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Abstract: Understanding magnetooptics in cylindrical structures presents interest in the development
of magnetic sensor and nonreciprocal devices compatible with optical fibers. The present work studies
wave propagation in dielectric circular cylindrical structures characterized by magnetic permeability
and electric permittivity tensors at axial magnetization. The Helmholtz equations deduced from the
Maxwell equations in transverse circularly polarized representation provide electric and magnetic
fields. With the restriction to terms linear in off-diagonal tensor elements, these can be expressed
analytically. The results are applied to magnetooptic (MO) circular cylindrical waveguides with a
step refractive index profile. The nonreciprocal propagation is illustrated on waveguides with an
yttrium iron garnet (YIG) core and a lower refractive index cladding formed by gallium substituted
yttrium iron garnet (GaYIG) at the optical communication wavelength. The propagation distance
required for the isolator operation is about one hundred micrometers. The approach may be applied
to other structures of cylindrical symmetry in the range from microwave to optical frequencies.

Keywords: magnetooptical effect; Faraday effect; nonreciprocity; isolator

1. Introduction

Electromagnetic waves in magnetized media depend on magnetization and often show
nonreciprocal propagation. The phenomenon is exploited in sensors and devices such as waveguide
isolators, phase shifters, circulators, and modulators. Their operation can be explained by considering
circularly polarized (CP) transverse electromagnetic waves of opposite handedness (±) propagating in
infinite lossless uniformly magnetized media. In such media, the propagation vectors, k±, slightly
differ in magnitude and are both oriented parallel to the medium magnetization M, i.e., k‖M. Then
the CP waves represent eigenmodes, one pair in forward direction and another one in reversed
direction [1].

At oblique wave incidence in perpendicularly magnetized multilayers or in planar, cylindrical or
channel waveguides with axial M, the eigenmodes are no more CP waves [2–7]. In circular cylindrical
waveguides, the eigenmodes can only be approximated by decoupled CP waves, particularly in the
weak guidance limit [8–13]. The analysis of magnetic waveguide structures is often complex and,
in most cases, requires numerical methods [14–16]. In the microwave region, the effect of M is deduced
from the tensor nature of magnetic permeability with the scalar electric permittivity [17] while in
the near infrared and visible regions, the analysis assumes the tensor nature of electric permittivity
with magnetic permeability reduced to its vacuum value [18,19]. In both cases, the diagonal and
off-diagonal tensor elements are even and odd functions of M, respectively [18–23]. In the infrared
and visible spectral regions, a more rigorous treatment would account for the tensorial nature of both
material parameters [24–29].

The present work provides an analytical approach to the problems of circular cylindrical structures
displaying magnetooptic (MO) activity induced by axial magnetization. The approach covers the
frequency range from microwave to optical frequencies. The i-th medium in a cylindrically layered
structure is characterized by the magnetic permeability, µ̃(i), and electric permittivity, ε̃(i), tensors
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for axial M(i). The work represents an extension of a previous study on the Helmholtz equation in
isotropic cylindrical structures [30]. The final expressions provide insight into the trends and the
symmetry which are difficult to appreciate in the use of numerical methods. To the best of the author’s
knowledge, the problem was not treated before with the exception of a previous study on the Faraday
effect in optical fibers characterized by the gyroelectric dielectric permittivity tensors published by
Yoshino [12]. The study assumed CP eigenmodes, an approximation justified to some extent only in
the weak guiding limit.

The presentation is organized into five sections. The Helmholtz vector wave equations deduced
from the Maxwell equations in transverse circularly polarized (TCP) representation provide electric,
E(i), and magnetic, H(i), fields (Sections 2 and 3). With the restriction to terms linear in the off-diagonal
elements of ε̃(i) and µ̃(i), these can be expressed analytically as functions of circular cylindrical coordinates
$, ϕ, and z. The analysis results are applied to the simplest cylindrically layered structure, an optical fiber
with step refractive index profile, formed by a uniform core and a uniform cladding. The conditions for
waveguiding in the structure follow from the boundary conditions for E(i) and H(i) at the core—cladding
interface. These provide eigenvalue equations for pairs of longitudinal propagation constants, β±.
The difference β+ − β− characterizes the nonreciprocity. The nonreciprocal propagation is illustrated on
waveguides with yttrium iron garnet (Y3Fe3O12) core and lower refractive index cladding formed by
gallium substituted yttrium iron garnet (Y3Fe5−xGaxO12) at the optical communication wavelength of
1.55 µm (Section 4). The conclusions are briefly summarized in Section 5.

2. Maxwell Equations

For the time, t, dependence of harmonic waves propagating with the angular frequency, ω,
and described by a factor exp (jωt), the Maxwell equations in a linear medium (i) characterized by the
electric permittivity tensor, ε̃(i), and magnetic permeability tensor, µ̃(i), become

∇ × E(i) = −jωµ̃(i)H(i), (1a)

∇ × H(i) = jωε̃(i)E, (1b)

∇ ·
(

ε̃(i)E(i)
)

= 0, (1c)

∇ ·
(

µ̃(i)H(i)
)

= 0. (1d)

A linear homogeneous originally isotropic region (i) magnetically ordered parallel to the z-axis of
a Cartesian coordinate system is characterized by the electric permittivity tensor

ε̃(i) =




ε
(i)
0 −jε(i)1 0

jε(i)1 ε
(i)
0 0

0 0 ε
(i)
z


 (2a)

and by the magnetic permeability tensor

µ̃(i) =




µ
(i)
0 −jµ(i)

1 0

jµ(i)
1 µ

(i)
0 0

0 0 µ
(i)
z


 (2b)

For the electric and magnetic wave field vectors in TCP representation, where E(i)
± = E(i)

± ($, ϕ, z)

and H(i)
± = H(i)

± ($, ϕ, z), E(i)
z = E(i)

z ($, ϕ, z) and H(i)
z = H(i)

z ($, ϕ, z),
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E(i) ($, ϕ, z, t) =
(

e−jϕ$̂+E(i)
+ + ejϕ$̂−E(i)

− + E(i)
z ẑ
)

exp (jωt) , (3a)

H(i) ($, ϕ, z, t) =
(

e−jϕ$̂+H(i)
+ + ejϕ$̂−H(i)

− + H(i)
z ẑ
)

exp (jωt) , (3b)

the Maxwell curl equations in the transverse ($̂±) and axial (ẑ) components are given by

$̂+e−jϕ

[
− ∂E(i)

+

∂z
+ 2−1/2

(
∂

∂$
− j

1
$

∂

∂ϕ

)
E(i)

z

]
+ $̂−ejϕ

[
∂E(i)
−

∂z
− 2−1/2

(
∂

∂$
+ j

1
$

∂

∂ϕ

)
E(i)

z

]

+ 2−1/2 ẑ
[

1
$

E(i)
+ +

(
∂

∂$
+ j

1
$

∂

∂ϕ

)
E(i)
+ −

1
$

E(i)
− −

(
∂

∂$
− j

1
$

∂

∂ϕ

)
E(i)
−

]
(4a)

= −ω
(

e−jϕ $̂+µ
(i)
+ H(i)

+ + ejϕ $̂−µ
(i)
− H(i)

− + µ
(i)
z H(i)

z ẑ
)

,

and

$̂+e−jϕ

[
− ∂H(i)

+

∂z
+ 2−1/2

(
∂

∂$
− j

1
$

∂

∂ϕ

)
H(i)

z

]
+ $̂−ejϕ

[
∂H(i)
−

∂z
− 2−1/2

(
∂

∂$
+ j

1
$

∂

∂ϕ

)
H(i)

z

]

+ 2−1/2 ẑ
[

1
$

H(i)
+ +

(
∂

∂$
+ j

1
$

∂

∂ϕ

)
H(i)
+ −

1
$

H(i)
− −

(
∂

∂$
− j

1
$

∂

∂ϕ

)
H(i)
−

]
(4b)

= ω
(

e−jϕ $̂+ε
(i)
+ E(i)

+ + ejϕ $̂−ε
(i)
− E(i)
− + ε

(i)
z E(i)

z ẑ
)

,

where ε
(i)
± = ε

(i)
0 ± ε

(i)
1 , and µ

(i)
± = µ

(i)
0 ± µ

(i)
1 . The TCP unit vectors, $̂±, are related to the Cartesian

unit vectors x̂ and ŷ and to the circular cylindrical unit vectors $̂ and ϕ̂ according to

$̂± = 2−1/2 ($̂± jϕ̂) e±jϕ = 2−1/2 (x̂± jŷ) . (5)

From now, the factor exp (jωt) will be dropped out. Maxwell divergence equations provide

∇ · E(i) =
ε
(i)
1

ε
(i)
0

µzωH(i)
z −

ε
(i)
z − ε

(i)
0

ε
(i)
0

∂

∂z
E(i)

z , (6a)

∇ ·H(i) = −µ
(i)
1

µ
(i)
0

ε
(i)
z ωE(i)

z −
µ
(i)
z − µ

(i)
0

µ
(i)
0

∂

∂z
H(i)

z . (6b)

For the solutions proportional to e−jβz, where β denotes the axial (or longitudinal) propagation
constant, now for E(i)

± = E(i)
± ($, ϕ) and H(i)

± = H(i)
± ($, ϕ), E(i)

z = E(i)
z ($, ϕ) and H(i)

z = H(i)
z ($, ϕ), i.e.,

E(i) ($, ϕ, z) =
[
e−jϕ$̂+E(i)

+ + ejϕ$̂−E(i)
− + E(i)

z ẑ
]

e−jβz, (7a)

H(i) ($, ϕ, z) =
[
e−jϕ$̂+H(i)

+ + ejϕ$̂−H(i)
− + H(i)

z ẑ
]

e−jβz, (7b)

the transverse field components, E(i)
± and H(i)

± , can be expressed in terms of the axial (z) components,

E(i)
z and H(i)

z ,

E(i)
± =

−j2−1/2

ω2ε
(i)
± µ

(i)
± − β2

(
∂

∂$
∓ j

1
$

∂

∂ϕ

)(
βE(i)

z ± jωµ
(i)
z H(i)

z

)
, (8a)

H(i)
± =

−j2−1/2

ω2ε
(i)
± µ

(i)
± − β2

(
∂

∂$
∓ j

1
$

∂

∂ϕ

)(
βH(i)

z ∓ jωε
(i)
z E(i)

z

)
. (8b)
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3. Helmholtz Equations

The Helmholtz wave equations in anisotropic media follow from Equation (1) and take the
form [31]

∇×
[
µ̃(i)−1

(
∇× E(i)

)]
= ω2 ε̃(i)E(i), (9a)

∇×
[
ε̃(i)−1

(
∇×H(i)

)]
= ω2µ̃(i)H(i). (9b)

With restrictions to the terms of zero and first order in µ
(i)
1 � µ

(i)
0 and ε

(i)
1 � ε0 (including

µ
(i)
z ≈ µ

(i)
0 and ε

(i)
z ≈ ε0), the substitutions from Equation (4) provide

(
∇2 + ω2µ0ε0

) (
e−jϕ$̂+E+ + ejϕ$̂−E− + Ez ẑ

)

−ω
(

µ
(i)
0 ε

(i)
0

)1/2
(

ε
(i)
1

ε
(i)
0

+
µ
(i)
1

µ
(i)
0

)(
µ
(i)
0

ε
(i)
0

)1/2
∂

∂z

(
$̂+e−jϕ H+ + $̂−ejϕ H− + ẑHz

)
= 0, (10a)

and
(
∇2 + ω2µ0ε0

) (
e−jϕ$̂+H+ + ejϕ$̂−H− + Hz ẑ

)

+ω
(

µ
(i)
0 ε

(i)
0

)1/2
(

ε
(i)
1

ε
(i)
0

+
µ
(i)
1

µ
(i)
0

)(
ε
(i)
0

µ
(i)
0

)1/2
∂

∂z

(
$̂+e−jϕE+ + $̂−ejϕE− + ẑEz

)
= 0. (10b)

Here ∇2 denotes the Laplacian

∇2 =
∂2

∂$2 +
1
$

∂

∂$
+

1
$2

∂2

∂ϕ2 +
∂2

∂z2 .

The Helmholtz partial differential Equation (10) can be separated assuming the solutions

E(i)
ν ($, ϕ, z) =

[
e−jϕ$̂+E(i)

ν+ ($) + ejϕ$̂−E(i)
ν− ($) + E(i)

ν,z ($) ẑ
]

ej(νϕ−βz), (11a)

H(i)
ν ($, ϕ, z) =

[
e−jϕ$̂+H(i)

ν+ ($) + ejϕ$̂−H(i)
ν− ($) + H(i)

ν,z ($) ẑ
]

ej(νϕ−βz), (11b)

where ν is an integer. Then
∂

∂z
→ −jβ,

∂

∂ϕ
→ jν. The Helmholtz equation for the electric field becomes

$̂+e−jϕ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2ε
(i)
0 µ

(i)
0 − β2

)
− (ν− 1)2

$2

]
E(i)

ν+ + jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

ε
(i)
0

H(i)
ν+

}

+ $̂−ejϕ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2ε
(i)
0 µ

(i)
0 − β2

)
− (ν + 1)2

$2

]
E(i)

ν− + jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

ε
(i)
0

H(i)
ν−

}
(12a)

+ ẑ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2ε
(i)
0 µ

(i)
0 − β2

)
− ν2

$2

]
E(i)

ν,z + jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

ε
(i)
0

H(i)
ν,z

}
= 0.
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The corresponding Helmholtz equation for magnetic field is related to Equation (12a) by the
duality transformation, i.e., E→ ±H, H→ ∓E, and ε̃↔ µ̃. Then

$̂+e−jϕ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2µ
(i)
0 ε

(i)
0 − β2

)
− (ν− 1)2

$2

]
H(i)

ν+ − jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

µ
(i)
0

E(i)
ν+

}

+ $̂−ejϕ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2µ
(i)
0 ε

(i)
0 − β2

)
− (ν− 1)2

$2

]
H(i)

ν− − jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

µ
(i)
0

E(i)
ν−

}
(12b)

+ ẑ

{[(
d2

d$2 +
1
$

d
d$

)
+
(

ω2µ
(i)
0 ε

(i)
0 − β2

)
− ν2

$2

]
H(i)

ν,z − jβω
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

µ
(i)
0

E(i)
ν,z

}
= 0.

For ε
(i)
1 = 0 and µ

(i)
1 = 0, Equations (12a) and (12b) represents sets of ordinary Bessel equations

solved by cylindrical functions all with the same argument [30]. Equation (12a) [(12b)] contains small
terms linear in ε

(i)
1 and µ

(i)
1 proportional to the components of magnetic [electric] field. To eliminate

magnetic [electric] field from Equation (12a) [(12b)], the use is made of the following procedure. In the
approximation restricted to terms linear in µ

(i)
1 and ε

(i)
1 , the fields proportional to

(
ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

)

may be replaced by those in isotropic media where the solutions are given by cylindrical functions
Z (i)

ν

(
κ
(i)
0 $
)

and Z (i)
ν∓1

(
κ
(i)
0 $
)

, i.e.,

E(i)
ν± = A(i)

ν±Z
(i)
ν∓1

(
κ
(i)
0 $
)

, E(i)
ν,z = A(i)

ν,zZ (i)
ν

(
κ
(i)
0 $
)

, (13a)

H(i)
ν± = B(i)

ν±Z
(i)
ν∓1

(
κ
(i)
0 $
)

, H(i)
ν,z = B(i)

ν,zZ (i)
ν

(
κ
(i)
0 $
)

. (13b)

Here A(i)
ν± and A(i)

ν,z denote the amplitudes of the cylindrical functions characterizing CP and z

components of the electric field and B(i)
ν± and B(i)

ν,z denote the amplitudes of the cylindrical functions
characterizing CP and z components of the magnetic field. The isotropic transverse propagation

constant is given by κ
(i)
0 = ω

(
µ
(i)
0 ε

(i)
0 − β2

0

)1/2
. The fields are proportional to the factor exp (−jβ0z),

where β0 represents the longitudinal propagation constant in an isotropic medium. Relations among
the amplitudes in isotropic media summarized in Appendix A follow from the Maxwell equations in
TCP cylindrical coordinate system [30].

Consequently, the magnetic field (electric field) components ∝
(

ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

)
in

Equuation (12), i.e., in the equations for the electric field (magnetic field) can be taken as proportional
to electric field (magnetic field) components

H(i)
z = −jp(i)z E(i)

z , H(i)
± = −jp(i)± E(i)

± , (14a)

E(i)
z = jq(i)z H(i)

z , E(i)
± = jq(i)± H(i)

± . (14b)

The use of Equation (14) transforms Equation (12) to sets of coupled ordinary Bessel equations.
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With the abbreviations, using κ(i)2 = ω2µ
(i)
0 ε

(i)
0 − β2,

η
(i)2
z = κ(i)2 + β0ω

ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

ε
(i)
0

p(i)z , (15a)

η
(i)2
± = κ(i)2 + β0ω

ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

ε
(i)
0

p(i)± , (15b)

χ
(i)2
z = κ(i)2 + β0ω

ε
(i)
1 µ

(i)
0 + µ1ε

(i)
0

µ
(i)
0

q(i)z , (15c)

χ
(i)2
± = κ(i)2 + β0ω

ε
(i)
1 µ

(i)
0 + µ

(i)
1 ε

(i)
0

µ
(i)
0

q(i)± , (15d)

Equation (12) can be expressed in a more concise form,

$̂+e−jϕ

{(
d2

d$2 +
1
$

d
d$

)
E(i)
+ +

[
η
(i)2
+ − (ν− 1)2

$2

]
E(i)
+

}

+ +$̂−ejϕ

{(
d2

d$2 +
1
$

d
d$

)
E(i)
− +

[
η
(i)2
− − (ν + 1)2

$2

]
E(i)
−

}
(16a)

+ ẑ
[(

d2

d$2 +
1
$

d
d$

)
E(i)

z +

(
η
(i)2
z − ν2

$2

)
E(i)

z

]
= 0,

and

$̂+e−jϕ

{(
d2

d$2 +
1
$

d
d$

)
H(i)
+ +

[
χ
(i)2
+ − (ν− 1)2

$2

]
H(i)
+

}

+ +$̂−ejϕ
{(

d2

d$2 +
1
$

d
d$

)
H(i)
− +

[
χ
(i)2
− − 1

$2 (ν + 1)2
]

H(i)
−

}
(16b)

+ ẑ
[(

d2

d$2 +
1
$

d
d$

)
H(i)

z +

(
χ
(i)2
z − ν2

$2

)
H(i)

z

]
= 0.

Their solutions consist of cylindrical functions, Z (i)
ν , with the arguments different from those in

isotropic media. The solutions can be written as

E(i)
ν ($, ϕ, z) = e−jϕ$̂+A(i)

ν+Z
(i)
ν−1

(
η
(i)
+ $
)
+ ejϕ$̂−A(i)

ν−Z
(i)
ν+1

(
η
(i)
− $
)
+ A(i)

ν,zZ (i)
ν

(
η
(i)
z $
)

ẑ, (17a)

H(i)
ν ($, ϕ, z) = e−jϕ$̂+B(i)

ν+Z
(i)
ν−1

(
χ
(i)
+ $
)
+ ejϕ$̂−B(i)

ν−Z
(i)
ν+1

(
χ
(i)
− $
)
+ B(i)

ν,zZ (i)
ν

(
χ
(i)
z $
)

ẑ, (17b)

Here, the factor exp[j(νϕ − βz)] was dropped out. The relations among the amplitudes are
given by Equation (4). In particular, according to Equation (8), the TCP components E(i)

ν± and H(i)
ν± in

Equation (11) can conveniently be expressed in terms of A(i)
ν,z and B(i)

ν,z,

E(i)
ν± =

2−1/2

κ
(i)2
±

[
ωµ

(i)
± B(i)

ν,zχ
(i)
z Z (i)

ν∓1

(
χ
(i)
z $
)
∓ jβA(i)

ν,zη
(i)
z Z (i)

ν∓1

(
η
(i)
z $
)]

, (18a)

H(i)
ν± =

2−1/2

κ
(i)2
±

[
−ωε

(i)
± A(i)

ν,zη
(i)
z Z (i)

ν∓1

(
η
(i)
z $
)
∓ jβB(i)

ν,zχ
(i)
z Z (i)

ν∓1

(
χ
(i)
z $
)]

, (18b)

where κ
(i)2
± = ω2µ

(i)
± ε

(i)
± − β2.
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4. A Simple Cylindrically Layered Structure

The structure consists of a core in the region 0 ≤ $ ≤ a characterized by ε̃(1) and µ̃(1), and a
cladding in the region a ≤ $ characterized by ε̃(2) and µ̃(2) (Figure 1). To operate as a waveguide,
the general solutions, Equation (17), of Equation (16) are replaced in the core by a set of Bessel
functions of first kind, i.e., Z (1)

ν

(
χ
(1)
z $

)
= Jν

(
χ
(1)
z $

)
and Z (1)

ν

(
η
(1)
z $

)
= Jν

(
η
(1)
z $

)
. In the cladding,

the acceptable solutions are given by a set of modified Bessel functions of third kind deduced

from Z (2)
ν

(
χ
(2)
z $

)
= j−ν−1 2

π
Kν(ξ

(2)
z $) and Z (2)

ν

(
η
(2)
z $

)
= j−ν−1 2

π
Kν

(
ζ
(2)
z $

)
for η

(2)
z = jζ(2)z and

χ
(2)
z = jξ(2)z . It is convenient to introduce the effective index of refraction, N = βλvac/ (2π), the relative

magnetic permeability, κ
(i)
m± = µ

(i)
± /µvac, and the relative electric permittivity, κ

(i)
e± = ε

(i)
± /εvac.

The squared transverse propagation, κ2
±, and attenuation, γ2

±, constants are defined as,

κ
(1)2
± =

(
2π

λvac

)2 (
κ
(1)
m±κ

(1)
e± − N2

)
≡ κ2

±, (19a)

κ
(2)2
± =

(
2π

λvac

)2 (
κ
(2)
m±κ

(2)
e± − N2

)
≡ −γ2

±. (19b)

MMM
µ̃(1)

ε̃(1)
µ̃(2)

ε̃(2)ϕ

a

ẑ

ρ̂
ϕ̂

x

y

z

�
Figure 1. Dielectric circular cylindrical waveguide with the axial magnetization, M, in a circular
cylinder coordinate system with the unit vectors $̂, ϕ̂, and ẑ. A field point is specified by $ =

√
x2 + y2,

ϕ, and z. The core region of the radius a, $ ≤ a, is characterized by the permeability and permittivity
tensors, µ̃(1) and ε̃(1). The cladding region, $ ≥ a, is characterized by the permeability and permittivity
tensors, µ̃(2) and ε̃(2).

The symbols λvac, µvac, and εvac denote the radiation wavelength, magnetic permeability,
and electric permittivity in a vacuum, respectively. Deduced from the boundary conditions at the
interface $ = a, the eigenvalue equation takes the form,
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N2

{
Kν

(
ζ
(2)
z a

) [ 1
κ2
+

Jν−1

(
η
(1)
z a

)
+

1
κ2
−
Jν+1

(
η
(1)
z a

)]
η
(1)
z

−Jν

(
η
(1)
z a

) [ 1
γ2
+

Kν−1(ζ
(2)
z a)− 1

γ2
−
Kν+1(ζ

(2)
z a)

]
ζ
(2)
z

}

×
{
Kν(ξ

(2)
z a)

[
1

κ2
+

Jν−1

(
χ
(1)
z a
)
+

1
κ2
−
Jν+1

(
χ
(1)
z a
)]

χ
(1)
z

−Jν

(
χ
(1)
z a
) [ 1

γ2
+

[
Kν−1(ξ

(2)
z a)

]
− 1

γ2
−
Kν+1(ξ

(2)
z a)

]
ξ
(2)
z

}

−
{
Kν

(
ζ
(2)
z a

) [κ
(1)
e+

κ2
+

Jν−1

(
η
(1)
z a

)
− κ

(1)
e−

κ2
−
Jν+1

(
η
(1)
z a

)]
η
(1)
z (20)

−Jν

(
η
(1)
z a

) [κ
(2)
e+

γ2
+

Kν−1(ζ
(2)
z a) +

κ
(2)
e−

γ2
−
Kν+1(ζ

(2)
z a)

]
ζ
(2)
z

}

×
{
Kν(ξ

(2)
z a)

[
κ
(1)
m+

κ2
+

Jν−1

(
χ
(1)
z a
)
− κ

(1)
m−
κ2
−
Jν+1

(
χ
(1)
z a
)]

χ
(1)
z

−Jν

(
χ
(1)
z a
) [κ

(2)
m+

γ2
+

Kν−1(ξ
(2)
z a) +

κ
(2)
m−

γ2
−
Kν+1(ξ

(2)
z a)

]
ξ
(2)
z

}

= 0.

It remains to specify the arguments of the cylindrical functions. These require the eigenvalue
of the effective index of refraction, i.e., effective guide index, N0 = β0λvac/ (2π), obtained from
Equation (20) for the special case of isotropic core and cladding. Using the recursion relations [32]
given in Appendix B, one indeed arrives at the eigenvalue equation in isotropic circular cylindrical
waveguides [11,33] extended by Kong to the case of both ε

(i)
0 6= εvac and µ

(i)
0 6= µvac, [34] here

expressed as

(
νN0

κ2
0a2 + γ2

0a2

κ2
0a2γ2

0a2

)2

= Gm0Ge0, (21)

where κ
(1)2
0 = κ2

0, κ
(2)2
0 = −γ2

0, and

Gm0 =
κ
(1)
m0

κ0a
Jν−1 (κ0a)−Jν+1 (κ0a)

2Jν (κ0a)
− κ

(2)
m0

γ0a
Kν−1 (γ0a) +Kν+1 (γ0a)

2Kν (γ0a)
, (22a)

Ge0 =
κ
(1)
e0

κ0a
Jν−1 (κ0a)−Jν+1 (κ0a)

2Jν (κ0a)
− κ

(2)
e0

γ0a
Kν−1 (γ0a) +Kν+1 (γ0a)

2Kν (γ0a)
. (22b)

The continuity of the z-field components requires p(1)z = p(2)z = pz and q(1)z = q(2)z = qz with

pz =
−κ2

0a2γ2
0a2

νN0
(
κ2

0a2 + γ2
0a2
)
(

εvac

µvac

)1/2
Ge0, (23a)

qz =
−κ2

0a2γ2
0a2

νN0
(
κ2

0a2 + γ2
0a2
)
(

µvac

εvac

)1/2
Gm0, (23b)

Please note that their product obeys pzqz = 1, which is another way to represent the eigenvalue
equation, Equation (21). In Equation (20), the arguments of the Bessel functions for the core become
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η
(1)
z =

(
2π

λvac

)[
κ
(1)
e0 κ

(1)
m0 − N2 − κ

(1)
e1 κ

(1)
m0 + κ

(1)
m1 κ

(1)
e0

κ
(1)
e0

νN0
(
κ2

0a2 + γ2
0a2)

κ2
0a2γ2

0a2
G−1

m0

]1/2

(24a)

χ
(1)
z =

(
2π

λvac

)[
κ
(1)
e0 κ

(1)
m0 − N2 − κ

(1)
e1 κ

(1)
m0 + κ

(1)
m1 κ

(1)
e0

κ
(1)
m0

νN0
(
κ2

0a2 + γ2
0a2)

κ2
0a2γ2

0a2
G−1

e0

]1/2

(24b)

and the arguments of modified Bessel functions for the cladding become

ζ
(2)
z =

(
2π

λvac

)[
N2 − κ

(2)
e0 κ

(2)
m0 +

κ
(2)
e1 κ

(2)
m0 + κ

(2)
m1 κ

(2)
e0

κ
(2)
e0

νN0
(
κ2

0a2 + γ2
0a2)

κ2
0a2γ2

0a2
G−1

m0

]1/2

(24c)

ξ
(2)
z =

(
2π

λvac

)[
N2 − κ

(2)
e0 κ

(2)
m0 +

κ
(2)
e1 κ

(2)
m0 + κ

(2)
m1 κ

(2)
e0

κ
(2)
m0

νN0
(
κ2

0a2 + γ2
0a2)

κ2
0a2γ2

0a2
G−1

e0

]1/2

(24d)

Here κ
(i)
e± = κ

(i)
e0 ± κ

(i)
e1 , κ

(i)
m± = κ

(i)
m0± κ

(i)
m1, i = 1, 2, denote the CP relative permittivities and relative

permeabilities in the core (i = 1) and in the cladding (i = 2). The evaluation of Equation (20) confirms
that there are no first order effects of ε

(1)
1 , µ

(1)
1 , ε

(2)
1 , or µ

(2)
1 on N for ν = 0, i.e., for TE and TM modes,

as expected [14,35].
Solutions to the eigenvalue equation, Equation (20), will now be illustrated on a circular cylindrical

dielectric waveguide operating at the wavelength λvac =1.550 µm with the core made from yttrium
iron garnet, Y3Fe5O12 (YIG), and the cladding made from gallium substituted YIG, Y3Fe5−xGaxO12

(GaYIG). The material parameters as functions of the diamagnetic substitution are collected in Table 1.
Their choice was inspired by the situations in pure and gallium substituted yttrium iron garnets [36,37].

Table 2 provides the summary of parameters in the isotropic waveguide (κ(i)e1 = κ
(i)
m1 = 0).

The waveguide consists of a core of refractive index n1 = 2.200 and a cladding of refractive index
n2 (x) < n1 monotonously decreasing with the diamagnetic substitution, x. The choice of V−number,
i.e., V = (2π/λvac)∆a = (2π/λvac)

(
n2

1 − n2
2
)1/2 a ≈ 2.400 < 2.405 for all x corresponds to monomode

regime. This requires a corresponding adjustment of a, the core radius. Figure 2 shows the dependence
of a and ∆ on x.

Table 2 further contains the solution to the isotropic eigenvalue equation, Equation (21), N0,
and the penetration depth in the cladding, δ = λvac/ (2π)

(
N2

0 − n2
2
)−1/2, a parameter useful in the

evaluation of waveguide cross section. Figure 3 shows the effect of x on the effective guide index, N0,
and the refractive index in the cladding, n2.

The eigenvalues N± ∝ β± distinguish the solutions to Equation (20). Here N+ denotes the
solution for ν = +1 (κ(i)e1 > 0 and κ

(i)
m1 > 0, i = 1, 2), N− denotes that for ν = −1 (κ(i)e1 > 0 and

κ
(i)
m1 > 0). The magnetization reversal results in the exchange of N+ and N−. For example, at ν = +1

for −κ
(i)
e1 > 0 and −κ

(i)
m1 > 0 (corresponding to the magnetization reversal, M→ −M), the solution is

N−. The eigenvalue N0 in the isotropic waveguide (κ(i)e1 = 0 and κ
(i)
m1 = 0, corresponding to M = 0)

takes the same value for ν = ±1.
The forward (β± > 0) propagation was assumed with N± > 0. The eigenvalues −N± > 0

of Equation (20) represent the solutions for the reversed propagation (−β± > 0). The propagation
reversal does not change |N±| the absolute values of N±, as required for the nonreciprocal propagation.

The eigenvalue difference, (N+ − N−) ∝ (β+ − β−), a measure of nonreciprocity, as a function of
x was computed for two cases, i.e., for a magnetic core and a nonmagnetic cladding, denoted as ∆Nco
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and for the magnetic core and magnetic cladding, denoted as ∆N. A considerable enhancement of
(N+ − N−) is predicted in the latter case. The trends are shown in Figure 4.

x
0.5 1.0

0

1

2
a
[µm]

0.2

0.4

∆

0.6

← ∆ =
√

n2
1−n2

2

core radius, a →

�
Figure 2. The core radius, a, and the parameter, ∆ =

√
n2

1 − n2
2, in a monomode dielectric cylindrical

waveguide as a function of Ga content, x, in yttrium iron garnet, Y3Fe5−xGaxO12, in the cladding.
The symbols n1 and n2 denote the indices of refraction in the core and in the cladding, respectively.
The V−number was fixed at V = 2.400.

x
0.5 1.0

n2

N0

2.10

2.15

2.20

�
Figure 3. The effective guide index, N0 and the refractive index, n2, of the cladding in a monomode
isotropic dielectric cylindrical waveguide as a function of Ga content, x, in Y3Fe5−xGaxO12, forming
the cladding.

In the waveguide with the nonmagnetic cladding, the distance d = λvac/ [4 (N+ − N−)] required
for the azimuth rotation on the axis $ = 0 by π/4 remains practically independent of x, d ≈ 198 µm.
On the other hand, in the waveguide with magnetic core and magnetic cladding, the required d is
reduced to d ≈ 140 µm for x = 0.2. The results are collected in Table 3.

In practice, it would be desirable to reduce Ga content and consequently ∆. This would enable
the monomode regime at a higher core radius and at a higher Curie temperature in the cladding.
As indicated in Figure 4, this would also increase the magnetooptic contribution from the cladding
and improve the weak guiding regime with reduced axial field components. The characteristics were
evaluated for the core made of YIG. The Ce3+ substitution for Y3+ in CeyY3−yFe5O12 iron garnets can
significantly improve magnetooptic activity at the communication wavelength 1.55 µm with respect to
that in YIG [38].



Appl. Sci. 2018, 8, 2547 11 of 15

x
0.5 1.0

0.0020

0.0025

N+−N−

nonmagnetic cladding

magnetic cladding

�
Figure 4. Difference in effective guide indices, N+ − N−, for the ± transverse circular polarizations
in a monomode dielectric circular cylindrical waveguide with the axial magnetization as a function
of Ga content, x, in yttrium iron garnet, Y3Fe5−xGaxO12, in the cladding. N+ − N− is plotted for two
cases: (1) For the case where both the core and the cladding are characterized by the permittivity
and permeability tensors (magnetic cladding). (2) For the case where the core remains characterized
by the permittivity and permeability tensors while the isotropic cladding is characterized by scalar
permittivity and permeability (nonmagnetic cladding).

Table 1. Effect of diamagnetic substitution, x, in yttrium iron garnet, Y3Fe5−xGaxO12, on the real index
of refraction, n, relative magnetization, M, and the off-diagonal relative permittivity and permeability
tensor elements, κe1 and κm1.

x 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

n 2.200 2.188 2.176 2.164 2.152 2.140 2.128 2.116
M 1 0.806 0.617 0.450 0.289 0.167 0.083 −0.022

κe1 × 103 2 1.611 1.233 0.90 0.578 0.333 0.167 −0.044
κm1 × 103 1 0.806 0.617 0.450 0.289 0.167 0.083 −0.022

Table 2. Effect of diamagnetic substitution, x, in yttrium iron garnet Y3Fe5−xGaxO12 on the waveguide

parameters: the cladding index of refraction, n2, ∆ =
√

n2
1 − n2

2, the effective guide index at M = 0, N0,
V—number, the core radius, a, and the penetration depth in the cladding, δ.

x 0.2 0.4 0.6 0.8 1.0 1.2 1.4

n2 2.188 2.176 2.164 2.152 2.140 2.128 2.116
∆ 0.229469 0.324074 0.396363 0.457051 0.510294 0.558226 0.602116
V 2.40082 2.40011 2.40045 2.39929 2.39953 2.39863 2.39929

a [µm] 2.581 1.827 1.494 1.295 1.160 1.060 0.983
N0 2.19435 2.18869 2.18302 2.17732 2.17162 2.16589 2.16017

δ [µm] 1.479 1.048 0.858 0.745 0.668 0.6116 0.568
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Table 3. Effect of diamagnetic substitution, x, in yttrium iron garnet Y3Fe5−xGaxO12 on the difference
in effective guide indices in a waveguide with nonmagnetic cladding, ∆Nco, on the difference in
effective guide indices in the waveguide with magnetic cladding, ∆N, and on the distance, d, required
for the phase shift π/4.

x 0.2 0.4 0.6 0.8 1.0 1.2 1.4

∆Nco × 103 1.98134 1.98262 1.98182 1.98028 1.97902 1.97756 1.97642
∆N × 103 2.76591 2.58059 2.41696 2.25978 2.14032 2.05772 1.95713

d [µm] 140.099 150.159 160.325 171.477 181.048 188.315 197.994

5. Conclusions

Magnetooptics in circular cylindrical structures was treated in terms of the Helmholtz vector wave
equation for axially magnetized media characterized by electric permittivity and magnetic permeability
tensors. In TCP components the Helmholtz vector wave equations splits into three ordinary differential
equations. With the restriction to the magnetooptic effects linear in the off-diagonal tensor elements,
their solutions were expressed analytically and applied to nonreciprocal guiding in dielectric circular
cylindrical waveguides.

The eigen value equation deduced from the boundary conditions at the core—cladding interface
provided the propagation parameters for guided modes. It displays the symmetry imposed by the
electric permittivity and magnetic permeability tensors for axially magnetized cylindrical waveguides.
There are no first order effects on the TE and TM modes and the weak guidance approximation is
included as a limiting case.

Numerical evaluations of magnetooptic waveguides showed that fiber compatible nonreciprocal
devices using yttrium iron garnets with controlled gallium concentration display reasonable
magnetooptic characteristics at the propagation distance of ∼ 102 µm.

The analysis may be applied to optimization of magnetooptic waveguides, fiber sensors of
currents and magnetic fields, and to the evaluation of magnetic field effects in fiber gyroscopes [39–43].
The approach may be extended to nonreciprocal multilayer and graded circular cylindrical waveguides,
nonreciprocal plasmonic waveguides, nonreciprocal cylindrical waveguides of (near) square cross
sections [44–48], circular waveguide structures containing cylindrically anisotropic metamaterials [49],
and waveguides displaying optical activity [50]. From the analytical point of view, the problem is
similar to that of cylindrical quantum potential well with penetrable walls [51].
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Appendix A. Relations among Amplitudes

Relations among the amplitudes in isotropic cylindrical media [30] defined in Equation (13) for
the fields proportional to the factor ej(νϕ−β0z) follow from the Maxwell Equation (4) reduced to the
scalar ε

(i)
0 and µ

(i)
0




−ωε
(i)
0 0 0 jβ0 0 2−1/2κ

(i)
0

0 ωε
(i)
0 0 0 jβ0 −2−1/2κ

(i)
0

0 0 ωε
(i)
0 2−1/2κ

(i)
0 2−1/2κ

(i)
0 0

jβ0 0 2−1/2κ
(i)
0 ωµ

(i)
0 0 0

0 −jβ0 2−1/2κ
(i)
0 0 ωµ

(i)
0 0

2−1/2κ
(i)
0 2−1/2κ

(i)
0 0 0 0 −ωµ

(i)
0







A(i)
ν+

A(i)
ν−

A(i)
ν,z

B(i)
ν+

B(i)
ν−

B(i)
ν,z




= 0.
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Appendix B. Recursion Relations

Appendix B lists the recursion relations [31] for the Bessel functions of first kind, Jν

(
χ
(1)
z $

)
,

J ′ν (κ$) =
dJν (κ$)

d(κ$)
=

1
2
[Jν−1 (κ$)−Jν+1 (κ$)] ,

2ν

κ$
Jν (κ$) = Jν−1 (κ$)−Jν+1 (κ$) ,

and for the modified Bessel functions of third kind, Kν(γ$),

K′ν (γ$) =
dKν (γ$)

d(γ$)
= −1

2
[Kν−1 (γ$) +Kν+1 (γ$)] ,

− 2ν

γ$
Kν (γ$) = Kν−1 (γ$)−Kν+1 (γ$) .
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