process can be performed step by step, as illustrated in Figure 2, 

assuming that the feature space is the set of all features before the arrival of new features if  at 

time it . Of course, we do not save this space, but we filter only the new features.  

 
Figure 2. Features filtered using conditional dependence. 

First, irrelevant features can be filtered through filtering of null-conditional dependence, 
leaving only relevant features. Second, parts of redundant features are further discarded from 
weakly relevant features through filtering of single-conditional dependence. Finally, the remaining 
redundant features are further filtered through filtering of multi-conditional independence. As a 
result, the remaining features are those that have been finally selected. The entire filtering process is 
repeated with the advent of new features. The arrival of new features changes the result of the 
selected features. 
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In this section, we propose a framework for filtering conditional independence to deal with 
data with streaming features, as illustrated in Figure 3.  

Framework: The ConInd Framework 
1. Initialization: class attribute C; candidate feature set: CFS; selected feature set =SF ∅ ; 

2. Get a new feature, if , at time ti. 

3. Filtering of null-conditional independence: If if  is an irrelevant feature, discard if ; if not, enter 
Step 4. 

4. Filtering of single-conditional independence: Remove part of redundant features.  

4.1 If if  is a redundant feature in the filtering of single-conditional independence 1 

condition, discard if ; if not, i{ }CFS CFS f= ∪ , enter Step 4.2. 
4.2 If x ∈ CFS is a redundant feature in the filtering of single-conditional independence 2 

condition, discard x from CFS; if not, enter Step 5. 
5. Filtering of multi-conditional independence: Further remove redundant features in CFS in the 

filtering of the multi-conditional independence condition. 
6. Repeat Steps 2–5 until there are no new features or the stopping criterion is met. 
7. When SF = CFS, output the selected features, SF. 

Figure 3. The ConInd framework for feature selection via conditional independence. 

The following features indicate the uniqueness of the ConInd framework compared to existing 
algorithms. (1) ConInd employs three-layer filtering strategies with conditional independence to 
filter streaming features. (2) ConInd can mine an approximate Markov blanket through filtering 
irrelevant features and redundant features with a low time cost. At the same time, it can be used to 
prove the approximate Markov blanket theoretically. (3) Among algorithms for feature selection from 
streaming features, ConInd has significant performance improvements in terms of running time 
when the datasets have low redundancy and high relevance. 

3.2.1. Filtering of Null-Conditional Independence 

We use the filtering of null-conditional independence to identify and remove irrelevant 
features from streaming features. If an incoming feature is relevant to the class attribute C, the 
feature is added into CFS. If not, the feature would be discarded due to its irrelevance with C. 

Proposition 1. The features filtered by null-conditional independence are irrelevant features.  

Proof. When one assumes (x, y) ∈ CFS, and considers Definitions 1 and 6, the following holds: 
| [] ( | ,[]) P( | []) ( | ) ( )

( , )
              ( ) ( , ) ( ) P( )

( )

x y P x y x P x y P x

P x y
P x P x y P x y x y

P y

⊥  =  =

 =  =  ⊥
 

 

Therefore, x and y are non-conditionally independent and irrelevant to each other.□ 

3.2.2. Filtering of Single-Conditional Independence 

The selected features may become redundant with time. We use the filtering of 
single-conditional independence to first remove parts of redundant features from a candidate 
feature set CFS. 

The filtering of single-conditional independence is divided into two stages in order: filtering of 
single-conditional independence 1 and filtering of single-conditional independence 2.  

Filtering of single-conditional independence 1: The single-conditional independence is 
filtered under the condition of each feature in the CFS. The filtering process is as follows (Figure 4): 

Step (1): Let CFS = {f1, f2, f3, f4, f5}; C is a class attribute, and f6 is a new feature. 
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Step (2): For each fi ∈CFS, (i = 1, 2, …, 5), if ∃ fi, s.t. f6 ⊥ C|[ fi,], then discard f6. 
Step (3): Else CFS = CFS ∪ { f6 }. 
Step (4): Return CFS. 

When a new feature is added, every feature in the CFS element is used as a condition for 
feature selection. Once conditional independence is met, the new feature will be discarded, as 
illustrated in Figure 4. 

 
Figure 4. Filtering of single-conditional independence 1. 

Proposition 2. C is a class attribute, if  is a new feature at time ti. If ∃  f ∈ CFS satisfies the filtering of 

single-conditional independence 1, i.e., i [ ]f C f⊥ , then . 

Proof. When one considers filtering of single-conditional independence 1, the following holds: 

If ∃ f ∋ CFS, s.t. i [ ]f C f⊥ , through filtering of single-conditional independence 1, if CFS∉ , 

and using Definition 2, we obtain i / { }f S CFS C∈ ∪  s.t. i |f C CFS⊥ , S is a set of the feature space, 
then, . Therefore, Proposition 2 is proven. 

Filtering of single-conditional independence 2: The single-conditional independence is 
filtered on the condition of a new feature. The filtering process is as follows (Figure 5): 

Step (1): Let CFS = {f1, f2, f3, f4, f5, f7}, C is a class attribute, and f7 is a new feature that is already 
added in the CFS through the filtering of single-conditional independence 1. 

Step (2): For each fi (i = 1, 2, …, 5), if ∃ fi, s.t. fi ⊥ C|f7, then CFS = CFS/{fi}. 
Step (3): Return CFS. 

When a new feature is merged into CFS, it is used as a single condition to determine 
independence with each of the other features in the CFS. Once conditional independence is met, the 
other features in the CFS are discarded. For example, the features f3 and f5 are discarded, as 
illustrated in Figure 5. 

 

Figure 5. Filtering of single-conditional independence 2. 
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Proposition 3. C is a class attribute, if  is a new feature at time ti, if  ∈ CFS, If ∃  f ∈CFS/{ if }, that 

satisfies the filtering of single-conditional independence 2, i.e., i[ ]f C f⊥ , then ( )f MB C∉ . 

Proof. When the filtering of single-conditional independence 2 is considered, the following holds: 

If if  is a new feature in CFS, ∃ f ∋ CFS, s.t. i[ ]f C f⊥ , and using Definition 2, we obtain the 
following: 

if CFS∈ , and features in the CFS are conditionally dependent on each other, s.t. 
| /{ }f C CSF f⊥ , and f ∉ MB(C). Therefore, Proposition 3 is proven. 

3.2.3. Filtering of Multi-Conditional Independence 

In filtering of single-conditional independence, if a feature is still not redundant, it is retained 
in the CFS. Therefore, we use the filtering of multi-conditional independence to identify surplus 
parts of redundant features in the CFS. After filtering of multi-conditional independence, the 
remaining features in the CFS become strongly relevant or non-redundant. 

Filtering of multi-conditional independence: When a new feature is merged into the CFS, 
filtering of multi-conditional independence is started. The filtering steps are as follows: 

Step (1): C is a class attribute; for each f ∈ CFS, Si ⊆  CFS/{f}, 
if ∃ Si, s.t. f ⊥ C|Si, then CFS = CFS/{f}.  
Step (2): If ∀ f ∈ CFS, Si ⊆  CFS/{f}, s.t. f ⊥ C|Si, return CFS. 

Proposition 4. For a class attribute, C, the candidate feature set CFS goes through filtering of 
multi-conditional independence. If ∀ f ∈ CFS, ∀ Si ⊆  CFS/{f}, s.t. i|f C S⊥ , then, f ∈ MB(C). 

Proof. Suppose CFS has already been filtered through the filtering of multi-conditional 
independence. ∀ f ∈ CFS, ∀ Si ⊆  CFS/{f}, s.t. i|f C S⊥ . Because the MB (C) is a subset of CFS, 
∃ Si = MB (C), s.t. | ( )f C MB C⊥ . According to Definition 2, if | ( )f C MB C⊥ , f∉ MB (C). Therefore, 
f ∈ MB(C). 

4. Online Streaming Feature Selection Algorithms 

4.1. The ConInd Algorithm and Analysis 

The ConInd framework is used with online feature selection for filtering of streaming features. 
We provide the detailed proposal of the ConInd algorithm, as illustrated in Figure 6. In the ConInd 

algorithm, CFS is a candidate feature set of current time, whereas if  is a new feature at time ti.  
Filtering 1: Filtering of null-conditional independence: In Steps 5 and 6, the filtering of 

null-conditional independence is executed. If if  is an irrelevant feature with a class attribute C, the 

feature if  is discarded. Otherwise, the feature if  is further used in the filtering of 
single-conditional independence. 

Filtering 2: Filtering of single-conditional independence: The filtering of single-conditional 
independence is orderly divided into two step categories: Steps 8–11 involve the filtering of 
single-condition independence 1, whereas Steps 12–15 involve the filtering of single-condition 
independence 2. 

 Filtering of single-conditional independence 1: For each feature in the CFS, we determine the 
conditional independence with the class attribute C. If ,f CFS∃ ∈  s.t. i | [ ]f C f⊥ , then discard 

if , because it is a redundant feature. Next, jump to Step 3 and continue to determine the next 
new feature i+1f . On the contrary, if ,f CFS∃ ∈ s.t.  i | [ ]f C f⊥ , then feature if  is 
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non-redundant with the class attribute C. The feature if  is then included in the CFS. It is 
validated through the filtering of single-conditional independence 2. 

 During the filtering of single-conditional independence 2: For the new feature if , the conditional 
independence of each feature in the CFS expected for if  is determined one feature at a time. If 

i i { } s.t.  | [ ]f CFS f f C f∈ − ⊥ , discard f from CFS and jump to Step 3. The reason is that f and C 
are conditionally independent under the condition of if . Therefore, the feature f is unnecessary 
if if  ∈ CFS. On the contrary, if i { } f CFS f∈ − , s.t. f ⊥ i| [ ]C f , the feature if  is kept in the 
CFS. Then, we continue filtering for multi-conditional independence. 

Algorithm: The ConInd algorithm Cost 

1: CFS  = {}; C;//CFS is a candidate feature set at current time; C is a 

class attribute; 

2: SF = {}; //SF is a selected feature set; 

3: repeat 

4:     if ← a new feature; // if is a new feature at time ti. 

/* filtering of null-conditional independence */ 

5:    if  i | []f C⊥    

6:        discard if ; //discard irrelevant features 

7:   else 

/* filtering of single-conditional independence 1*/ 

8:      if i, . .  | [ ]f CFS s t f C f∃ ∈ ⊥  

9:           discard if ; 

10:     else  

11:         i{ };CFS CFS f= ∪  

12:         /* filtering of single-conditional independence 2*/ 

13:           for i i { }   | [ ]each f CFS f s.t. f C f∈ − ⊥  

14:                { };CFS CFS f= −  

15:          endfor 

/* filtering of multi-conditional independence */ 

16:          for each  y CFS∈  

17:             if  { }  |subSet CFS y s.t. y C subSet∃ ⊆ − ⊥  

18:                -{ };CFS CFS y=  

19:             endif 

20:         endfor 

21:     endif 

22:  endif 

23: until no new feature or stopping criterion is met. 

24: SF = CFS; 

24: output SF. 

O(1) 
O(1) 
 
×|N| 
O(1) 
 
O(1) 
O(1) 
 
 
 
O(|CFS|) 
O(1) 
 
 
O(1) 
 
 
×|CFS| 
O(1) 
 
 
 
×|CFS| 
O(2|CFS|) 
O(1) 

 

 

 

 
 
 
O(1) 

Figure 6. The ConInd algorithm. 
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Filtering 3: Filtering of multi-conditional independence: As indicated in Steps 16–20, for the CFS, 
each feature f in the CFS, |y C subSet⊥ , is determined under the condition of subSet ⊆ CFS { }y− . 
If  |y C subSet⊥ , then feature y is redundant and is discarded from CFS. Through a continuous loop 
in Steps 16–20, all redundant features in the CFS are discarded due to the arrival of new features. 

The ConInd algorithm uses the notation i |f C S⊥ , S ⊆ CFS − { if }, to denote conditional 
independence. To evaluate i |f C S⊥ , ConInd uses the p-value returned by the G2 test for discrete 
data and Fisher’s z-test for continuous data to measure it, with a significance level of 0.05 or 0.01 
often used. In the present study, we set the significance level threshold value to 0.05. 

Assuming that α is a given significance level of 0.05 and ρ is the p-value returned, i |f C S⊥

defines the null hypothesis (H0). if  and C are conditionally independent given S, iff ρ > α. 

i |f C S⊥  defines the alternative hypothesis (H1). if  and C are non-conditionally independent 
given S, iff ρ ≤ α.  

4.2. The Time Complexity of ConInd 

The complexity of the ConInd algorithm depends on the test of null-conditional, 
single-conditional, and multi-conditional independence. It is assumed that |N| is the number of 
features that have arrived so far, |Ni| is the number of irrelevant features with the class attributes 
that have arrived so far, |M| is the number of remaining features before multi-conditional 
independence filtering, and |CSF| is the size of candidate feature sets that have arrived so far, as 
illustrated in Figure 6.  

Table 2 presents that the time complexity of filtering of single-conditional independence is 
obviously lower than multi-conditional independence with increasing |CFS|. The key advantage of 
the ConInd algorithm is that, in the phase of filtering single-conditional independence, some 
redundant features are filtered. Objectively, |CFS| and |M| become smaller in the phase of filtering 
multi-conditional independence, and the time complexity, O(|M||CFS|2|CFS|), is significantly 
reduced. 

Table 2. The time complexity in the phase of three-layer filtering. 

Phase of Filtering Cost 
null-conditional independence O(|N|) 

single-conditional independence O((|N| − |Ni|)|CFS|) 
multi-conditional independence O(|M||CFS|2|CFS|) 

The time complexity of ConInd is O(|N| + (|N| − |Ni|)|CFS| + |M||CFS|2|CFS|). The time 
complexity of ConInd is mainly determined by the parameters |N|, |Ni|, |M|, and |CFS|. If most 
elements in the feature set are irrelevant features, the time complexity of ConInd becomes close to 
O(|N|). |M| and |CFS|, particularly |CFS|, have the greatest impact on the ConInd algorithms. In 
general, the value of |CFS| is far less than |N| − |Ni|, and |N|, (|CFS| < |M| < |N| − |Ni| < |N|). 
Through three-layer filtering, it can be ensured that |M| is not very large. We will discuss the 
details in Section 5.2. With the continuous arrival of strong relevance features, the complexity of 
ConInd becomes very high. The larger the volumes of irrelevant and redundant features are, the 
faster the ConInd algorithm is. The worst-case complexity is O(|N| + |N||CFS| + |N||CFS|2|N|), 
where the size of the feature within the CFS is |N| in Step 17. Of course, this situation rarely exists.  

4.3. Analysis of Approximate Markov Blankets of ConInd 

We mine an approximate Markov blanket of the streaming feature for the following reasons: (1) 
To guarantee that the class attribute has a unique Markov blanket, the distribution of the dataset 
must be faithful [20,35]. However, many datasets from real-world applications may violate the 
faithful condition, and this makes the Markov blanket of a class attribute to be not unique [22]. (2) An 
optimal feature selection should select strongly relevant and non-redundant relevant features. 
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However, as features continuously arrive in a streaming fashion, it is difficult to find all the 
strongly relevant and non-redundant features [3]. Therefore, we only attempt to find an 
approximate Markov blanket. 

Through three-layer filtering, the ConInd algorithm discards many features from the CFS. The 
remaining features constitute elements of the selected feature set. According to Propositions 1–4, 
the discarded features do not belong to the Markov blanket of a class attribute. Obviously, the ConInd 
algorithm cannot move strongly relevant or non-redundant relevant features from the CFS. The 
ConInd algorithm can discard as many irrelevant and redundant features as possible. The set of 
selected features is called an approximate Markov blanket.  

5. Experiments and Analysis 

5.1. Experimental Setup 

We empirically evaluated the performance of the algorithms. All experiments were conducted 
on a computer with Intel (R) Xeon (R) CPU E3-1505M 3.0 GHz, 32 GB RAM. 

We tested representative algorithms of Alpha-investing and OSFS on the 14 benchmark datasets 
in Table 3. The arcene, colon, ionosphere, and leukemia datasets come from the NIPS 2003 feature 
selection challenge [8] and one frequently studied public microarray dataset (wdbc). We also 
downloaded the datasets from Causality Workbench, such as slyva, lung, cina0, reged1, lucas0, 
marti1, and lucap0. Cina0 is a marketing dataset derived from census data while reged1 is a 
genomics dataset that could be responsible for lung cancer. Marti1 is obtained from the data 
generative process of simulated genomic data. Lucas0 is a lung cancer simple set, whereas lucap0 is 
a lung cancer set with probes. They are used to model a medical application for the diagnosis, 
prevention, and cure of lung cancer. The number of features ranges from 11 to 10,000, and the 
number of samples varies from 72 to 145,252. In particular, the number of features in seven 
datasets—marti1, reged1, lung, prosate_GE, leukemia, arcene, and Smk_can_187—is larger than the 
number of samples. These 14 datasets cover a wide range of real-world application domains, 
including gene expressions, ecology, and casual discovery. This makes the construction of feature 
selection extremely challenging. We preprocessed the data, for example deleting similar columns in 
the leukemia dataset. 

Table 3. Summary of the benchmark datasets. 

Datasets # Size Dataset # Size 
wdbc 30 569 marti1 1024 500 
colon 2000 62 reged1 999 500 
lucas0 11 2000 lung 3312 203 
sylva 216 13,086 prosate_GE 5966 102 

ionosphere 34 351 leukemia 7066 72 
cina0 132 16,033 arcene 10,000 100 

lucap0 143 2000 Smk_can_187 19,993 187 
#, the number of features, Size, the number of instances. 

Our comparative study had the following design and compares the ConInd algorithm with two 
state-of-the-art online feature selection algorithms, namely Alpha-investing and OSFS, using 10-fold 
cross validation on each training dataset. The experiment was traced as follows: (1) analyzing the 
change in the number of features at every stage of running the ConInd; (2) comparing the prediction 
accuracy of ConInd with Alpha-investing and OSFS through some state-of-the-art classifiers, 
including Decision Tree, KNN, SVM, and Ensemble using their implementation provided in the 
MATLAB app tool; (3) analyzing the number of selected features and running time in different 
algorithms; and (4) analyzing changing trends in the numbers of selected features and running time 
in different ratios of the streaming features. 
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5.2. Number of Features through Filtering of Conditional Dependence in the ConInd Algorithm 

To observe the variation of number of features through every filtering phases, i.e., 
null-conditional independence, single-conditional independence, and multi-conditional 
independence, Table 4 summarizes the variation of number of features with the three-layer filtering 
of conditional independence in ConInd algorithm.  

In Table 4, we can observe that the elements of the candidate feature set gradually decrease 
under the three-layer filtering of conditional dependence. The filtering efficiency of ConInd 
increases with variation of feature number in the CFS. Moreover, the higher the dimension is, the 
more obvious the effect of ConInd is because, with the increase of feature scale, irrelevant features 
and redundant features will rapidly increase. For the five datasets of sylva, cina0, lucap0, reged1, 
and Lung, the number of selected features in the SF is greater than 10. This is because there are 
many features that are strongly relevant with class attribute in these datasets. For such datasets, the 
ConInd algorithm often has shorter running time than OSFS, especially for the datasets highlighted 
in bold. The reason is that most of the features have been filtered by the filtering of 
single-conditional independence. In the multi-conditional filtering phase, the size of filtering 
condition is relatively smaller than OSFS. We discuss the details in Section 5.3.2.  

Table 4. The number of features in filtering conditional independence. 

Datasets 
Number of Features (#) 

#IFS #NIC #SIC #MIC (SF) 
wdbc 30 24 6 3 
colon 2000 359 5 3 
lucas0 11 9 4 4 
sylva 216 77 52 24 

ionosphere 34 25 7 5 
cina0 132 106 57 30 

lucap0 143 94 49 40 
marti1 1024 1 1 1 
reged1 999 541 16 13 
Lung 3312 2318 212 35 

prosate_GE 5966 3182 24 4 
leukemia 7066 2019 47 8 

arcene 10,000 2666 13 6 
Smk_can_187 19,993 4924 55 9 

#, the number of selected features; #IFS, the number of initial feature space; #NIC, # via the filtering 
of Null-conditional dependence; #SIC, # through the filtering of Single-conditional dependence; 
#MIC, # through the filtering of Multi-conditional dependence; SF, selected feature of running 
algorithm. 

5.3. Comparison of ConInd with Two Online Algorithms 

The above algorithms were all implemented in LOFS (Library of Online streaming Feature 
Selection) [39], an open-source library of online feature selection streaming features in MATLAB. To 
evaluate selected features in the experiments, we used the following 12 classifiers: Decision Tree 
(Complex Tree, Medium Tree, and Simple Tree), SVM (Linear SVM, Quadratic SVM, and Cubic 
SVM), KNN (Fine KNN, Medium KNN, and Cubic KNN), and ENSEMBLE Classifiers (Bagged 
Trees, Subspace discriminant, and RUSBoosted Trees). The classifiers were integrated into the 
MATLAB app tool.  

To compare the performance of the proposed ConInd with existing streaming feature selection 
methods, we evaluated ConInd and its rivals based on prediction accuracy, sizes of selected feature 
sets, and running time. In the remaining sections, we present the following statistical comparisons 
to further analyze the prediction accuracy of ConInd.  
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5.3.1. Prediction Accuracy 

As illustrated in Figure 7, we summarize the prediction accuracy for the 12 classifiers on the 14 
datasets during online learning. The labels of the x-axis from 1 to 14 denote the datasets: (1) wdbc; 
(2) colon; (3) lucas0; (4) sylva; (5) ionosphere; (6) cina0; (7) lucap0; (8) marti1; (9) reged1; (10) Lung; 
(11) prosate_GE; (12) leukemia; (13) arcene; and (14) Smk_can_187. 

We conducted experiments on these datasets using G2 tests for discrete data and Fisher’s Z-test 
for continuous data at a significance level α = 0.05. The prediction accuracies of ConInd and OSFS 
were higher than that of Alpha-investing on 5–14 datasets in these classifiers. ConInd consistently 
achieved higher accuracy in all classifiers except for RUBSBoosted Trees. As shown in Figure 7, the 
accuracies of the classifiers were overtly reduced in the leukemia, marti1, and reged1 datasets. As 
shown in the three curves in Figure 7, we observed that Alpha-investing, OSFS, and ConInd have the 
same prediction accuracies in some datasets. There are seven datasets in ComplexTree, two in 
Medium Tree, four in SimpleTree, five in Liner SVM, four in Quadratic SVM, four in Cubic SVM, 
five in FineKNN, four in Medium KNN, four in Cubic KNN, four in Bagged Trees, four in Subspace 
discriminant, and three in RUBSBoosted Trees. Prediction accuracies for the wdbc, lucas0, and sylva 
datasets were equal, except for RUBSBoosted Trees, because they have the same respective selected 
features.  

 

Figure 7. Prediction accuracy of algorithms in the 14 datasets under different classifiers. 
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Table 5 presents the results of average accuracy in three different algorithms for the 14 datasets. 
For the average of Decision Tree, SVM, KNN, and ENSEMBLE, ConInd offers higher average 
accuracy (i.e., 88.79, 88.63, 9.76, and 88.61, respectively) than Alpha-investing (i.e., 83.74, 84.08, 83.2, 
and 82.3, respectively) does. The average classification accuracy of the features selected using the 
ConInd algorithm is the highest among the three algorithms. It is important to note that the average 
accuracy of ConInd is 5.62% higher than that of Alpha-investing. 

Table 5. Comparison of average prediction accuracies. 

Algorithm
s Average Accuracy for Classifiers in 14 the Datasets (%) 

Average 
Accuracy (%)  

Alpha-inves
ting 

Complex 
Tree 

Medium 
Tree 

Simple 
Tree 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

83.33 

 

83.89 84.14 83.18 86.34 85.13 80.78 

 
Decision Tree average: 83.74 SVM average: 84.08 

Fine 
KNN 

Medium 
KNN 

Cubic 
KNN 

Bagged 
Trees 

Subspace 
discriminant 

RUSBoosted 
Trees 

82.31 83.75 83.54 84.91 86.19 75.81 
KNN average: 83.2 ENSEMBLE average: 82.3  

OSFS 

Complex 
Tree 

Medium 
Tree 

Simple 
Tree 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

88.44 
 

88.22 88.58 88.62 90.44 87.60 87.64 
Decision Tree average: 88.47 SVM average: 88.56 

Fine 
KNN 

Medium 
KNN 

Cubic 
KNN 

Bagged 
Trees 

Subspace 
discriminant 

RUSBoosted 
Trees 

87.83 90.22 87.41 89.89 90.27 84.54  
KNN: 88.49 ENSEMBLE: 88.23   

ConInd 

Complex 
Tree 

Medium 
Tree 

Simple 
Tree 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

88.95 
 

89.14 89.19 88.05 90.94 87.50 87.46 
Decision Tree average: 88.79 SVM average: 88.63 

Fine 
KNN 

Medium 
KNN 

Cubic 
KNN 

Bagged 
Trees 

Subspace 
discriminant 

RUSBoosted 
Trees 

88.79 90.42 90.07 90.05 90.63 85.14  
KNN average: 89.76 ENSEMBLE average: 88.61  

In our experiments, we found that ConInd has better accuracy than Alpha-investing. As 
mentioned above, this is because Alpha-investing only evaluates each feature once instead of 
considering the redundancy of selected features. As a result, the prediction accuracy is low and 
unstable. Similarly, ConInd also shows slightly better average accuracy than OSFS. A possible 
explanation is that a few parts of strongly relevant features and non-redundant features may be 
discarded due to the characteristics of streaming features. 

5.3.2. The Number of Selected Features and Running Time 

To further analyze the performance of the three algorithms in the number of selected features 
and running time, Table 6 presents their performances in the 14 datasets.  
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Table 6. The number of selected features and running time. 

Datasets 
Algorithms 

Alpha-investing OSFS ConInd 
# Time # Time # Time 

wdbc 20 0.0138 3 0.1577 3 0.2201 
colon 1 0.0663 3 0.6778 3 8.6637 
lucas0 4 0.0008 4 0.0142 4 0.0304 
sylva 70 1.6717 18 247.9366 24 189.8111 

ionosphere 10 0.0147 4 0.1315 5 0.2215 
cina0 8 0.1046 22 721.3638 30 407.7689 

lucap0 10 0.0197 36 1.67×103 40 225.7368 
marti1 28 0.116 1 0.1081 1 0.1063 
reged1 1 0.0417 13 121.2839 13 63.9082 

lung 45 0.7523 11 420.5678 35 3.48×104 
prosate_GE 12 0.4308 3 7.7915 4 4.72×104 

leukemia 1 0.4346 3 12.7647 8 593.3249 
arcene 8 1.4139 5 20.8445 6 764.5764 

Smk_can_187 6 2.7929 4 42.8323 9 327.1579 
the ratio of average features number: # #( ) / #

A CC
−    = 242% 

#, the number of selected features; Time, running time; #
A  and #

C , respectively, the sum of # 

of Alpha-investing and ConInd. 

 A summary of the number of selected features of the algorithms 

As shown in Figure 7, we observed that the prediction accuracy of ConInd is higher than that of 
Alpha-investing and OSFS for most of the datasets. However, in Table 6, it is obvious that the number 
of selected features is greater in Alpha-investing than in ConInd and OSFS for many datasets. In the 14 
datasets, the ratio of the average number of features for Alpha-investing is 242% higher than that for 
ConInd. The can be attributed to the following reasons: 

(a) The predictive accuracy of Alpha-investing is low. This means that a part of the elements in 
Markov blanket cannot be obtained. 

(b) For the OSFS algorithm, during the redundant feature analysis phase, it is possible that 
non-redundant features are discarded under the condition of redundant features, resulting in 
low predictive accuracy and fewer features being selected. 

(c) For the ConInd algorithm, there are two aspects that account for the large number of selected 
features. On the one hand, ConInd significantly outperforms OSFS and Alpha-investing in mining 
the elements in the Markov blanket. It can find many more elements than OSFS in the Markov 
blanket. On the other hand, the number of #SIC is much smaller than the number of #NIC, as 
presented in Table 4. This also means that the size of the feature subset for the #SIC condition is 
smaller than the subset of #NIC. Therefore, there is a low possibility that the feature can be 
discarded.  

 A summary of running time of algorithms 

A summary of the performance of three algorithms in terms of running time is reported in 
Table 6. Obviously, Alpha-investing is much faster than OSFS and ConInd for all datasets. This is 
because Alpha-investing considers only new features that are added; the discarded features are never 
considered again. This also leads to generally low prediction accuracy (Figure 7), such as those for 
colon, lucap0, reged1, leukemia, and Smk_can_187 classifiers.  

The performances of ConInd and OSFS in terms of running time are significantly different. The 
results in Table 6 indicate that OSFS is much faster than ConInd on datasets wdbc, colon, lucas0, 
ionosphere, lung, prosate_GE, arcene, leukemia, and Smk_can_187. Conversely, ConInd is much 
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faster than OSFS on datasets sylva, cina0, lucap0, and reged1. These datasets are highlighted in bold. 
The differences arise from the feature relevance and the redundancy of the datasets. We find that the 
datasets in bold have more selected features (as indicated in Column 6 of Table 6); these datasets 
have low redundancy and high strong and weak relevance because the runtime for the two 
algorithms is significantly influenced by the size of candidate selected features. 

Table 7 presents that, when the datasets are lowly redundant and highly relevant, the average 
running time for ConInd is reduced by 53.56% compared to OSFS. This indicates that ConInd has 
perfect efficiency in terms of running time.  

Table 7. Variation in the ratio of running time for Alpha-investing and ConInd. 

Datasets 
Running Time 

TAv  (%)  TAverage Av  
TA TC 

sylva 247.9366 189.8111 −0.2344 

−0.5356 
cina0 721.3638 407.7689 −0.4347 

lucap0 1.43×107 225.7368 −0.9998 
reged1 121.2839 63.9082 −0.4731 

TA, running time of Alpha-investing; TC, running time of ConInd; ( ) /T A C AAv T T T= − , variation in 

the ratio of the running time. 

5.3.3. Variation in the Number of Features and Running Time with the Increase of Feature Ratio 

To further observe the variation in of number of features and running time in every filtering 
phase with the increase of the feature size, we ran these algorithms by step by step increasing the 
features size in 14 datasets.  

In the experiment, the running time was reported as execution time only. For comparison, all 
datasets were executed once in the same environment. We observed the variation ratio of the feature 
number by continuing to increase the incoming features from 20% to 100%, as presented in Table 8. 

Table 8. Variation in the number of selected features and running time with the ratio of feature 
space. 

Dataset Ratio 
# Time 

ConInd OSFS ConInd OSFS 
#NIC #SIC SF SF   

ionosphere 

25% 8 5 5 4 0.0222 0.0184 
50% 15 6 5 4 0.0855 0.0678 
75% 21 6 5 4 0.148 0.1078 
100% 25 7 5 4 0.2215 0.1315 

marti1 

25% 0 0 0 0 0.0235 0.0251 
50% 0 0 0 0 0.0446 0.0474 
75% 0 0 0 0 0.0673 0.0698 
100% 1 1 1 1 0.1063 0.1081 

leukemia 

25% 488 21 5 3 74.3909 3.6738 
50% 914 28 6 3 143.903 5.8859 
75% 1521 35 8 4 356.6957 9.9276 
100% 2019 47 9 3 593.3249 12.7647 

arcene 

25% 670 3 3 4 26.9589 1.6326 
50% 1354 8 5 4 111.864 6.8246 
75% 2017 11 6 3 259.0335 10.2471 
100% 2666 13 6 5 764.5764 20.8445 

cina0 25% 24 17 12 10 3.6124 3.8368 
50% 52 30 17 14 34.372 35.8382 
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75% 81 47 28 23 157.9134 263.1822 
100% 106 57 30 22 407.7689 721.3638 

sylva 

25% 22 17 12 10 4.3963 12.7006 
50% 36 24 15 13 13.3102 27.0316 
75% 55 39 22 18 53.8118 115.1798 
100% 77 52 24 18 189.8111 247.9366 

lucap0 

25% 24 18 16 15 2.4505 10.5797 
50% 50 38 32 26 32.2265 147.5867 
75% 68 44 36 30 88.2781 416.6544 
100% 94 49 40 36 225.7368 1.43×107 

reged1 

25% 6 1 1 2 0.0282 0.0299 
50% 15 3 3 4 0.0791 0.103 
75% 22 5 5 6 0.1639 0.2067 
100% 541 16 13 13 63.9082 121.2839 

Ratio, ratio of feature space #, the number of selected features; Time, runtime; Ratio, Ratio of feature 
number; SF, selected feature of the algorithm; #NIC, # through the filtering of null-conditional 
dependence; #SIC, # through the filtering of single-conditional dependence. 

At a ratio of 100% for incoming features, the changes in the features by filtering for the cina0, 
sylva, lucap0, and reged1 datasets were 106→57→30, 77→52→24, 94→49→40, and 541→16→13 
(Table 8). We observed that, from #NIC→#SIC→SF, there was a low range in the number of features, 
and more than 10 features were selected. This means that the datasets have low redundancy and 
high relevance. Similarly, we observed that, in the datasets for leukemia and arcene, the change of 
features by filtering was 2009→47 (2.3%) and 2666→13 (0.48%). The number of features declined 
rapidly, meaning that the features are highly redundant. For the datasets of ionosphere and marti1, 
the number of relevant features was only 25 and 1, respectively. Therefore, the running time for 
OSFS was lower than that for ConInd. This is because the filtering for single-conditional 
independence is not necessary for a few non-redundant features. For the first four datasets in Table 8, 
OSFS significantly outperformed ConInd over many datasets in terms of the number of selected 
features and running time. By contrast, it was observed that, to the right of the data in Table 8, 
ConInd significantly outperformed OSFS. The best result for the ConInd algorithm is highlighted in 
bold on the right side of Table 8. The representative datasets include sylva, cina0, lucap0, and reged1. 
The results indicate that the ConInd algorithm achieved better results than OSFS in candidate feature 
sets with low redundancy and high relevance. OFSF is suitable for high redundancy feature 
streaming and spare candidate feature sets. The encouraging results verify the efficacy of the ConInd 
algorithm for datasets with low redundancy and high relevance. 

As illustrated in Figure 8, ConInd outperformed OSFS on the cina0, sylva, lucap0, and reged1 
datasets. As the size of the features increased, the running time for OSFS increased rapidly, while 
the running time for ConInd remained stable. It can also be seen in Table 8 that the four datasets 
have very few redundant features. Meanwhile, there is higher number of SF in the two algorithms. 
The number of SF was more than 10, e.g., for OSFS, 18 for sylva, 22 for cina0, 36 for ucap0, and 13 
for reged1. For ConInd, the number change from #SIC to SF was 52→24, 57→30, 49→40, and 16→13 
for the sylva, cina0, lucap0, and reged1 datasets, respectively. 



Appl. Sci. 2018, 8, 2548 19 of 25 

 
Figure 8. The variation in running time with increase in ratio feature number in datasets with low 
redundancy and high relevance. 

As illustrated in Figure 9, OSFS outperformed ConInd on the ionosphere, leukemia, marti1, and 
arcene datasets. The running time for OSFS remained stable as the size of the features increased, 
while the running time for ConInd increased rapidly. It can also be seen in Table 8 that the four 
datasets have very few features in SF or many redundant features. Meanwhile, the number of SF for 
the two algorithms was less than 10; e.g., for OSFS, there are four for ionosphere, three for leukemia, 
one for marti1, and five for arcene. For ConInd, the number variation from #SIC to SF was 7→5, 
47→8, 1→1, and 13→6 for the ionosphere, leukemia, marti1, and arcene datasets, respectively. 

To sum up, Figure 8 shows that ConInd significantly improves performance in the aspect for 
running time while the datasets is lowly redundant and highly relevant. This is because the number 
of selected features is quite large in these datasets. This means that, compared with ConInd, OSFS 
will spend more time dealing with redundant features. In contrast, Figure 9 shows that, with the 
increase of feature size, ConInd is not suitable for processing the datasets with high redundancy and 
low relevance. The reason is that the filtering of single-conditional independence would spend 
some time. Instead, when the number of selected features is very small, OSFS uses very little time to 
process redundant features. Therefore, from the perspective of time performance, ConInd is more 
suitable for dealing with the datasets with low redundancy and high relevance. 
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Figure 9. The variation of running time with the increase of ratio feature number with high 
redundancy and low relevance. 

5.4. Comparison of ConInd with Two Markov Blanket Algorithms 

To observe the performance of the proposed ConInd algorithm in the aspect of mining Markov 
blankets, we compared ConInd with other methods of discovering Markov blankets, i.e., HITON_MB 
and OSFS. The HITON_MB is the first concrete algorithm that would find sets of direct causes or 
direct effects and Markov blankets in a scalable and efficient manner [20]. However, some error 
nodes may be introduced. The OSFS algorithm contains online relevance analysis and online 
redundancy analysis based on a Markov blanket criterion. The redundant features removed earlier 
remain redundant during the rest of the process when some features within its Markov blanket are 
later removed [16]. There is a distinct difference between these two families of algorithms: 
HITON_MB can only handle fixed feature sets. Therefore, we fixed feature sets instead of streaming 
features. The Probabilistic Network Learning Toolkit for Biomedical Discovery (Causal Explorer) [31] 
is the first comprehensive library for use in MATLAB that implements the HITON_MB algorithms 
for discovering Markov blankets. Meanwhile, ConInd and OSFS run datasets with streaming features. 
To compare HITON_MB with ConInd and OSFS, it is interesting and useful to compare them 
directly. According to the results of the algorithm, we mainly analyzed the following aspects: (1) 
degree of closeness among HITON_MB, OSFS, and ConInd; and (2) the reasons for the differences in 
the results of the Markov blankets. 

Table 9 presents the results of the number of selected features for ConInd, HITON_MB, and 
OSFS. We observed that HITON_MB has more selected features than those in ConInd and OSFS. This 
is because HITON_MB discovers the Markov blanket under fixed features, and mined features may 
not belong to nodes in its Markov blanket. Meanwhile, many error nodes will be produced in 
HITON_MB.  
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Table 9. The number of selected features of the three algorithms. 

Dataset HITON_MB OSFS ConInd 
wdbc 5 3 3 
colon 3 3 3 
lucas0 5 4 4 
sylva 64 18 24 

ionosphere 6 4 5 
cina0 66 22 30 

lucap0 79 36 40 
marti1 3 1 1 
reged1 24 13 13 
lung 97 11 35 

prosate_GE 6 3 4 
leukemia 7 3 8 

arcene 8 5 6 
Smk_can_187 11 4 9 

Tables 5 and 10 present the results of comparison of prediction accuracy. Although the number 
of selected features for ConInd is far less than that of HITON_MB, as indicated in Table A1, the 
prediction accuracies of ConInd are not significantly lower than those of HITON_MB. Meanwhile, 
these selected features for ConInd are approximately included in HITON_MB. Meanwhile, these 
features are indispensable to classification and prediction, and are strongly relevant or 
non-redundant to class attribute.  

Table 10. Average prediction accuracies of HITON_MB. 

Algorithms Average Accuracy for Classifiers in the 14 Datasets (%) Average 
Accuracy (%)  

HITON_M
B 

Complex 
Tree 

Medium 
Tree 

Simple 
Tree 

Linear 
SVM 

Quadratic 
SVM 

Cubic 
SVM 

89.51 

 

88.54 88.74 88.80 92.76 91.78 87.59 

 
Decision Tree average: 88.69 SVM average: 90.71 

Fine 
KNN 

Medium 
KNN 

Cubic 
KNN 

Bagged 
Trees 

Subspace 
discriminant 

RUSBoosted 
Trees 

89.11 90.98 90.56 88.61 91.61 85.00 
KNN average: 90.22 ENSEMBLE average: 88.41   

6. Conclusions 

We studied the online feature selection problem with streaming features. By employing 
multi-layer filtering strategies with conditional independence, we proposed an online learning 
algorithm called ConInd to reduce the dimensionality of streaming features by removing irrelevant 
and redundant features in real time. 

The proposed ConInd algorithm can output an approximate Markov blanket in a short running 
time, with high accuracy even when the streaming features have low redundancy and high 
relevance. Our empirical study demonstrated that: (1) ConInd has significant performance 
improvements in terms of accuracy prediction compared to Alpha-investing and OSFS. The average 
increase in accuracy prediction was 5.62% higher than that of Alpha-investing and 0.51% higher than 
that of OSFS. (2) ConInd offers perfect efficiency in terms of running time when the datasets have 
low redundancy and high relevance. The running time was reduced by an average of 53.56% 
compared to that of OSFS. (3) ConInd can retain as many features as possible in the Markov blanket, 
thus the features are not filtered.  
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Meanwhile, although ConInd obviously has high prediction accuracy, many features would 
also potentially be selected for some datasets. Therefore, it is necessary to conduct thorough 
theoretical analyses and empirical studies on the following: (1) how to obtain accurate Markov 
blankets; and (2) how to further improve the efficiency of ConInd in terms of running time. 

In addition, deep learning can be viewed as a high dimensional nonlinear data reduction 
scheme [40], which represents a pervasive tendency in today’s data analysis community. A deep 
learning model tries to learn the underlying structure of the feature space to learn a better 
representation of the feature. When the feature space grows over time, the challenges are shown in 
the following aspects: (1) in an online scenario, deep learning model would need to re-train 
everything when new features arrive; (2) if relevant features are introduced, uncertainty of the 
structure of the feature space increases; and (3) learning rate decay needs to be tuned again.  

Author Contributions: Conceptualization, D.Y. and X.W.; methodology, D.Y. and X.W.; validation, D.Y. and 
Z.C.; formal analysis, D.Y., X.W., Y.H. and X.Y.; investigation, D.Y., X.W. and S.D.; resources, X.W. and L.S.; 
data curtain, D.Y. and Z.C.; Writing—original draft preparation, D.Y., Y.H. and X.W. and X.Y.; and 
Writing—review and editing, D.Y., C.M. and S.D.  

Funding: This work was supported in part by the US National Science Foundation (NSF) under grant Nos. 
1613950 and 1763620, in part by the National Natural Science Foundation of China under grant No. 61772450, in 
part by Hebei Provincial Department of education scientific research program of China under grant No. 
QN2016073, in part by China Postdoctoral Science Foundation under grant No. 2018M631764, in part by Hebei 
Postdoctoral Research Program under grant No. B2018003009, in part by the Doctoral Fund of Yanshan 
University under grant Nos. BL18003, B906, and in part by Hebei Province Natural Science Foundation of China 
under grant Nos. F2017203307 and F2016203290. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Selected features in HITTON_MB, OSFS and ConInd. 

Datasets HITON_MB OSFS ConInd 
wdbc 12 22 23 27 28 22 23 28 22 23 28 

colon 513 765 1582 765 1582 1993 765 1423 1582 

lucas0 1 5 9 10 11 1 5 9 11 1 5 9 11 

sylva 

6 8 13 14 16 18 19 20 21 24 28 
29 30 37 39 42 46 49 50 52 54 
60 62 65 67 71 78 81 85 88 89 
93 95 99 100 102 107 110 111 
116 117 121 126 133 136 141 
152 170 171 173 175 176 180 
181 183 186 188 189 193 195 
198 202 209 216 

21 42 46 50 52 65 85 
89 93 100 111 171 
173 183 193 198 202 
216 

21 42 46 50 52 65 69 

85 89 93 99 100 111 

116 134 138 171 173 

183 186 193 198 202 

216 

ionosphere 1 3 5 8 17 34 1 3 5 8 1 3 5 7 8 

cina0 

2 3 6 9 10 12 13 14 16 17 18 
20 21 23 24 25 27 30 32 34 35 
36 37 39 40 41 45 46 48 51 52 
59 60 61 62 63 68 69 72 74 76 
78 79 81 87 88 90 91 94 95 96 
97 99 100 103 105 109 110 
113 114 115 121 122 125 127 
128 

9 12 13 18 21 25 39 
40 41 52 60 63 68 69 
76 79 88 90 96 110 
121 125 

9 12 13 18 25 35 39 

40 41 49 52 53 60 63 

68 69 76 77 79 88 90 

93 96 100 107 110 

121 123 124 125 

lucap0 
2 3 4 6 8 9 11 13 14 18 19 20 
22 24 25 26 28 30 31 35 38 42 
44 45 50 51 52 53 54 56 59 62 

2 6 8 22 24 26 38 42 
44 45 51 52 54 59 63 
64 69 70 73 78 79 84 

2 6 8 13 18 22 24 26 

27 38 41 42 44 45 51 
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63 64 66 67 69 70 71 73 74 75 
77 78 79 80 84 85 86 88 91 93 
94 96 101 105 108 112 113 
114 116 117 119 120 121 122 
123 124 125 126 132 133 134 
135 136 137 139 140 143  

85 91 93 94 113 116 
117 120 123 124 133 
137 139 143 

52 54 59 63 64 69 70 

73 78 79 84 85 91 93 

94 113 116 117 120 

123 124 133 137 139 

143 

marti1 997 998 999 998 998 

reged1 

26 83 251 312 321 335 344 
409 421 425 453 454 503 516 
561 593 594 739 780 825 904 
930 939 983 

83 251 321 344 409 
425 453 593 594 739 
825 930 939 

83 251 321 344 409 

425 453 593 594 739 

825 930 939 

Lung 

39 93 132 249 277 322 368 
436 486 491 498 499 510 524 
588 614 628 641 704 748 755 
777 792 883 892 930 936 1043 
1063 1074 1111 1137 1152 
1206 1273 1274 1293 1296 
1333 1358 1385 1405 1414 
1421 1457 1464 1471 1548 
1558 1562 1575 1687 1728 
1765 1767 1882 1934 1946 
1957 1974 1984 1987 2027 
2033 2045 2186 2223 2248 
2271 2308 2311 2331 2342 
2349 2369 2495 2513 2649 
2682 2701 2750 2759 2826 
2873 2879 2988 2997 3014 
3016 3028 3074 3083 3089 
3178 3190 3238 3246 

776 1405 1534 1982 
2045 2342 2548 2660 
2856 2949 3244 

368 776 786 792 

1266 1328 1405 1534 

1615 1791 1820 1836 

1871 1957 1982 2045 

2090 2294 2342 2428 

2430 2513 2548 2551 

2621 2660 2760 2772 

2949 2988 3091 3226 

3244 3279 3302 

prosate_GE 
2586 2935 4960 4978 5279 
5599 2586 4960 4978 2586 4163 4960 5599 

leukemia 
1300 1528 1536 4378 4542 
4866 

1528 1536 4378 1516 1528 1536 4378 

4853 4866 6360 6652 

arcene 
312 1184 1208 1552 3319 
4290 4352 5144 

1184 4352 9868 9970 
10,000 

1552 3319 4352 5144 
9234 

Smk_can_187 
1240 2658 3224 4736 5702 
8890 11,564 16,877 17,072 
19,653 19,821 

5702 16,877 17,072 
19,170 

5702 10,082 11,564 

13,492 14,552 16,877 

16,878 17,072 19,653 
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