

Appl. Sci. 2018, 8, 2548; doi:10.3390/app8122548 www.mdpi.com/journal/applsci

Article

Online Streaming Feature Selection via Conditional
Independence
Dianlong You 1,*, Xindong Wu 2, Limin Shen 1,*, Yi He 2, Xu Yuan 2, Zhen Chen 1, Song Deng 3 and
Chuan Ma 1

1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
zhenchen@ysu.edu.cn (Z.C.); tianyi_mc@126.com (C.M.)

2 School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA;
xwu@louisiana.edu (X.W.); C00275745@louisiana.edu (Y.H.); xu.yuan@louisiana.edu (X.Y.)

3 Institute of Advanced Technology, Nanjing University Post & Telecommunication, Nanjing 210003, China;
dengsong@njupt.edu.cn

* Correspondence: youdianlong@sina.com (D.Y.); shenllmm@sina.com (L.S.); Tel.: +86-335-805-7078(L.S.)

Received: 22 November 2018; Accepted: 5 December 2018; Published: 8 December 2018

Abstract: Online feature selection is a challenging topic in data mining. It aims to reduce the
dimensionality of streaming features by removing irrelevant and redundant features in real time.
Existing works, such as Alpha-investing and Online Streaming Feature Selection (OSFS), have been
proposed to serve this purpose, but they have drawbacks, including low prediction accuracy and
high running time if the streaming features exhibit characteristics such as low redundancy and
high relevance. In this paper, we propose a novel algorithm about online streaming feature
selection, named ConInd that uses a three-layer filtering strategy to process streaming features with
the aim of overcoming such drawbacks. Through three-layer filtering, i.e., null-conditional
independence, single-conditional independence, and multi-conditional independence, we can
obtain an approximate Markov blanket with high accuracy and low running time. To validate the
efficiency, we implemented the proposed algorithm and tested its performance on a prevalent
dataset, i.e., NIPS 2003 and Causality Workbench. Through extensive experimental results, we
demonstrated that ConInd offers significant performance improvements in prediction accuracy and
running time compared to Alpha-investing and OSFS. ConInd offers 5.62% higher average
prediction accuracy than Alpha-investing, with a 53.56% lower average running time compared to
that for OSFS when the dataset is lowly redundant and highly relevant. In addition, the ratio of the
average number of features for ConInd is 242% less than that for Alpha-investing.

Keywords: streaming feature; feature selection; conditional independence; markov blanket

1. Introduction

Feature selection [1-4] is the most referenced method for reducing dimensions of features. It can
efficiently combat the curse of dimensionality [5] by removing irrelevant and redundant features [6].
The final goal is to extract an “optimal subset” of features from the original features [3], so that the
classifiers can learn from it to improve prediction accuracy and achieve better time complexity
during classification. As an important direction for feature selection, streaming feature selection
(SFS) assumes that the number of training instances is fixed while the number of features increases
over time [2]. For the streaming feature, features flow in one at a time, and each feature is required to
be processed online upon arrival. However, all the features cannot be present in advance. Therefore,
traditional batch learning that assumes that the feature selection task is conducted in an off-line
learning fashion and that all features of the training instances are given a priori is not suitable [3].

Appl. Sci. 2018, 8, 2548 2 of 25

Recently, online selection of dynamic features has received significant attention [7]. In some
situations, online feature selection can be performed upon feature arrival where features arrive
sequentially over time, especially for online feature selection with streaming features (OSFSF) that
aim to provide complementary methodology for addressing high dimensional data [5]. The goal of
OSFSF is to process the streaming features dynamically using the incoming streaming features one
at a time [8-10]. There are several real-world application scenarios, such as streaming images
captured through CCTV [11], fleeting hashtags on Twitter [12], feature collection in
intrusion-detection systems [13], automatic classification of music genres in music television [14],
and monitoring and analysis of environments [15]. In these applications, feature dimensions keep
increasing while feature spaces become enlarged over time. Therefore, it is necessary to process
online feature selection in real time to reduce processing complexity.

There are several representative research efforts on OSFSF [16], e.g., Alpha-investing, OSFS, and
SAOLA, but their strategies suffer from limited prediction accuracy or running time if the streaming
features possess characteristics of low redundancy and high relevance, such as in real time medical
diagnosis [17]. For such streaming features, many selected features would be generated.
Experiments indicate that the existing methods highlighted above are restricted to such types of
streaming features. The Alpha-investing algorithm is unstable, and its prediction accuracy is
significantly low on most datasets [16]. It selects numerous features from a candidate feature set
because it does not re-evaluate the selected features. Hence, its performance is limited [6,16,18].
Although the OSFS algorithm offers high prediction accuracy in many datasets, its running time
increases exponentially with an increase in the number of features with low redundancy and high
relevance [6]. The SAOLA algorithm offers outstanding efficiency in running time and possesses few
features but has low prediction accuracy [19].

To address the limitations of the abovementioned works, we propose a novel online algorithm,
named ConInd, to process streaming features with low redundancy and high relevance. Unlike
existing OSFSF studies, we select a subset of relevant features through three-layer filtering according
to a conditional independence analysis to improve the prediction accuracy, reduce running time,
and reduce the number of features selected. We use a p-value to measure the conditional
independence between features within a class attribute to discard irrelevant and redundant features
from candidate feature sets. In addition, we regard the subset as an approximate Markov blanket. It is
well known that Markov blankets [20] provide minimal feature sets required for the classification of a
chosen response variable with maximum predictability. However, it is difficult to discover unique
Markov blankets in real-life datasets due to violation of the faithfulness condition [21,22]. Therefore,
we only try to find an approximate Markov blanket with streaming features . Our paper mainly aims
to solve the following challenges: (1) how to discover an approximate Markov blanket; (2) how to
provide effective mechanisms for discovering the pattern of running times with increasing feature
volumes; and (3) how to evaluate the performance of our algorithm and tackle its drawbacks.

The main contributions that distinguish the proposed method from existing methods are
threefold: (1) we propose the use of a three-layer filtering strategy to process streaming features to
filter irrelevant and redundant features, as presented in Section 3.2; (2) through three-layer filtering,
we can obtain an approximate Markov blanket in low running time with high accuracy, as
demonstrated in Section 4.3; and (3) we analyze the theoretical properties of the ConInd algorithm
and validate its empirical performance by conducting an extensive set of experiments, as presented
in Sections 4 and 5.

The rest of this paper is structured as follows. Section 2 surveys related work. Section 3
introduces the preliminaries, including important notations, definitions, and a framework for
filtering streaming features. Section 4 proposes our the ConInd algorithm and analyzes it. Section 5
contains our experimental results. Finally, Section 6 concludes the paper.

Appl. Sci. 2018, 8, 2548 3 of 25

2. Related Work

Feature selection is a simple, interpretable and especially necessary technique for handling
high dimensional data [1,3,23-26]. From the label perspective that illustrates whether label
information is involved in the selection phase, feature selection includes supervised, unsupervised,
and semi-supervised methods [3]. From the selection strategy perspective that describes how the
features are selected, it includes wrapper methods, filter methods, and embedded methods [2,3].
OSFSF is one of the most important branches of feature selection [27]. The number of features
changes over time, and it requires real time processing, rather than waiting for all features to arrive.
The representative works include Grafting [28], Alpha-investing [18], OSFS [6], OGFS [29] and
SAOLA [19].

Grafting [28] is an embedded feature selection approach that can discard various irrelevant and
redundant features. The grafting algorithm is based on an L1 regularized formulation. It can handle
streaming features but requires that the feature size be known so that it can obtain the value of the
regularization parameter λ [6].

Alpha-investing [18] can handle feature sets with infinite sizes. However, it only evaluates each
feature once instead of considering the redundancy of selected features. As a result, the prediction
accuracy is low and unstable [5].

OSFS [6] uses the G2 test to denote conditional independence or dependence and then
identifies irrelevant and redundant features. OSFS can remove irrelevant and redundant features
from streaming features. Therefore, it can select fewer features and obtain higher prediction
accuracy than Grafting and Alpha-investing when the volume of redundant features is high. It is
adaptive, enabling it to deal with extremely high dimensionality feature sets. Therefore, it
guarantees that strongly relevant features and non-redundant features can be selected as the
features stream one at a time as well as the removal of features that do not belong to its Marko
blanket. However, with an increasing number of selected features with weak relevance, the running
time grows exponentially [6].

OGFS [29] uses group structure information as a type of prior knowledge to select features. It
produces improved feature subsets using two stages: intra-group feature selection and inter-group
feature selection. However, OGFS needs to choose a small number of positive parameters in
advance, which is relatively difficult without prior information [5].

SAOLA [19] can handle feature spaces with extremely high dimensionality using the online
pairwise comparison strategy. SALOA filters out redundant features using the k-greedy search
strategy, but it cannot obtain an optimal value at the same time for the relevance threshold [5].

Causal feature selection has recently been proposed as an emerging filtering approach that is
successful in feature selection. In particular, the discovery of Markov blankets from Bayesian
networks for feature selection has attracted much attention. Tsamardinos and Aliferis bridged the
gap between the concepts of feature relevance in feature selection and Markov blanket in a Bayesian
network used for classification [30]. The algorithms include the Grow–Shrink (GS) [20], the Iterative
Associative Markov Blanket (IAMB) [31], HITON_MB [32], the max–min Markov blanket (MMMB) [33],
the target information equivalence (TIE*) [34], and the selection via group alpha-investing (SGAI)
[22].

TIE* algorithm can mine all Markov blankets under nonfaithful conditions. However, TIE*
mines multiple Markov blankets for causal discovery without missing causative variables and is not
yet customized for feature selection [22,34]. SGAI perform Markov blanket feature selection with
representative sets for classification under the nonfaithful condition, and outperforms the
state-of-the-art Markov blanket feature selectors [22].

For the above algorithms to discover Markov blankets, all features must be made available from
the beginning [20]. Meanwhile, the algorithms above cannot accurately find Markov blankets, leading
to the possibility that error nodes may be mined [22]. More crucially, in the context of streaming
features, the features are generated dynamically and arrive one at a time. The feature selection must
be done immediately in the course of generating the features. Thus, these algorithms are not
suitable for mining the Markov blankets of streaming features.

Appl. Sci. 2018, 8, 2548 4 of 25

Existing methods greatly relieve the burden of processing highly dimensional datasets.
However, in consideration of the above limitations, we propose an efficient framework for online
feature selection in a streaming feature space with low redundancy and high relevance. Based on
this framework, we develop a novel algorithm called ConInd.

3. Framework for Streaming Features Filtering

3.1. Notations, Definitions, and Formalizations

The entire feature set consists of four types of features: irrelevant, redundant, weakly relevant
but non-redundant, and strongly relevant features [6]. Strongly relevant features are indispensable
in the sense that they cannot be removed without loss of prediction accuracy. If a strongly relevant
feature is removed alone, it will result in performance deterioration of an optimal classifier. Weakly
relevant features can sometimes contribute to prediction accuracy. Therefore, they are divided into
non-redundant features and redundant features [6]. Irrelevant features are not necessary for
improving prediction accuracy [20]. A feature is irrelevant if it is not strongly or weakly relevant [3].
Definitions of these concepts are provided in Section 3.1.2.

In the feature selection process, the features selected for class attributes include an optimal
feature subset [20] that contains all non-redundant features and strongly relevant features [6]. The
optimal feature subset is called the Markov blanket of class attributes. The Markov blanket criterion
removes only attributes that are unnecessary, including completely irrelevant and redundant
features [35].

3.1.1. Notation Mathematical Meanings

Table 1 demonstrates symbols and notations used in this paper. In the present study, we
consider the problem of OSFSF for datasets with low redundancy and high relevance. S is the set of
feature spaces containing all available features under the streaming feature condition. Assuming
that fi denotes the ith input feature and a new incoming feature at time ti, CSFi−1 is the selected
feature set until time ti−1 (CSFi ⊂ S), and C is the class attribute [19]. Since we process one dimension
at a time, the research problem at any time ti is how to maintain a minimum size of a feature subset,
Si, online.

Table 1. Notation Mathematical meanings.

Notation Mathematical Meanings
Xi the data set at time ti, denoted as Xi = [x1, x2, ..., xn]T ∈ Rn×i
S the set of feature space under the streaming features
f a feature, f ∈ S
ti a time point of the ith arriving feature
fi the ith arriving feature at time ti

CFS candidate feature set at current time
C class attribute (target variable)

P(x) event probability of feature x
P(.|.) conditional probability
ρ a threshold
α significance levels of 0.05 or 0.01 in statistics

MB(C) Markov blanket of C
a ⊥ b a is independent of b

3.1.2. Definitions

Appl. Sci. 2018, 8, 2548 5 of 25

Definition 1 (Conditional Independence). In a variable set S, two random variables x, y ∈ S are

conditionally independent given a set of variables i \{ , }S S x y⊆ with respect to a probability distribution P,

iff there exists an assignment of x and y, s.t. i(| ,)P x y S = i(|)P x S , denoted as i|x y S⊥ .

Conditional independence is a generalization of the traditional notion of statistical
independence. If two variables x and y are independent, then the joint distribution is the product of
the marginal: P(x) = P(x) P(y), denoted as x y⊥ . If they are dependent given some conditioning set,
Si, then we can write P(x,y|Si) = P(x|Si) P(y|Si). Conditional independence is a key concept in
Bayesian networks because of the factorizations of the allowed joint probability distribution [36].

To characterize conditional independence, according to the elements size of Si in Definition 1,
we can divide conditional independence into three disjoint categories, namely null-conditional
independence (|Si| = 0), single-conditional independence (|Si| = 1), and multi-conditional
independence (|Si| > 1).

Definition 2 (Markov blanket). In a variable set S, the Markov blanket of a class attribute, C,

denoted as MB(C), is a minimal set of features. The MB(C) makes / (() { })s S MB C C∀ ∈ ∪ , s.t.
| ()s C MB C⊥ .

The Markov blanket of a node, C, denoted MB(C), is the set of parents, children, and children’s
parents of C. Using the Markov blanket for feature selection can eliminate conditionally independent
features without increasing our distance from the desired distribution. The Markov blanket criterion
only removes attributes that are unnecessary: attributes that are irrelevant to the target variable and
attributes that are redundant given other attributes [20].

Definition 3 (Strong relevance [6]). A feature x is strongly relevant to the class attribute, C, iff
i { }S S x∀ ⊆ − , s.t. i(| ,)P x S C .

Definition 4 (Weak relevance [6]). A feature x is weakly relevant to the class attribute, C, iff
i { }S S x∃ ⊆ − , s.t. (|P x i ,)S C .

Definition 5 (Redundant features [6]). A feature x is redundant to the class attribute, C, iff it is weakly
relevant to C and has a Markov blanket, MB(x), that is a subset of the Markov blanket of MB(C).

Definition 6 (Irrelevance [6]). A feature x is irrelevant to a class attribute, C, iff it is i { } S S x∀ ⊆ − ,
i(s.t. P S | ,)x C i= (|)P S C .

3.1.3. Formalization of Online Feature Selection with Streaming Features

In traditional feature selection, all candidate features are available before learning starts [37,38].
For streaming features, features are generated dynamically and arrive one by one. Hence, it is not
practical to wait until all features have been generated before feature selection begins [16]. In
OSFSF, the data stream is fixed, whereas features keep arriving, and each feature is evaluated upon
arrival. This poses great challenges to traditional feature selection approaches. A sketch of feature
stream with a fixed data stream is provided in Figure 1.

()P x | C≠

()P x | C≠

Appl. Sci. 2018, 8, 2548 6 of 25

Figure 1. A feature stream with a fixed data stream.

In Figure 1, let Xi represent the data set at time ti, denoted as Xi = [x1, x2, …, xn]T ∈ Rn×i, where n
is the number of samples, i is the number of features so far over an i-dimensional feature space, and
S = [f1, f2, …, fi]T ∈ Ri. Let C = [c1, c2, …, cm]T ∈ Rm denote the class label vector with m distinct class
labels. C denotes the class attribute, and at each time, ti, we just obtain feature fi of S but do not
know the exact number of i in advance. Therefore, the problem is to derive x to c mapping at each
time step. This is possible using a subset of the features that have arrived so far.

3.2. Framework for Filtering Conditional Independence

The feature selection process can be performed step by step, as illustrated in Figure 2,

assuming that the feature space is the set of all features before the arrival of new features if at

time it . Of course, we do not save this space, but we filter only the new features.

Figure 2. Features filtered using conditional dependence.

First, irrelevant features can be filtered through filtering of null-conditional dependence,
leaving only relevant features. Second, parts of redundant features are further discarded from
weakly relevant features through filtering of single-conditional dependence. Finally, the remaining
redundant features are further filtered through filtering of multi-conditional independence. As a
result, the remaining features are those that have been finally selected. The entire filtering process is
repeated with the advent of new features. The arrival of new features changes the result of the
selected features.

D
ata stream

Feature stream

f1……………………………

…
…
…
…
…
…
…
…
…
…

x1

xn

………………fi

Feature space

Features filtered by null-conditional

dependence

Features filtered by

single-conditional dependence
Selected feature

Appl. Sci. 2018, 8, 2548 7 of 25

In this section, we propose a framework for filtering conditional independence to deal with
data with streaming features, as illustrated in Figure 3.

Framework: The ConInd Framework
1. Initialization: class attribute C; candidate feature set: CFS; selected feature set =SF ∅ ;

2. Get a new feature, if , at time ti.

3. Filtering of null-conditional independence: If if is an irrelevant feature, discard if ; if not, enter
Step 4.

4. Filtering of single-conditional independence: Remove part of redundant features.

4.1 If if is a redundant feature in the filtering of single-conditional independence 1

condition, discard if ; if not, i{ }CFS CFS f= ∪ , enter Step 4.2.
4.2 If x ∈ CFS is a redundant feature in the filtering of single-conditional independence 2

condition, discard x from CFS; if not, enter Step 5.
5. Filtering of multi-conditional independence: Further remove redundant features in CFS in the

filtering of the multi-conditional independence condition.
6. Repeat Steps 2–5 until there are no new features or the stopping criterion is met.
7. When SF = CFS, output the selected features, SF.

Figure 3. The ConInd framework for feature selection via conditional independence.

The following features indicate the uniqueness of the ConInd framework compared to existing
algorithms. (1) ConInd employs three-layer filtering strategies with conditional independence to
filter streaming features. (2) ConInd can mine an approximate Markov blanket through filtering
irrelevant features and redundant features with a low time cost. At the same time, it can be used to
prove the approximate Markov blanket theoretically. (3) Among algorithms for feature selection from
streaming features, ConInd has significant performance improvements in terms of running time
when the datasets have low redundancy and high relevance.

3.2.1. Filtering of Null-Conditional Independence

We use the filtering of null-conditional independence to identify and remove irrelevant
features from streaming features. If an incoming feature is relevant to the class attribute C, the
feature is added into CFS. If not, the feature would be discarded due to its irrelevance with C.

Proposition 1. The features filtered by null-conditional independence are irrelevant features.

Proof. When one assumes (x, y) ∈ CFS, and considers Definitions 1 and 6, the following holds:
| [] (| ,[]) P(| []) (|) ()

(,)
 () (,) () P()

()

x y P x y x P x y P x

P x y
P x P x y P x y x y

P y

⊥ = =

 = = ⊥

Therefore, x and y are non-conditionally independent and irrelevant to each other.□

3.2.2. Filtering of Single-Conditional Independence

The selected features may become redundant with time. We use the filtering of
single-conditional independence to first remove parts of redundant features from a candidate
feature set CFS.

The filtering of single-conditional independence is divided into two stages in order: filtering of
single-conditional independence 1 and filtering of single-conditional independence 2.

Filtering of single-conditional independence 1: The single-conditional independence is
filtered under the condition of each feature in the CFS. The filtering process is as follows (Figure 4):

Step (1): Let CFS = {f1, f2, f3, f4, f5}; C is a class attribute, and f6 is a new feature.

Appl. Sci. 2018, 8, 2548 8 of 25

Step (2): For each fi ∈CFS, (i = 1, 2, …, 5), if ∃ fi, s.t. f6 ⊥ C|[fi,], then discard f6.
Step (3): Else CFS = CFS ∪ { f6 }.
Step (4): Return CFS.

When a new feature is added, every feature in the CFS element is used as a condition for
feature selection. Once conditional independence is met, the new feature will be discarded, as
illustrated in Figure 4.

Figure 4. Filtering of single-conditional independence 1.

Proposition 2. C is a class attribute, if is a new feature at time ti. If ∃ f ∈ CFS satisfies the filtering of

single-conditional independence 1, i.e., i []f C f⊥ , then .

Proof. When one considers filtering of single-conditional independence 1, the following holds:

If ∃ f ∋ CFS, s.t. i []f C f⊥ , through filtering of single-conditional independence 1, if CFS∉ ,

and using Definition 2, we obtain i / { }f S CFS C∈ ∪ s.t. i |f C CFS⊥ , S is a set of the feature space,
then, . Therefore, Proposition 2 is proven.

Filtering of single-conditional independence 2: The single-conditional independence is
filtered on the condition of a new feature. The filtering process is as follows (Figure 5):

Step (1): Let CFS = {f1, f2, f3, f4, f5, f7}, C is a class attribute, and f7 is a new feature that is already
added in the CFS through the filtering of single-conditional independence 1.

Step (2): For each fi (i = 1, 2, …, 5), if ∃ fi, s.t. fi ⊥ C|f7, then CFS = CFS/{fi}.
Step (3): Return CFS.

When a new feature is merged into CFS, it is used as a single condition to determine
independence with each of the other features in the CFS. Once conditional independence is met, the
other features in the CFS are discarded. For example, the features f3 and f5 are discarded, as
illustrated in Figure 5.

Figure 5. Filtering of single-conditional independence 2.

()if MB C∉

()if MB C∉

f 1 f 2 f 3 f 4 f 5

f 1 0 0 0 0 0

f 2 0 0 0 0 0

f 3 0 0 0 0 0

f 4 0 0 0 0 0

f 5 0 0 0 0 0

f 1 f 2 f 3 f 4 f 5 f 6

f 1 0 0 0 0 0

f 2 0 0 0 0 0

f 3 0 0 0 0 0

f 4 0 0 0 0 0

f 5 0 0 0 0 0

f 6 0 0 0 1

Single feature condition

Feature stream
ing

Feature stream
ing

Single feature condition

f 1 f 2 f 3 f 4 f 5

f 1 0 0 0 0 0

f 2 0 0 0 0 0

f 3 0 0 0 0 0

f 4 0 0 0 0 0

f 5 0 0 0 0 0

Single feature condition

Feature stream
ing

Single feature condition

Feature stream
ing

Appl. Sci. 2018, 8, 2548 9 of 25

Proposition 3. C is a class attribute, if is a new feature at time ti, if ∈ CFS, If ∃ f ∈CFS/{ if }, that

satisfies the filtering of single-conditional independence 2, i.e., i[]f C f⊥ , then ()f MB C∉ .

Proof. When the filtering of single-conditional independence 2 is considered, the following holds:

If if is a new feature in CFS, ∃ f ∋ CFS, s.t. i[]f C f⊥ , and using Definition 2, we obtain the
following:

if CFS∈ , and features in the CFS are conditionally dependent on each other, s.t.
| /{ }f C CSF f⊥ , and f ∉ MB(C). Therefore, Proposition 3 is proven.

3.2.3. Filtering of Multi-Conditional Independence

In filtering of single-conditional independence, if a feature is still not redundant, it is retained
in the CFS. Therefore, we use the filtering of multi-conditional independence to identify surplus
parts of redundant features in the CFS. After filtering of multi-conditional independence, the
remaining features in the CFS become strongly relevant or non-redundant.

Filtering of multi-conditional independence: When a new feature is merged into the CFS,
filtering of multi-conditional independence is started. The filtering steps are as follows:

Step (1): C is a class attribute; for each f ∈ CFS, Si ⊆ CFS/{f},
if ∃ Si, s.t. f ⊥ C|Si, then CFS = CFS/{f}.
Step (2): If ∀ f ∈ CFS, Si ⊆ CFS/{f}, s.t. f ⊥ C|Si, return CFS.

Proposition 4. For a class attribute, C, the candidate feature set CFS goes through filtering of
multi-conditional independence. If ∀ f ∈ CFS, ∀ Si ⊆ CFS/{f}, s.t. i|f C S⊥ , then, f ∈ MB(C).

Proof. Suppose CFS has already been filtered through the filtering of multi-conditional
independence. ∀ f ∈ CFS, ∀ Si ⊆ CFS/{f}, s.t. i|f C S⊥ . Because the MB (C) is a subset of CFS,
∃ Si = MB (C), s.t. | ()f C MB C⊥ . According to Definition 2, if | ()f C MB C⊥ , f∉ MB (C). Therefore,
f ∈ MB(C).

4. Online Streaming Feature Selection Algorithms

4.1. The ConInd Algorithm and Analysis

The ConInd framework is used with online feature selection for filtering of streaming features.
We provide the detailed proposal of the ConInd algorithm, as illustrated in Figure 6. In the ConInd

algorithm, CFS is a candidate feature set of current time, whereas if is a new feature at time ti.
Filtering 1: Filtering of null-conditional independence: In Steps 5 and 6, the filtering of

null-conditional independence is executed. If if is an irrelevant feature with a class attribute C, the

feature if is discarded. Otherwise, the feature if is further used in the filtering of
single-conditional independence.

Filtering 2: Filtering of single-conditional independence: The filtering of single-conditional
independence is orderly divided into two step categories: Steps 8–11 involve the filtering of
single-condition independence 1, whereas Steps 12–15 involve the filtering of single-condition
independence 2.

 Filtering of single-conditional independence 1: For each feature in the CFS, we determine the
conditional independence with the class attribute C. If ,f CFS∃ ∈ s.t. i | []f C f⊥ , then discard

if , because it is a redundant feature. Next, jump to Step 3 and continue to determine the next
new feature i+1f . On the contrary, if ,f CFS∃ ∈ s.t. i | []f C f⊥ , then feature if is

Appl. Sci. 2018, 8, 2548 10 of 25

non-redundant with the class attribute C. The feature if is then included in the CFS. It is
validated through the filtering of single-conditional independence 2.

 During the filtering of single-conditional independence 2: For the new feature if , the conditional
independence of each feature in the CFS expected for if is determined one feature at a time. If

i i { } s.t. | []f CFS f f C f∈ − ⊥ , discard f from CFS and jump to Step 3. The reason is that f and C
are conditionally independent under the condition of if . Therefore, the feature f is unnecessary
if if ∈ CFS. On the contrary, if i { } f CFS f∈ − , s.t. f ⊥ i| []C f , the feature if is kept in the
CFS. Then, we continue filtering for multi-conditional independence.

Algorithm: The ConInd algorithm Cost

1: CFS = {}; C;//CFS is a candidate feature set at current time; C is a

class attribute;

2: SF = {}; //SF is a selected feature set;

3: repeat

4: if ← a new feature; // if is a new feature at time ti.

/* filtering of null-conditional independence */

5: if i | []f C⊥

6: discard if ; //discard irrelevant features

7: else

/* filtering of single-conditional independence 1*/

8: if i, . . | []f CFS s t f C f∃ ∈ ⊥

9: discard if ;

10: else

11: i{ };CFS CFS f= ∪

12: /* filtering of single-conditional independence 2*/

13: for i i { } | []each f CFS f s.t. f C f∈ − ⊥

14: { };CFS CFS f= −

15: endfor

/* filtering of multi-conditional independence */

16: for each y CFS∈

17: if { } |subSet CFS y s.t. y C subSet∃ ⊆ − ⊥

18: -{ };CFS CFS y=

19: endif

20: endfor

21: endif

22: endif

23: until no new feature or stopping criterion is met.

24: SF = CFS;

24: output SF.

O(1)
O(1)

×|N|
O(1)

O(1)
O(1)

O(|CFS|)
O(1)

O(1)

×|CFS|
O(1)

×|CFS|
O(2|CFS|)
O(1)

O(1)

Figure 6. The ConInd algorithm.

Appl. Sci. 2018, 8, 2548 11 of 25

Filtering 3: Filtering of multi-conditional independence: As indicated in Steps 16–20, for the CFS,
each feature f in the CFS, |y C subSet⊥ , is determined under the condition of subSet ⊆ CFS { }y− .
If |y C subSet⊥ , then feature y is redundant and is discarded from CFS. Through a continuous loop
in Steps 16–20, all redundant features in the CFS are discarded due to the arrival of new features.

The ConInd algorithm uses the notation i |f C S⊥ , S ⊆ CFS − { if }, to denote conditional
independence. To evaluate i |f C S⊥ , ConInd uses the p-value returned by the G2 test for discrete
data and Fisher’s z-test for continuous data to measure it, with a significance level of 0.05 or 0.01
often used. In the present study, we set the significance level threshold value to 0.05.

Assuming that α is a given significance level of 0.05 and ρ is the p-value returned, i |f C S⊥

defines the null hypothesis (H0). if and C are conditionally independent given S, iff ρ > α.

i |f C S⊥ defines the alternative hypothesis (H1). if and C are non-conditionally independent
given S, iff ρ ≤ α.

4.2. The Time Complexity of ConInd

The complexity of the ConInd algorithm depends on the test of null-conditional,
single-conditional, and multi-conditional independence. It is assumed that |N| is the number of
features that have arrived so far, |Ni| is the number of irrelevant features with the class attributes
that have arrived so far, |M| is the number of remaining features before multi-conditional
independence filtering, and |CSF| is the size of candidate feature sets that have arrived so far, as
illustrated in Figure 6.

Table 2 presents that the time complexity of filtering of single-conditional independence is
obviously lower than multi-conditional independence with increasing |CFS|. The key advantage of
the ConInd algorithm is that, in the phase of filtering single-conditional independence, some
redundant features are filtered. Objectively, |CFS| and |M| become smaller in the phase of filtering
multi-conditional independence, and the time complexity, O(|M||CFS|2|CFS|), is significantly
reduced.

Table 2. The time complexity in the phase of three-layer filtering.

Phase of Filtering Cost
null-conditional independence O(|N|)

single-conditional independence O((|N| − |Ni|)|CFS|)
multi-conditional independence O(|M||CFS|2|CFS|)

The time complexity of ConInd is O(|N| + (|N| − |Ni|)|CFS| + |M||CFS|2|CFS|). The time
complexity of ConInd is mainly determined by the parameters |N|, |Ni|, |M|, and |CFS|. If most
elements in the feature set are irrelevant features, the time complexity of ConInd becomes close to
O(|N|). |M| and |CFS|, particularly |CFS|, have the greatest impact on the ConInd algorithms. In
general, the value of |CFS| is far less than |N| − |Ni|, and |N|, (|CFS| < |M| < |N| − |Ni| < |N|).
Through three-layer filtering, it can be ensured that |M| is not very large. We will discuss the
details in Section 5.2. With the continuous arrival of strong relevance features, the complexity of
ConInd becomes very high. The larger the volumes of irrelevant and redundant features are, the
faster the ConInd algorithm is. The worst-case complexity is O(|N| + |N||CFS| + |N||CFS|2|N|),
where the size of the feature within the CFS is |N| in Step 17. Of course, this situation rarely exists.

4.3. Analysis of Approximate Markov Blankets of ConInd

We mine an approximate Markov blanket of the streaming feature for the following reasons: (1)
To guarantee that the class attribute has a unique Markov blanket, the distribution of the dataset
must be faithful [20,35]. However, many datasets from real-world applications may violate the
faithful condition, and this makes the Markov blanket of a class attribute to be not unique [22]. (2) An
optimal feature selection should select strongly relevant and non-redundant relevant features.

Appl. Sci. 2018, 8, 2548 12 of 25

However, as features continuously arrive in a streaming fashion, it is difficult to find all the
strongly relevant and non-redundant features [3]. Therefore, we only attempt to find an
approximate Markov blanket.

Through three-layer filtering, the ConInd algorithm discards many features from the CFS. The
remaining features constitute elements of the selected feature set. According to Propositions 1–4,
the discarded features do not belong to the Markov blanket of a class attribute. Obviously, the ConInd
algorithm cannot move strongly relevant or non-redundant relevant features from the CFS. The
ConInd algorithm can discard as many irrelevant and redundant features as possible. The set of
selected features is called an approximate Markov blanket.

5. Experiments and Analysis

5.1. Experimental Setup

We empirically evaluated the performance of the algorithms. All experiments were conducted
on a computer with Intel (R) Xeon (R) CPU E3-1505M 3.0 GHz, 32 GB RAM.

We tested representative algorithms of Alpha-investing and OSFS on the 14 benchmark datasets
in Table 3. The arcene, colon, ionosphere, and leukemia datasets come from the NIPS 2003 feature
selection challenge [8] and one frequently studied public microarray dataset (wdbc). We also
downloaded the datasets from Causality Workbench, such as slyva, lung, cina0, reged1, lucas0,
marti1, and lucap0. Cina0 is a marketing dataset derived from census data while reged1 is a
genomics dataset that could be responsible for lung cancer. Marti1 is obtained from the data
generative process of simulated genomic data. Lucas0 is a lung cancer simple set, whereas lucap0 is
a lung cancer set with probes. They are used to model a medical application for the diagnosis,
prevention, and cure of lung cancer. The number of features ranges from 11 to 10,000, and the
number of samples varies from 72 to 145,252. In particular, the number of features in seven
datasets—marti1, reged1, lung, prosate_GE, leukemia, arcene, and Smk_can_187—is larger than the
number of samples. These 14 datasets cover a wide range of real-world application domains,
including gene expressions, ecology, and casual discovery. This makes the construction of feature
selection extremely challenging. We preprocessed the data, for example deleting similar columns in
the leukemia dataset.

Table 3. Summary of the benchmark datasets.

Datasets # Size Dataset # Size
wdbc 30 569 marti1 1024 500
colon 2000 62 reged1 999 500
lucas0 11 2000 lung 3312 203
sylva 216 13,086 prosate_GE 5966 102

ionosphere 34 351 leukemia 7066 72
cina0 132 16,033 arcene 10,000 100

lucap0 143 2000 Smk_can_187 19,993 187
#, the number of features, Size, the number of instances.

Our comparative study had the following design and compares the ConInd algorithm with two
state-of-the-art online feature selection algorithms, namely Alpha-investing and OSFS, using 10-fold
cross validation on each training dataset. The experiment was traced as follows: (1) analyzing the
change in the number of features at every stage of running the ConInd; (2) comparing the prediction
accuracy of ConInd with Alpha-investing and OSFS through some state-of-the-art classifiers,
including Decision Tree, KNN, SVM, and Ensemble using their implementation provided in the
MATLAB app tool; (3) analyzing the number of selected features and running time in different
algorithms; and (4) analyzing changing trends in the numbers of selected features and running time
in different ratios of the streaming features.

Appl. Sci. 2018, 8, 2548 13 of 25

5.2. Number of Features through Filtering of Conditional Dependence in the ConInd Algorithm

To observe the variation of number of features through every filtering phases, i.e.,
null-conditional independence, single-conditional independence, and multi-conditional
independence, Table 4 summarizes the variation of number of features with the three-layer filtering
of conditional independence in ConInd algorithm.

In Table 4, we can observe that the elements of the candidate feature set gradually decrease
under the three-layer filtering of conditional dependence. The filtering efficiency of ConInd
increases with variation of feature number in the CFS. Moreover, the higher the dimension is, the
more obvious the effect of ConInd is because, with the increase of feature scale, irrelevant features
and redundant features will rapidly increase. For the five datasets of sylva, cina0, lucap0, reged1,
and Lung, the number of selected features in the SF is greater than 10. This is because there are
many features that are strongly relevant with class attribute in these datasets. For such datasets, the
ConInd algorithm often has shorter running time than OSFS, especially for the datasets highlighted
in bold. The reason is that most of the features have been filtered by the filtering of
single-conditional independence. In the multi-conditional filtering phase, the size of filtering
condition is relatively smaller than OSFS. We discuss the details in Section 5.3.2.

Table 4. The number of features in filtering conditional independence.

Datasets
Number of Features (#)

#IFS #NIC #SIC #MIC (SF)
wdbc 30 24 6 3
colon 2000 359 5 3
lucas0 11 9 4 4
sylva 216 77 52 24

ionosphere 34 25 7 5
cina0 132 106 57 30

lucap0 143 94 49 40
marti1 1024 1 1 1
reged1 999 541 16 13
Lung 3312 2318 212 35

prosate_GE 5966 3182 24 4
leukemia 7066 2019 47 8

arcene 10,000 2666 13 6
Smk_can_187 19,993 4924 55 9

#, the number of selected features; #IFS, the number of initial feature space; #NIC, # via the filtering
of Null-conditional dependence; #SIC, # through the filtering of Single-conditional dependence;
#MIC, # through the filtering of Multi-conditional dependence; SF, selected feature of running
algorithm.

5.3. Comparison of ConInd with Two Online Algorithms

The above algorithms were all implemented in LOFS (Library of Online streaming Feature
Selection) [39], an open-source library of online feature selection streaming features in MATLAB. To
evaluate selected features in the experiments, we used the following 12 classifiers: Decision Tree
(Complex Tree, Medium Tree, and Simple Tree), SVM (Linear SVM, Quadratic SVM, and Cubic
SVM), KNN (Fine KNN, Medium KNN, and Cubic KNN), and ENSEMBLE Classifiers (Bagged
Trees, Subspace discriminant, and RUSBoosted Trees). The classifiers were integrated into the
MATLAB app tool.

To compare the performance of the proposed ConInd with existing streaming feature selection
methods, we evaluated ConInd and its rivals based on prediction accuracy, sizes of selected feature
sets, and running time. In the remaining sections, we present the following statistical comparisons
to further analyze the prediction accuracy of ConInd.

Appl. Sci. 2018, 8, 2548 14 of 25

5.3.1. Prediction Accuracy

As illustrated in Figure 7, we summarize the prediction accuracy for the 12 classifiers on the 14
datasets during online learning. The labels of the x-axis from 1 to 14 denote the datasets: (1) wdbc;
(2) colon; (3) lucas0; (4) sylva; (5) ionosphere; (6) cina0; (7) lucap0; (8) marti1; (9) reged1; (10) Lung;
(11) prosate_GE; (12) leukemia; (13) arcene; and (14) Smk_can_187.

We conducted experiments on these datasets using G2 tests for discrete data and Fisher’s Z-test
for continuous data at a significance level α = 0.05. The prediction accuracies of ConInd and OSFS
were higher than that of Alpha-investing on 5–14 datasets in these classifiers. ConInd consistently
achieved higher accuracy in all classifiers except for RUBSBoosted Trees. As shown in Figure 7, the
accuracies of the classifiers were overtly reduced in the leukemia, marti1, and reged1 datasets. As
shown in the three curves in Figure 7, we observed that Alpha-investing, OSFS, and ConInd have the
same prediction accuracies in some datasets. There are seven datasets in ComplexTree, two in
Medium Tree, four in SimpleTree, five in Liner SVM, four in Quadratic SVM, four in Cubic SVM,
five in FineKNN, four in Medium KNN, four in Cubic KNN, four in Bagged Trees, four in Subspace
discriminant, and three in RUBSBoosted Trees. Prediction accuracies for the wdbc, lucas0, and sylva
datasets were equal, except for RUBSBoosted Trees, because they have the same respective selected
features.

Figure 7. Prediction accuracy of algorithms in the 14 datasets under different classifiers.

Appl. Sci. 2018, 8, 2548 15 of 25

Table 5 presents the results of average accuracy in three different algorithms for the 14 datasets.
For the average of Decision Tree, SVM, KNN, and ENSEMBLE, ConInd offers higher average
accuracy (i.e., 88.79, 88.63, 9.76, and 88.61, respectively) than Alpha-investing (i.e., 83.74, 84.08, 83.2,
and 82.3, respectively) does. The average classification accuracy of the features selected using the
ConInd algorithm is the highest among the three algorithms. It is important to note that the average
accuracy of ConInd is 5.62% higher than that of Alpha-investing.

Table 5. Comparison of average prediction accuracies.

Algorithm
s Average Accuracy for Classifiers in 14 the Datasets (%)

Average
Accuracy (%)

Alpha-inves
ting

Complex
Tree

Medium
Tree

Simple
Tree

Linear
SVM

Quadratic
SVM

Cubic
SVM

83.33

83.89 84.14 83.18 86.34 85.13 80.78

Decision Tree average: 83.74 SVM average: 84.08

Fine
KNN

Medium
KNN

Cubic
KNN

Bagged
Trees

Subspace
discriminant

RUSBoosted
Trees

82.31 83.75 83.54 84.91 86.19 75.81
KNN average: 83.2 ENSEMBLE average: 82.3

OSFS

Complex
Tree

Medium
Tree

Simple
Tree

Linear
SVM

Quadratic
SVM

Cubic
SVM

88.44

88.22 88.58 88.62 90.44 87.60 87.64
Decision Tree average: 88.47 SVM average: 88.56

Fine
KNN

Medium
KNN

Cubic
KNN

Bagged
Trees

Subspace
discriminant

RUSBoosted
Trees

87.83 90.22 87.41 89.89 90.27 84.54
KNN: 88.49 ENSEMBLE: 88.23

ConInd

Complex
Tree

Medium
Tree

Simple
Tree

Linear
SVM

Quadratic
SVM

Cubic
SVM

88.95

89.14 89.19 88.05 90.94 87.50 87.46
Decision Tree average: 88.79 SVM average: 88.63

Fine
KNN

Medium
KNN

Cubic
KNN

Bagged
Trees

Subspace
discriminant

RUSBoosted
Trees

88.79 90.42 90.07 90.05 90.63 85.14
KNN average: 89.76 ENSEMBLE average: 88.61

In our experiments, we found that ConInd has better accuracy than Alpha-investing. As
mentioned above, this is because Alpha-investing only evaluates each feature once instead of
considering the redundancy of selected features. As a result, the prediction accuracy is low and
unstable. Similarly, ConInd also shows slightly better average accuracy than OSFS. A possible
explanation is that a few parts of strongly relevant features and non-redundant features may be
discarded due to the characteristics of streaming features.

5.3.2. The Number of Selected Features and Running Time

To further analyze the performance of the three algorithms in the number of selected features
and running time, Table 6 presents their performances in the 14 datasets.

Appl. Sci. 2018, 8, 2548 16 of 25

Table 6. The number of selected features and running time.

Datasets
Algorithms

Alpha-investing OSFS ConInd
Time # Time # Time

wdbc 20 0.0138 3 0.1577 3 0.2201
colon 1 0.0663 3 0.6778 3 8.6637
lucas0 4 0.0008 4 0.0142 4 0.0304
sylva 70 1.6717 18 247.9366 24 189.8111

ionosphere 10 0.0147 4 0.1315 5 0.2215
cina0 8 0.1046 22 721.3638 30 407.7689

lucap0 10 0.0197 36 1.67×103 40 225.7368
marti1 28 0.116 1 0.1081 1 0.1063
reged1 1 0.0417 13 121.2839 13 63.9082

lung 45 0.7523 11 420.5678 35 3.48×104
prosate_GE 12 0.4308 3 7.7915 4 4.72×104

leukemia 1 0.4346 3 12.7647 8 593.3249
arcene 8 1.4139 5 20.8445 6 764.5764

Smk_can_187 6 2.7929 4 42.8323 9 327.1579
the ratio of average features number: # #() / #

A CC
− = 242%

#, the number of selected features; Time, running time; #
A and #

C , respectively, the sum of #

of Alpha-investing and ConInd.

 A summary of the number of selected features of the algorithms

As shown in Figure 7, we observed that the prediction accuracy of ConInd is higher than that of
Alpha-investing and OSFS for most of the datasets. However, in Table 6, it is obvious that the number
of selected features is greater in Alpha-investing than in ConInd and OSFS for many datasets. In the 14
datasets, the ratio of the average number of features for Alpha-investing is 242% higher than that for
ConInd. The can be attributed to the following reasons:

(a) The predictive accuracy of Alpha-investing is low. This means that a part of the elements in
Markov blanket cannot be obtained.

(b) For the OSFS algorithm, during the redundant feature analysis phase, it is possible that
non-redundant features are discarded under the condition of redundant features, resulting in
low predictive accuracy and fewer features being selected.

(c) For the ConInd algorithm, there are two aspects that account for the large number of selected
features. On the one hand, ConInd significantly outperforms OSFS and Alpha-investing in mining
the elements in the Markov blanket. It can find many more elements than OSFS in the Markov
blanket. On the other hand, the number of #SIC is much smaller than the number of #NIC, as
presented in Table 4. This also means that the size of the feature subset for the #SIC condition is
smaller than the subset of #NIC. Therefore, there is a low possibility that the feature can be
discarded.

 A summary of running time of algorithms

A summary of the performance of three algorithms in terms of running time is reported in
Table 6. Obviously, Alpha-investing is much faster than OSFS and ConInd for all datasets. This is
because Alpha-investing considers only new features that are added; the discarded features are never
considered again. This also leads to generally low prediction accuracy (Figure 7), such as those for
colon, lucap0, reged1, leukemia, and Smk_can_187 classifiers.

The performances of ConInd and OSFS in terms of running time are significantly different. The
results in Table 6 indicate that OSFS is much faster than ConInd on datasets wdbc, colon, lucas0,
ionosphere, lung, prosate_GE, arcene, leukemia, and Smk_can_187. Conversely, ConInd is much

Appl. Sci. 2018, 8, 2548 17 of 25

faster than OSFS on datasets sylva, cina0, lucap0, and reged1. These datasets are highlighted in bold.
The differences arise from the feature relevance and the redundancy of the datasets. We find that the
datasets in bold have more selected features (as indicated in Column 6 of Table 6); these datasets
have low redundancy and high strong and weak relevance because the runtime for the two
algorithms is significantly influenced by the size of candidate selected features.

Table 7 presents that, when the datasets are lowly redundant and highly relevant, the average
running time for ConInd is reduced by 53.56% compared to OSFS. This indicates that ConInd has
perfect efficiency in terms of running time.

Table 7. Variation in the ratio of running time for Alpha-investing and ConInd.

Datasets
Running Time

TAv (%) TAverage Av
TA TC

sylva 247.9366 189.8111 −0.2344

−0.5356
cina0 721.3638 407.7689 −0.4347

lucap0 1.43×107 225.7368 −0.9998
reged1 121.2839 63.9082 −0.4731

TA, running time of Alpha-investing; TC, running time of ConInd; () /T A C AAv T T T= − , variation in

the ratio of the running time.

5.3.3. Variation in the Number of Features and Running Time with the Increase of Feature Ratio

To further observe the variation in of number of features and running time in every filtering
phase with the increase of the feature size, we ran these algorithms by step by step increasing the
features size in 14 datasets.

In the experiment, the running time was reported as execution time only. For comparison, all
datasets were executed once in the same environment. We observed the variation ratio of the feature
number by continuing to increase the incoming features from 20% to 100%, as presented in Table 8.

Table 8. Variation in the number of selected features and running time with the ratio of feature
space.

Dataset Ratio
Time

ConInd OSFS ConInd OSFS
#NIC #SIC SF SF

ionosphere

25% 8 5 5 4 0.0222 0.0184
50% 15 6 5 4 0.0855 0.0678
75% 21 6 5 4 0.148 0.1078
100% 25 7 5 4 0.2215 0.1315

marti1

25% 0 0 0 0 0.0235 0.0251
50% 0 0 0 0 0.0446 0.0474
75% 0 0 0 0 0.0673 0.0698
100% 1 1 1 1 0.1063 0.1081

leukemia

25% 488 21 5 3 74.3909 3.6738
50% 914 28 6 3 143.903 5.8859
75% 1521 35 8 4 356.6957 9.9276
100% 2019 47 9 3 593.3249 12.7647

arcene

25% 670 3 3 4 26.9589 1.6326
50% 1354 8 5 4 111.864 6.8246
75% 2017 11 6 3 259.0335 10.2471
100% 2666 13 6 5 764.5764 20.8445

cina0 25% 24 17 12 10 3.6124 3.8368
50% 52 30 17 14 34.372 35.8382

Appl. Sci. 2018, 8, 2548 18 of 25

75% 81 47 28 23 157.9134 263.1822
100% 106 57 30 22 407.7689 721.3638

sylva

25% 22 17 12 10 4.3963 12.7006
50% 36 24 15 13 13.3102 27.0316
75% 55 39 22 18 53.8118 115.1798
100% 77 52 24 18 189.8111 247.9366

lucap0

25% 24 18 16 15 2.4505 10.5797
50% 50 38 32 26 32.2265 147.5867
75% 68 44 36 30 88.2781 416.6544
100% 94 49 40 36 225.7368 1.43×107

reged1

25% 6 1 1 2 0.0282 0.0299
50% 15 3 3 4 0.0791 0.103
75% 22 5 5 6 0.1639 0.2067
100% 541 16 13 13 63.9082 121.2839

Ratio, ratio of feature space #, the number of selected features; Time, runtime; Ratio, Ratio of feature
number; SF, selected feature of the algorithm; #NIC, # through the filtering of null-conditional
dependence; #SIC, # through the filtering of single-conditional dependence.

At a ratio of 100% for incoming features, the changes in the features by filtering for the cina0,
sylva, lucap0, and reged1 datasets were 106→57→30, 77→52→24, 94→49→40, and 541→16→13
(Table 8). We observed that, from #NIC→#SIC→SF, there was a low range in the number of features,
and more than 10 features were selected. This means that the datasets have low redundancy and
high relevance. Similarly, we observed that, in the datasets for leukemia and arcene, the change of
features by filtering was 2009→47 (2.3%) and 2666→13 (0.48%). The number of features declined
rapidly, meaning that the features are highly redundant. For the datasets of ionosphere and marti1,
the number of relevant features was only 25 and 1, respectively. Therefore, the running time for
OSFS was lower than that for ConInd. This is because the filtering for single-conditional
independence is not necessary for a few non-redundant features. For the first four datasets in Table 8,
OSFS significantly outperformed ConInd over many datasets in terms of the number of selected
features and running time. By contrast, it was observed that, to the right of the data in Table 8,
ConInd significantly outperformed OSFS. The best result for the ConInd algorithm is highlighted in
bold on the right side of Table 8. The representative datasets include sylva, cina0, lucap0, and reged1.
The results indicate that the ConInd algorithm achieved better results than OSFS in candidate feature
sets with low redundancy and high relevance. OFSF is suitable for high redundancy feature
streaming and spare candidate feature sets. The encouraging results verify the efficacy of the ConInd
algorithm for datasets with low redundancy and high relevance.

As illustrated in Figure 8, ConInd outperformed OSFS on the cina0, sylva, lucap0, and reged1
datasets. As the size of the features increased, the running time for OSFS increased rapidly, while
the running time for ConInd remained stable. It can also be seen in Table 8 that the four datasets
have very few redundant features. Meanwhile, there is higher number of SF in the two algorithms.
The number of SF was more than 10, e.g., for OSFS, 18 for sylva, 22 for cina0, 36 for ucap0, and 13
for reged1. For ConInd, the number change from #SIC to SF was 52→24, 57→30, 49→40, and 16→13
for the sylva, cina0, lucap0, and reged1 datasets, respectively.

Appl. Sci. 2018, 8, 2548 19 of 25

Figure 8. The variation in running time with increase in ratio feature number in datasets with low
redundancy and high relevance.

As illustrated in Figure 9, OSFS outperformed ConInd on the ionosphere, leukemia, marti1, and
arcene datasets. The running time for OSFS remained stable as the size of the features increased,
while the running time for ConInd increased rapidly. It can also be seen in Table 8 that the four
datasets have very few features in SF or many redundant features. Meanwhile, the number of SF for
the two algorithms was less than 10; e.g., for OSFS, there are four for ionosphere, three for leukemia,
one for marti1, and five for arcene. For ConInd, the number variation from #SIC to SF was 7→5,
47→8, 1→1, and 13→6 for the ionosphere, leukemia, marti1, and arcene datasets, respectively.

To sum up, Figure 8 shows that ConInd significantly improves performance in the aspect for
running time while the datasets is lowly redundant and highly relevant. This is because the number
of selected features is quite large in these datasets. This means that, compared with ConInd, OSFS
will spend more time dealing with redundant features. In contrast, Figure 9 shows that, with the
increase of feature size, ConInd is not suitable for processing the datasets with high redundancy and
low relevance. The reason is that the filtering of single-conditional independence would spend
some time. Instead, when the number of selected features is very small, OSFS uses very little time to
process redundant features. Therefore, from the perspective of time performance, ConInd is more
suitable for dealing with the datasets with low redundancy and high relevance.

Appl. Sci. 2018, 8, 2548 20 of 25

Figure 9. The variation of running time with the increase of ratio feature number with high
redundancy and low relevance.

5.4. Comparison of ConInd with Two Markov Blanket Algorithms

To observe the performance of the proposed ConInd algorithm in the aspect of mining Markov
blankets, we compared ConInd with other methods of discovering Markov blankets, i.e., HITON_MB
and OSFS. The HITON_MB is the first concrete algorithm that would find sets of direct causes or
direct effects and Markov blankets in a scalable and efficient manner [20]. However, some error
nodes may be introduced. The OSFS algorithm contains online relevance analysis and online
redundancy analysis based on a Markov blanket criterion. The redundant features removed earlier
remain redundant during the rest of the process when some features within its Markov blanket are
later removed [16]. There is a distinct difference between these two families of algorithms:
HITON_MB can only handle fixed feature sets. Therefore, we fixed feature sets instead of streaming
features. The Probabilistic Network Learning Toolkit for Biomedical Discovery (Causal Explorer) [31]
is the first comprehensive library for use in MATLAB that implements the HITON_MB algorithms
for discovering Markov blankets. Meanwhile, ConInd and OSFS run datasets with streaming features.
To compare HITON_MB with ConInd and OSFS, it is interesting and useful to compare them
directly. According to the results of the algorithm, we mainly analyzed the following aspects: (1)
degree of closeness among HITON_MB, OSFS, and ConInd; and (2) the reasons for the differences in
the results of the Markov blankets.

Table 9 presents the results of the number of selected features for ConInd, HITON_MB, and
OSFS. We observed that HITON_MB has more selected features than those in ConInd and OSFS. This
is because HITON_MB discovers the Markov blanket under fixed features, and mined features may
not belong to nodes in its Markov blanket. Meanwhile, many error nodes will be produced in
HITON_MB.

Appl. Sci. 2018, 8, 2548 21 of 25

Table 9. The number of selected features of the three algorithms.

Dataset HITON_MB OSFS ConInd
wdbc 5 3 3
colon 3 3 3
lucas0 5 4 4
sylva 64 18 24

ionosphere 6 4 5
cina0 66 22 30

lucap0 79 36 40
marti1 3 1 1
reged1 24 13 13
lung 97 11 35

prosate_GE 6 3 4
leukemia 7 3 8

arcene 8 5 6
Smk_can_187 11 4 9

Tables 5 and 10 present the results of comparison of prediction accuracy. Although the number
of selected features for ConInd is far less than that of HITON_MB, as indicated in Table A1, the
prediction accuracies of ConInd are not significantly lower than those of HITON_MB. Meanwhile,
these selected features for ConInd are approximately included in HITON_MB. Meanwhile, these
features are indispensable to classification and prediction, and are strongly relevant or
non-redundant to class attribute.

Table 10. Average prediction accuracies of HITON_MB.

Algorithms Average Accuracy for Classifiers in the 14 Datasets (%) Average
Accuracy (%)

HITON_M
B

Complex
Tree

Medium
Tree

Simple
Tree

Linear
SVM

Quadratic
SVM

Cubic
SVM

89.51

88.54 88.74 88.80 92.76 91.78 87.59

Decision Tree average: 88.69 SVM average: 90.71

Fine
KNN

Medium
KNN

Cubic
KNN

Bagged
Trees

Subspace
discriminant

RUSBoosted
Trees

89.11 90.98 90.56 88.61 91.61 85.00
KNN average: 90.22 ENSEMBLE average: 88.41

6. Conclusions

We studied the online feature selection problem with streaming features. By employing
multi-layer filtering strategies with conditional independence, we proposed an online learning
algorithm called ConInd to reduce the dimensionality of streaming features by removing irrelevant
and redundant features in real time.

The proposed ConInd algorithm can output an approximate Markov blanket in a short running
time, with high accuracy even when the streaming features have low redundancy and high
relevance. Our empirical study demonstrated that: (1) ConInd has significant performance
improvements in terms of accuracy prediction compared to Alpha-investing and OSFS. The average
increase in accuracy prediction was 5.62% higher than that of Alpha-investing and 0.51% higher than
that of OSFS. (2) ConInd offers perfect efficiency in terms of running time when the datasets have
low redundancy and high relevance. The running time was reduced by an average of 53.56%
compared to that of OSFS. (3) ConInd can retain as many features as possible in the Markov blanket,
thus the features are not filtered.

Appl. Sci. 2018, 8, 2548 22 of 25

Meanwhile, although ConInd obviously has high prediction accuracy, many features would
also potentially be selected for some datasets. Therefore, it is necessary to conduct thorough
theoretical analyses and empirical studies on the following: (1) how to obtain accurate Markov
blankets; and (2) how to further improve the efficiency of ConInd in terms of running time.

In addition, deep learning can be viewed as a high dimensional nonlinear data reduction
scheme [40], which represents a pervasive tendency in today’s data analysis community. A deep
learning model tries to learn the underlying structure of the feature space to learn a better
representation of the feature. When the feature space grows over time, the challenges are shown in
the following aspects: (1) in an online scenario, deep learning model would need to re-train
everything when new features arrive; (2) if relevant features are introduced, uncertainty of the
structure of the feature space increases; and (3) learning rate decay needs to be tuned again.

Author Contributions: Conceptualization, D.Y. and X.W.; methodology, D.Y. and X.W.; validation, D.Y. and
Z.C.; formal analysis, D.Y., X.W., Y.H. and X.Y.; investigation, D.Y., X.W. and S.D.; resources, X.W. and L.S.;
data curtain, D.Y. and Z.C.; Writing—original draft preparation, D.Y., Y.H. and X.W. and X.Y.; and
Writing—review and editing, D.Y., C.M. and S.D.

Funding: This work was supported in part by the US National Science Foundation (NSF) under grant Nos.
1613950 and 1763620, in part by the National Natural Science Foundation of China under grant No. 61772450, in
part by Hebei Provincial Department of education scientific research program of China under grant No.
QN2016073, in part by China Postdoctoral Science Foundation under grant No. 2018M631764, in part by Hebei
Postdoctoral Research Program under grant No. B2018003009, in part by the Doctoral Fund of Yanshan
University under grant Nos. BL18003, B906, and in part by Hebei Province Natural Science Foundation of China
under grant Nos. F2017203307 and F2016203290.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Selected features in HITTON_MB, OSFS and ConInd.

Datasets HITON_MB OSFS ConInd
wdbc 12 22 23 27 28 22 23 28 22 23 28

colon 513 765 1582 765 1582 1993 765 1423 1582

lucas0 1 5 9 10 11 1 5 9 11 1 5 9 11

sylva

6 8 13 14 16 18 19 20 21 24 28
29 30 37 39 42 46 49 50 52 54
60 62 65 67 71 78 81 85 88 89
93 95 99 100 102 107 110 111
116 117 121 126 133 136 141
152 170 171 173 175 176 180
181 183 186 188 189 193 195
198 202 209 216

21 42 46 50 52 65 85
89 93 100 111 171
173 183 193 198 202
216

21 42 46 50 52 65 69

85 89 93 99 100 111

116 134 138 171 173

183 186 193 198 202

216

ionosphere 1 3 5 8 17 34 1 3 5 8 1 3 5 7 8

cina0

2 3 6 9 10 12 13 14 16 17 18
20 21 23 24 25 27 30 32 34 35
36 37 39 40 41 45 46 48 51 52
59 60 61 62 63 68 69 72 74 76
78 79 81 87 88 90 91 94 95 96
97 99 100 103 105 109 110
113 114 115 121 122 125 127
128

9 12 13 18 21 25 39
40 41 52 60 63 68 69
76 79 88 90 96 110
121 125

9 12 13 18 25 35 39

40 41 49 52 53 60 63

68 69 76 77 79 88 90

93 96 100 107 110

121 123 124 125

lucap0
2 3 4 6 8 9 11 13 14 18 19 20
22 24 25 26 28 30 31 35 38 42
44 45 50 51 52 53 54 56 59 62

2 6 8 22 24 26 38 42
44 45 51 52 54 59 63
64 69 70 73 78 79 84

2 6 8 13 18 22 24 26

27 38 41 42 44 45 51

Appl. Sci. 2018, 8, 2548 23 of 25

63 64 66 67 69 70 71 73 74 75
77 78 79 80 84 85 86 88 91 93
94 96 101 105 108 112 113
114 116 117 119 120 121 122
123 124 125 126 132 133 134
135 136 137 139 140 143

85 91 93 94 113 116
117 120 123 124 133
137 139 143

52 54 59 63 64 69 70

73 78 79 84 85 91 93

94 113 116 117 120

123 124 133 137 139

143

marti1 997 998 999 998 998

reged1

26 83 251 312 321 335 344
409 421 425 453 454 503 516
561 593 594 739 780 825 904
930 939 983

83 251 321 344 409
425 453 593 594 739
825 930 939

83 251 321 344 409

425 453 593 594 739

825 930 939

Lung

39 93 132 249 277 322 368
436 486 491 498 499 510 524
588 614 628 641 704 748 755
777 792 883 892 930 936 1043
1063 1074 1111 1137 1152
1206 1273 1274 1293 1296
1333 1358 1385 1405 1414
1421 1457 1464 1471 1548
1558 1562 1575 1687 1728
1765 1767 1882 1934 1946
1957 1974 1984 1987 2027
2033 2045 2186 2223 2248
2271 2308 2311 2331 2342
2349 2369 2495 2513 2649
2682 2701 2750 2759 2826
2873 2879 2988 2997 3014
3016 3028 3074 3083 3089
3178 3190 3238 3246

776 1405 1534 1982
2045 2342 2548 2660
2856 2949 3244

368 776 786 792

1266 1328 1405 1534

1615 1791 1820 1836

1871 1957 1982 2045

2090 2294 2342 2428

2430 2513 2548 2551

2621 2660 2760 2772

2949 2988 3091 3226

3244 3279 3302

prosate_GE
2586 2935 4960 4978 5279
5599 2586 4960 4978 2586 4163 4960 5599

leukemia
1300 1528 1536 4378 4542
4866

1528 1536 4378 1516 1528 1536 4378

4853 4866 6360 6652

arcene
312 1184 1208 1552 3319
4290 4352 5144

1184 4352 9868 9970
10,000

1552 3319 4352 5144
9234

Smk_can_187
1240 2658 3224 4736 5702
8890 11,564 16,877 17,072
19,653 19,821

5702 16,877 17,072
19,170

5702 10,082 11,564

13,492 14,552 16,877

16,878 17,072 19,653

References

1. Tang, J.; Alelyani, S.; Liu, H. Feature selection for classification: A review. Data Classif. Algorithms Appl.
2014, 37, doi:10.1201/b17320-3.

2. Kumar, V. Feature selection: A literature review. Smart Comput. Rev. 2014, 4, doi:10.1145/2740070.2626320.
3. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data

perspective. ACM Comput. Surv. (CSUR) 2017, 50, 94.
4. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective.

Neurocomputing 2018, 300, 70–79.
5. Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; Wu, X. Online learning from trapezoidal data

streams. IEEE Trans. Knowl. Data Eng. 2016, 28, 2709–2723.

Appl. Sci. 2018, 8, 2548 24 of 25

6. Wu, X.; Yu, K.; Ding, W.; Wang, H.; Zhu, X. Online feature selection with streaming features. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1178–1192.

7. Li, Y.; Li, T.; Liu, H. Recent advances in feature selection and its applications. Knowl. Inf. Syst. 2017, 53,
551-577.

8. Yu, K.; Ding, W.; Simovici, D.A.; Wang, H.; Pei, J.; Wu, X. Classification with streaming features: An
emerging-pattern mining approach. ACM Trans. Knowl. Discov. Data 2015, 9, 30.

9. Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online learning for matrix factorization and sparse coding. J. Mach.
Learn. Res. 2010, 11, 19–60.

10. Wang, J.; Zhao, P.; Hoi, S.C.; Jin, R. Online feature selection and its applications. IEEE Trans. Knowl. Data
Eng. 2014, 26, 698–710.

11. Jia, X.; Kuo, B.-C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013,
101, 676–697.

12. Xie, W.; Zhu, F.; Jiang, J.; Lim, E.-P.; Wang, K. Topicsketch: Real-time bursty topic detection from twitter.
IEEE Trans. Knowl. Data Eng. 2016, 28, 2216–2229.

13. Ashfaq, R.A.R.; Wang, X.-Z.; Huang, J.Z.; Abbas, H.; He, Y.-L. Fuzziness based semi-supervised learning
approach for intrusion detection system. Inf. Sci. 2017, 378, 484–497.

14. Medhat, F.; Chesmore, D.; Robinson, J. Automatic classification of music genre using masked conditional
neural networks. IEEE Int. Conf. Data Min. (ICDM) 2017, 979–984, doi:10.1109/ICDM.2017.125.

15. Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–
107.

16. Hu, X.G.; Zhou, P.; Li, P.P.; Wang, J.; Wu, X.D. A survey on online feature selection with streaming
features. Front. Comput. Sci. 2018, 12, 479–493.

17. Ni, J.; Fei, H.; Fan, W.; Zhang, X. Automated medical diagnosis by ranking clusters across the
symptom-disease network. In Proceedings of the 2017 IEEE International Conference on Data Mining
(ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 1009–1014.

18. Zhou, J.; Foster, D.; Stine, R.; Ungar, L. Streaming feature selection using alpha-investing. In Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
Chicago, IL, USA, 21–24 August 2005; ACM: New York, NY, USA, 2005; pp. 384–393.

19. Yu, K.; Wu, X.; Ding, W.; Pei, J. Scalable and accurate online feature selection for big data. ACM Trans.
Knowl. Discov. Data (TKDD) 2016, 11, 16.

20. Aliferis, C.F.; Statnikov, A.; Tsamardinos, I.; Mani, S.; Koutsoukos, X.D. Local causal and markov blanket
induction for causal discovery and feature selection for classification part i: Algorithms and empirical
evaluation. J. Mach. Learn. Res. 2010, 11, 171–234.

21. Yu, K.; Wu, X.; Zhang, Z.; Mu, Y.; Wang, H.; Ding, W. Markov blanket feature selection with non-faithful
data distributions. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining, Dallas,
TX, USA, 7–10 December 2013; pp. 857–866.

22. Yu, K.; Wu, X.; Ding, W.; Mu, Y.; Wang, H. Markov blanket feature selection using representative sets.
IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2775–2788.

23. Izmailov, R.; Lindqvist, B.; Lin, P. Feature selection in learning using privileged information. In
Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New
Orleans, LA, USA, 18–21 November 2017; pp. 957–963.

24. Kaul, A.; Maheshwary, S.; Pudi, V. Autolearn—Automated feature generation and selection. In
Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA,
18–21 November 2017; pp. 217–226.

25. Gheyas, I.A.; Smith, L.S. Feature subset selection in large dimensionality domains. Pattern Recognit. 2010,
43, 5–13.

26. Lin, Y.; Hu, Q.; Zhang, J.; Wu, X. Multi-label feature selection with streaming labels. Inf. Sci. 2016, 372, 256–
275.

27. Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; Wu, X. Towards mining trapezoidal data streams. In
Proceedings of the 2015 IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 14–17
November 2015; pp. 1111–1116.

28. Perkins, S.; Theiler, J. Online feature selection using grafting. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 592–599.

Appl. Sci. 2018, 8, 2548 25 of 25

29. Wang, J.; Wang, M.; Li, P.; Liu, L.; Zhao, Z.; Hu, X.; Wu, X. Online feature selection with group structure
analysis. IEEE Trans. Knowl. Data Eng. 2015, 27, 3029–3041.

30. Tsamardinos, I.; Aliferis, C.F. Towards principled feature selection: Relevancy, filters and wrappers. In
Proceedings of the Ninth International Workshop on Artificial Intelligence & Statistics, Key West, FL,
USA, 3–6 January 2003.

31. Aliferis, C.F.; Tsamardinos, I.; Statnikov, A.R.; Brown, L.E. Causal explorer: A causal probabilistic network
learning toolkit for biomedical discovery. In Proceedings of the International Conference on Mathematics
and Engineering Techniques in Medicine and Biological Scienes, Las Vegas, NV, USA, 23–26 June 2003;
pp. 371–376.

32. Aliferis, C.F.; Tsamardinos, I.; Statnikov, A. Hiton: A novel markov blanket algorithm for optimal variable
selection. AMIA Ann. Symp. Proc. 2003, 2003, 21.

33. Tsamardinos, I.; Aliferis, C.F.; Statnikov, A. Time and sample efficient discovery of markov blankets and
direct causal relations. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; ACM: New York, NY,
USA, 2003; pp. 673–678.

34. Statnikov, A.; Lytkin, N.I.; Lemeire, J.; Aliferis, C.F. Algorithms for discovery of multiple markov
boundaries. J. Mach. Learn. Res. 2013, 14, 499–566.

35. Yu, K.; Wu, X.; Wang, H.; Ding, W. Causal discovery from streaming features. In Proceedings of the 2010
IEEE 10th International Conference on Data Mining, Sydney, Australia, 13–17 December 2010; pp. 1163–
1168.

36. Pellet, J.-P.; Elisseeff, A. Using markov blankets for causal structure learning. J. Mach. Learn. Res. 2008, 9,
1295–1342.

37. Lim, Y.; Kang, U. Time-weighted counting for recently frequent pattern mining in data streams. Knowl. Inf.
Syst. 2017, 53, 391-422.

38. Chen, C.-C.; Shuai, H.-H.; Chen, M.-S. Distributed and scalable sequential pattern mining through stream
processing. Knowl. Inf. Syst. 2017, 53, 365-390.

39. Yu, K.; Ding, W.; Wu, X. Lofs: A library of online streaming feature selection. Knowl.-Based Syst. 2016, 113,
1–3.

40. Polson, N.G.; Sokolov, V. Deep learning: A bayesian perspective. Bayesian Anal. 2017, 12, 1275–1304.

© 2018 by the authors. Submitted for possible open access publication under the terms
and conditions of the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/).

