
applied
sciences

Article

Improving Security and Reliability in Merkle
Tree-Based Online Data Authentication with
Leakage Resilience

Dongyoung Koo 1,† , Youngjoo Shin 2, Joobeom Yun 3,* and Junbeom Hur 4,*
1 Department of Electronics and Information Engineering, Hansung University, 116 Samseongyo-ro 16-gil,

Seongbuk-gu, Seoul 02876, Korea; dykoo@hansung.ac.kr
2 Department of Computer and Information Engineering, Kwangwoon University, 20 Kwangwoon-ro,

Nowon-gu, Seoul 01897, Korea; yjshin@kw.ac.kr
3 Department of Computer and Information Security, Sejong University, 209 Neungdong-ro, Gwangjin-gu,

Seoul 05006, Korea
4 Department of Computer Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu,

Seoul 02841, Korea
* Correspondence: jbyun@sejong.ac.kr (J.Y.); jbhur@korea.ac.kr (J.H.);

Tel.: +82-2-6935-2425 (J.Y.); +82-2-3290-4603 (J.H.)
† Current address: Rm. #508, Research Bldg., 116 Samseongyo-ro 16-gil, Seongbuk-gu, Seoul 02876, Korea.

Received: 30 September 2018; Accepted: 3 December 2018; Published: 7 December 2018
����������
�������

Abstract: With the successful proliferation of data outsourcing services, security and privacy
issues have drawn significant attention. Data authentication in particular plays an essential role
in the storage of outsourced digital content and keeping it safe from modifications by inside or
outside adversaries. In this paper, we focus on online data authentication using a Merkle (hash)
tree to guarantee data integrity. By conducting in-depth diagnostics of the side channels of the
Merkle tree-based approach, we explore novel solutions to improve the security and reliability of the
maintenance of outsourced data. Based on a thorough review of previous solutions, we present a
new method of inserting auxiliary random sources into the integrity verification proof on the prover
side. This prevents the exposure of partial information within the tree structure and consequently
releases restrictions on the number of verification execution, while maintaining desirable security and
reliability of authentication for the long run. Based on a rigorous proof, we show that the proposed
scheme maintains consistent reliability without being affected by continuous information leakage
caused by repetitions of the authentication process. In addition, experimental results comparing with
the proposed scheme with other state-of-the-art studies demonstrate its efficiency and practicality.

Keywords: data outsourcing; integrity; online authentication; Merkle (hash) tree; data loss;
information leakage; reliability

1. Introduction

In accordance with the dramatic increase in data volume, advances in information and
communication technology (ICT) have facilitated the move from local data management to remote
data outsourcing services. Although data outsourcing has several benefits in terms of its low cost,
agility, scalibility, and ease of maintenance, it also has potential problems that users may overlook.
Outsourcing data to third-party storage means that control of the data is delegated to the authority
managing the remote repository. Unintended data breaches or losses are possible because third-party
storage service may be less vigilant than the data owner. Data breaches and losses may lead to serious
financial damage as well as wasteful efforts, and can happen for various reasons such as negligent

Appl. Sci. 2018, 8, 2532; doi:10.3390/app8122532 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3283-5494
https://orcid.org/0000-0002-4823-4194
http://www.mdpi.com/2076-3417/8/12/2532?type=check_update&version=1
http://dx.doi.org/10.3390/app8122532
http://www.mdpi.com/journal/applsci

Appl. Sci. 2018, 8, 2532 2 of 29

management [1], improper operations [2], and poor resource utilization [3], among other reasons [4,5].
Nonetheless, some remote storage service providers may even attempt to hide losses to protect their
reputation [6]. Given the issues surrounding data outsourcing, there is an increasing need for a method
of effectively and efficiently verifying the integrity of the data stored in a remote repository [7–11].

Of the various methods available for data integrity verification, Merkle tree [12] is a particularly
well-known authenticated data structure. The verification of data integrity based on Merkle tree is
implemented by a challenge-response protocol, where a prover provides a series of node values on
the path from a leaf node (randomly chosen by a verifier) to the root node of the tree. The prover
needs to generate the entire Merkle tree for the attested data, while the verifier can store the single
value for the root node in the tree. In other words, this approach only requires the verifier to store
and operate on a few number of hash values, and the prover to generate the proof by using the entire
data blocks. Thanks to its lightweight computation and low memory requirements, Merkle tree-based
authentication has been widely adopted to various systems including blockchain technologies [13,14]
such as Bitcoin [15]. Of particular note is that its efficiency increases significantly as the amount of
data to be verified increases.

When it comes to online authentication, however, adversarial entities can gather meaningful
information from transcripts by repeatedly conducting integrity verification for the same data.
In an extreme case, an eavesdropper who collects authentication information can illicitly obtain
ownership of the data stored in a remote repository if this method is directly used for authenticating
ownership [16–18]. To minimize this risk, we examine possible information leakage from Merkle
tree-based online authetication. Based on an in-depth analysis, we present a new Merkle tree-based
protocol which inserts random sources every time the proof generation is executed. This eliminates
information leakage we have found, thus providing consistently reliable online authentication.

The main contributions of this paper can be summarized as follows: (This work is an extended
version of a conference paper published in ICWS 2017 [19] . In the earlier version, the proof generated
by the prover was allowed to be extended but not shortened while this version provides both options
for better flexibility. In addition, rigorous security analysis and a complete comparison with related
work are provided in this version.)

• We analyze potential information leakage during the online verification process. It includes
partial information of the Merkle tree and size information, which weaken the security and
reliability of authentication (Section 3).

• We propose a leakage-resilient integrity verification protocol (Section 4). Through a rigorous
security proof, we illustrate its effectiveness regardless of the number of executions without
requiring additional trusted third-party (Section 5).

• We evaluate efficiency of the proposed scheme by implementing it in a real-world application.
It shows that our approach can flexibly be adjusted to required system resources with minimal
overhead. Nonetheless, it still supports leakage resilience that was not guaranteed in previous
research (Section 6).

This paper is organized as follows. Merkle tree-based authentication is described in Section 2.
Possible information leakage of Merkle tree-based authentication is analyzed and then vulnerabilities
of the previous schemes are analyzed in Section 3. In Section 4, a leakage-resilient online data integrity
verification protocol is proposed. The security and efficiency of the propssed scheme are then analyzed
in Sections 5 and 6, respectively. Finally, the paper concludes in Section 7.

2. Merkle Tree-Based Authentication

A Merkle tree [20] is constructed from a series of data blocks, where the value of an internal node
is assigned based on the hash value of its children, while the value of a leaf node is assigned the direct
hash value of the corresponding data block (Figure 1). In the tree construction procedure, the hash
function satisfies the preimage-resistance property, which implies it is computationally infeasible to

Appl. Sci. 2018, 8, 2532 3 of 29

find the preimage of the given hash value. Also, since this forms a binary tree, the maximum depth
from leaf to root is at most dlog2 ne for n data blocks. Thus, the Merkle tree acts as an authenticated
data structure for efficient verification of the online content.

In Merkle tree-based online authentication, there are two entities, prover P and verifier V :

• Prover P is an entity who attempts to convince the other party (i.e., the verifier V) that it owns
all of the data. To converve network bandwidth, the prover sends a small piece of verifiable
information instead of all of the content.

• Verifier V is another entity who tries to determine whether prover P ’s claim is correct or not.
To reduce storage requirements, the verifier usually stores only the value of the root node of the
Merkle tree instead of all nodes of the tree.

It is notable that the Merkle tree-based online authentication is a protocol that verifies that the
prover and verifier own the same data. Unlike public verification, therefore, it assumes that the verifier
has some secret (i.e., not publicly available) information about the data to be validated. This issue is
dealt with in detail in Section 5.

Based on the hardness assumption that it is infeasible to find a preimage of a given hash value
within a computationally reasonable time [21], it can be guaranteed that only entities possessing the
same data can obtain the same Merkle tree. In brief, the security of authentication based on Merkle
tree is based on the security of hash function in use. Therefore, the verifier V only stores the value of
the root node of the tree and removes the rest of the metadata once the tree is constructed. On the
other hand, the prover P is required to generate a series of (different) hash values leading to a value of
the root node that is identical to the one held by the verifier with each authentication cycle.

In the example shown in Figure 1, the verifier V chooses a random block index (e.g., 1) as a
challenge. The prover P then constructs a Merkle tree from its local data, followed by sending
the corresponding unique sibling paths from the leaves to the root node (i.e., (H1, H2, H3−4)) to the
verifier. Upon receiving the proof response, the verifier V derives the root value of the Merkle tree
(i.e., H(H(H1, H2), H3−4)) and determines whether the result is identical to the value of the root node
held in local storage.

Merkle tree

Data

Figure 1. Merkle Tree of data M composed of four blocks.

In the above protocol, adversaries may not be able to uncover the underlying plain data from the
communication as long as a secure (preimage resistant) hash function is used. However, we observed
that it is vulnerable to a side-channel attack, which allows deducing meaningful information from
communications during the authentication process and narrowing down the scope of the attack vector,

Appl. Sci. 2018, 8, 2532 4 of 29

thereby weakening the reliability of the authentication and possibly nullyfying its effectiveness of
authentication completely. Thus, we first analyze the weakness of Merkle tree-based authentication
method to side-channel attacks on the same data in Section 3. After this, we present a simple method
for improving security and reliability, of Merkle tree-based authentication with minimal overhead
in Section 4.

3. Information Leakage Analysis of Merkle Tree-Based Authentication Schemes

In this section, we investigate the vulnerabilities against side-channel attacks of Merkle tree-based
authentication method (Section 3.1). Then, we demonstrate the previous authentication schemes are
not secure against the side-channel attacks we found (Section 3.2). For the rest of this paper, we assume
that there is an adversary eavesdropping communication between the prover P and verifier V .

Exposure of structural information in Merkle tree-based authentication and its potential risks
were previously analyzed by Kundu et al. [22] and Buldas and Laur [23]. Kundu et al. [22], especially,
developed a notion called secure name to prevent information leakage about the correlation between
nodes in the tree and the graph. However, to the best of our knowledge, detailed diagnosis of
information leakage has not yet been conducted in the research.

3.1. Analysis of Merkle Tree-Based Authentication

Prior to authentication, the prover and verifier need to agree on the hash function to be used in
Merkle tree construction, the size of the data blocks, and the rules for identifying specific data. In the
authentication process, the prover P first sends an identifier of the data to the verifier V and proves
complete possession of the data in question.

3.1.1. Leakage of Data Size Information

Looking at the communication between P and V , an eavesdropper can figure out the approximate
size of the underlying data from a single authentication proof. Specifically, the adversary can determine
the length of sibling path(s) from the knowledge of the hash function in use, data block size, and the
size of the proof transmitted by P . The minimum and maximum number of leaf nodes can be easily
determined from the height of the tree (i.e., the length of the sibling path −1) when the Merkle tree is
constructed in a left-to-right and bottom-up manner.

Let us assume that the size of a single data block is |B|, the size of hash value is |H|, and the size
of the proof is |P|. The length of the sibling path L can then be derived from L = |P|/|H|. When the
length of the sibling path is acquired, (L − 1) becomes the height of the constructed Merkle tree,
and the total size of target data S can be approximated as

(2(L−2) + 1) · |B| ≤ |S| ≤ 2(L−1) · |B|, (1)

where the right-hand-side of the inequality is the full and complete binary tree [24].
This information about size obtained by eavesdropping can be used to narrow the attack space

for the range of target sizes and filter out unnecessary data. It gives the attacker the powerful option to
select target data of an appropriate size. Therefore, it is more desirable for an authentication method to
hide size information of data.

3.1.2. Leakage of Merkle Tree Hash Values

Typically, data authentication is expected to operate reliably, regardless of the number of times it
occurs. Contrary to this expectation, however, the maximum number of effective authentication
is bounded by the size of the Merkle tree due to the leakage of hash values of it. Specifically,
authentication can be conducted only as many times as the logarithmic number of leaf nodes in
the tree, because responded hash values of the tree are leaked to the adversaries. After the limited

Appl. Sci. 2018, 8, 2532 5 of 29

number of authentications, the attacker can construct the entire Merkle tree through eavesdropping
even though it has no information about the underlying content.

Observing Figure 1, the two sibling paths which are proof for the challenged leaf nodes (1 or 2)
and (3 or 4) provide all of the information required to construct the entire Merkle tree (i.e., {H1, H2,
H3−4, (H1−2, MTroot

M)} ∪ {H3, H4, H1−2, (H3−4, MTroot
M)} = MTM = {H1, H2, H3, H4, H1−2, H3−4,

MTroot
M }, where the values inside the parentheses can be derived from the other values given as part of

the proof).
Therefore, it can be seen that the authentication range of the data is reduced at an exponential

rate in the presence of an adversary exploiting information accumulated about the tree gained during
repeated authentication attempts. Once the prover P passes the authentication proof for a challenged
block (e.g., B1), an eavesdropper can obtain infomation about the subtree rooted at the child of the
root node (e.g., (H1, H2, H1−2) as a subtree rooted at H1−2 in Figure 1). The subsequent authentication
attempt guarantees the integrity of at most half of the entire data (e.g., {B3, B4} in Figure 1). Otherwise,
the attacker can reuse the other half of the tree already known from the previous authentication attempt.
Therefore, the authentication coverage reduces further or the adversary becomes able to bypass the
verification process with overwhelming probability even when it does not know the corresponding
data by exploiting the obtained hash values.

The typical coverage pattern is illustrated in Figure 2. When data is composed of 2i blocks,
the maximum authentication coverage C(·) of the data (M) at the j-th execution attempt can be
defined as

C(M)j =

1, if j = 0
1
2
blog2 jc+1

, if 0 < j < 2i

0, otherwise.

(2)

As the number of demanding sibling paths for challenged leaf nodes in a single verification
increases, the number of allowable verification attempts decreases sharply. (According to
Ateniese et al. [25], data composed of 10,000 blocks requires 460 samples of leaf nodes to be verified
in order to achieve 99% confidence. When it comes to Merkle tree-based authentication [16],
effectiveness is only guaranteed for 21 times. After this, the entire Merkle tree can be reconstructed via
eavesdropping so that the attacker can successfully pass authentication.)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of authentication (executions)

0

6.25

12.5

25

50

A
ut

he
nt

ic
at

io
n

co
ve

ra
ge

 (%
)

2 blocks 4 blocks 8 blocks 16 blocks 32 blocks

Number of data blocks

Figure 2. Authentication coverage for data by the number of blocks.

Appl. Sci. 2018, 8, 2532 6 of 29

3.2. Previous Schemes and Their Vulnerabilities

Taking aforementioned side channels into account, we analyze weakness of the previous
authentication schemes.

3.2.1. Generic Merkle Tree-Based Authentication

In generic Merkle tree-based authentication [12], the original data block is used together with the
tree, rather than using the tree only, which was further adopted to proof-of-ownership process in the
cloud data deduplication literature [16].

As shown in Figure 3, the proof in authentication includes the content of the challenged block
along with its sibling path. In this example, the challenged data block B1 and partial information about
the Merkle tree rooted at H1−4 (i.e., {H1, H2, H1−2, H3−4, H1−4} = MT(B1,B2,B3,B4)

\{H3, H4}) can be
exposed to the public after the first authentication request. Therefore, in the second authentication
attempt, the challenging block might be randomly chosen in {B5, B6, B7, B8} for maximal authentication
coverage, and this covers only half of the entire data set (because it excludes the blocks {B1, B2, B3, B4}).
The next challenging block can be chosen from {B3, B4} or {B5, B6}, covering a quarter of the data in a
similar way.

Merkle tree

Data

Derivable value from proof

Given value in proof

1st chal 2nd chal

Figure 3. Merkle tree-based authentication for data M with eight blocks.

Thus, generic Merkle tree-based authentication method does not guarantee consistent
authentication coverage as authentication is done repeatedly, and the maximum number of
challenge-responses is limited to the number of data blocks.

However, the adversary is still able to guess the size of the authenticated data by using
Equation (1), given publicly accessible data block size |B|, proof size |P|, hash value size |H|, and the
size of sibling path L = (|P| − |B|)/|H|+ 1.

3.2.2. Authentication without a Merkle Tree

Zhao and Chow [26] pointed out the possibility of a replay attack on Merkle tree-based data
authentication and proposed a probabilistic protocol inserting randomness based on hardcore function
to achieve resilience against the replay attack (the protocol is summarized in Algorithm 1).

Appl. Sci. 2018, 8, 2532 7 of 29

Algorithm 1 Randomized online authentication exploiting a hardcore function

Public parameters: Hardcore function G : {0, 1}l → {0, 1}|M|+log |M|−1 where l � |M|
i-th bit in bitstring S, Si

Verifier V Prover P

1. Choose uniform random bitstring s ∈ {0, 1}l

2-1. Compute r ← G(s) ∈ {0, 1}|M|+log |M|−1

3-1. With possessing data M, generate proof h(M, r) such
that

h(M, r) = (b1(M, r), . . . , blog |M|(M, r)),

where bj(M, r) = (∑|M|i=1 Mi · ri+j−1) mod 2 for 1 ≤ j ≤
log |M|
4. Check the integrity of M by comparing h(M, r) and pr f

s−−→

pr f←−−

2-2. Compute r ← G(s) ∈ {0, 1}|M|+log |M|−1

3-2. Possessing data M′, generate proof pr f such that

pr f = (b1(M′, r), . . . , blog |M|(M′, r)),

where bj(M′, r) = (∑|M
′ |

i=1 M′ i · ri+j−1) mod 2 (1 ≤ j ≤
log |M|)

Unfortunately, in their scheme, the size of data to be verified is known to the public (because the
hash function G in Algorithm 1 specifies the size of the output dependent on the data). Due to this
assumption, this approach does not prevent the leakage of size information.

The protocol requires the verifier to perform the same computation as the prover unless the same
random seed s is used repeatedly. If the same seed value is used repeatedly, the proof becomes always
the same, thus an adversary can bypass authentication for the entire data with a single eavesdropping
on the proof. Consequently, as long as a newly chosen seed is used for every authentication attempt,
the efficiency on the verifier side would be reduced because it uses all of the data in the verification
process and pre-computation cannot occur.

In addition, according to their analysis based on the Goldreich-Levin theorem, the probability
that an adversary deceives the verifier is at most 1/|M|, which is not negligible on the data size.
Because the bitstring r (Step 2 in Algorithm 1) can become known to the adversary, the adversary
can extract at most log(|M|) bits from the transferred proof. To overcome this problem and prevent
further information leakage, they recommended encrypting all traffic using a session key generated
by additional protocols for secure connection establishment (e.g., SSL/TLS, IPSed), which requires
non-negligible overhead in practice. This is dealt with in Sections 3.2.3 and 3.2.4.

There are also other approaches that do not rely on Merkle tree structure in data authentication.
For example, Atallah et al. [27] proposed a technique for efficient integrity verification of 2-dimensional
range data such as image and GIS data and suggested a method to maintain the communication
overhead constant. Atallah et al. [28] and Benjamin and Atallah [29] also proposed several novel
integrity verification techniques without Merkle tree.

3.2.3. Merkle Tree-Based Authentication of Encrypted Data

Bellare et al. [30] and Xu et al. [31] independently investigated data authentication of encrypted
data in the context of proof-of-ownership (PoW). Their strategy is to encrypt the data first,
then to perform authentication over the encrypted data based on a Merkle tree to guarantee data
confidentiality and verify the complete possesion of the underlying plain data. In combination with a
secure encryption algorithm, the underlying plain content can be hidden from unauthorized users,
including malicious service providers.

Even if their schemes preserve data confidentiality by encrypting data itself, however, they are
vulnerable to the side-channel attacks we found due to the inherent property of Merkle tree. In other
words, even if the plaintext corresponding to the encrypted data is not known, the information about
the Merkle tree generated from the ciphertext can be obtained by eavesdropping, so the authentication
coverage falls with repeated authentication attempts. As with the Merkle tree-based authentication of
unencrypted data, the size of the underlying (encrypted) data can still be inferred.

Appl. Sci. 2018, 8, 2532 8 of 29

3.2.4. Merkle Tree-Based Authentication with Transmission in Encrypted Form

Li et al. [32] employed a Merkle tree-based approach for online authentication in a smart
grid system. To avoid information leakage, they combined it with a secure encryption algorithm.
Specifically, the prover (i.e., a smart meter) and verifier (i.e., a neighborhood gateway) engage in
a Diffie-Hellman key agreement protocol, followed by AES encryption to preserve the privacy of
the authentication proof generated by the prover. (Inspired by Li et al.’s work [32], we can employ
secure encryption algorithms to obfuscate communication between the prover and verifier. In [32],
a Merkle tree is used for sender identification instead of data authentication, in which the Merkle tree
is constructed from random elements chosen by P and then V validates the origin of the received
power measurement (in a way that guarantees only one who can construct the valid Merkle tree is
P). However, in their research, the main purpose of exploiting secure key agreement and encryption
algorithms was to minimize side effects caused by side channels during Merkle tree-based online
authentication.) The overall data authentication process for Merkle tree-based data authentication
using encrypted channels is described in Algorithm 2. (This algorithm requires key agreement and
encryption of communications. Compared to adopting full SSL/TLS, it is more efficient since it requires
Diffie-Hellman key agreement and efficient encryption algorithms such as AES, which will be analyzed
in Section 6.)

Algorithm 2 Merkle tree-based online authentication with encrypted communication

Public parameters:

Multiplicative cyclic group G of large prime order p with generator g
Key size of summetric key encryption/decryption algorithm κ according to security parameter λ

Cryptographic hash functionH0 : G→ {0, 1}κ(λ)

Secure symmetric key encryption/decryption algorithm SE/SD : {0, 1}κ(λ) × {0, 1}|m| → {0, 1}|m|
for |m| ∈ N
Merkle tree construction MTGen(H, B, M) over message M with block size B and
cryptographic hash functionH
Proof (sibling path) generation pr f ← Pr f Gen(MTM , chal) for challenged index chal
on Merkle tree MTM
Verification of proof 1/0← Vr f Pr f (MTroot

M , pr f) with locally stored value MTroot
M of the root node

Verifier V Prover P

1. Choose uniform random exponent kv ∈ Zp

2. Compute V ’s partial key Kv = gkv ∈ G

5-1. Establish agreed session key K = H(gkv ·kp) =

H(Kp
kv)

6. Given a message M, specify cryptographic hash
function H and block size B, construct Merkle tree
MTM ← MTGen(H, B, M), and store the root value
MTroot

M in the tree MTM
(e.g., Fig. 1 for M = (B1, . . . , Bn) with n = 4)
7. Choose random index(es) chal ∈ [1, d|M|/Be] (e.g.,
chal = {1})
8. Generate encrypted challenge c1 ← SE(K,H, B, chal)

12. Restore proof pr f ← SD(K, c2)
13. Check the integrity of M through
Vr f Pr f (MTroot

M , pr f)

Kv−−−−−→

Kp←−−−−−

c1−−−−−−→

resp←−−−−−−

3. Choose uniform random exponent kv ∈ Zp

4. Compute P ’s partial key Kp = gkp ∈ G
5-2. Establish the agreed session key K = H(gkv ·kp) =

H(Kv
kp)

9. Restore the challenge with metadata
(H, B, chal)← SD(K, c1)
10. Possessing data M′, construct Merkle tree
MTM′ ← MTGen(H, B, M′) and generate
sibling path(s) pr f ← Pr f Gen(MTM′ , chal) (i.e.,
pr f = (H′1, H′2, H′3−4))
11. Generate encrypted proof c2 ← SE(K, pr f)

Although the exact proof becomes indistinguishable when the transmitted data is encrypted,
size information for the underlying data can be deduced from the size of the transferred ciphertext.
One approach to prevent size information leakage is to dynamically change the size of the data
blocks and the hash function used for each authentication attempt (Step 6 in Algorithm 2). However,

Appl. Sci. 2018, 8, 2532 9 of 29

this approach requires the verifier to construct a new Merkle tree for every authentication request,
rendering pre-computation of the Merkle tree and its reuse on the verifier side impossible. Therefore,
dynamically changing the size of the data blocks and hash functions for each authentication attempt
significantly reduces efficiency from the verifier’s perspective. Another approach is to insert dummy
data into the ciphertext. While this can obfuscate information by increasing the size of data, it also
increases the computational and communication overhead for both sides.

With regard to efficiency, it requires higher computation cost for data encryption and decryption
during data verification than in Merkle tree-based authentication, which is another practical drawback
of this approach. (Detailed analysis can be found in Section 6.)

4. Randomized Online Authentication

In this section, we present a probabilistic authentication protocol by exploiting Merkle tree without
a reduction in verification coverage. Before describing the proposed protocol, the adversarial model
and its goals are summarized in the following subsections.

4.1. Adversarial Model

We consider adversaries who are able to collect valid proofs of data authentication from public
channels. This adversary can be either (1) a passive attacker eavesdropping on communications
between valid prover P and verifier V without intervention, or (2) an adaptive online adversary. In
the latter case, the adversary acts as a more active attacker by passing a set of random challenges
of its choosing to an oracle and collecting a valid proof set for the upload-requested data. In other
words, valid prover P can be an oracle for the target data and the adversary attempts to circumvent
the authentication process by manipulating the obtained proofs.

Without loss of generality, we assume that the adversary has no prior knowledge about the data to
be challenged (proved). Specifically, we assume that the adversary is unable to extract size information
from eavesdropping on interactions during the authentication process, except for initial upload.

The goal of these adversaries is to weaken the reliability of the authentication process by exploiting
information gathered through wiretapping.

4.2. Goal

In order to minimize information leakage when a Merkle tree is used for online data authentication,
the proposed scheme needs to satisfy the following requirements:

• Prevention of size information leakage: The authentication mechanism should block the outflow
of information about the size of the target data, which can be used by adversaries to select and
predict the required number of authentication proofs.

• Prevention of replay attacks: The protocol should not allow adversaries to launch replay attacks,
in which a collected valid set of authentication proofs are used in subsequent authentication
requests. In other words, the adversary cannot learn any information from the disclosed
information via public channels during the authentication process.

• Minimal requctions in efficiency: The effective handling of side channels should be achieved with
acceptable computation and communication overhead, maintaining the advantages of the Merkle
tree-based approach.

• Compatability: Given that the Merkle tree-based approach is widely deployed in industry and
academia due to its intuitive nature and ease of utilization, the proposed approach should
be applicable to existing uses. This includes adaptability to lightweight devices with limited
resources and restrictions on the installation of additional libraries depending on the system
architecture, such as IoT terminal devices and sensors.

Appl. Sci. 2018, 8, 2532 10 of 29

4.3. Construction

To be resistant against information leakage regardless of the number of authentication attempts,
the transmitted authentication proof (i.e., sibling paths) needs to be randomized so that an
eavesdropping adversary cannot gather any valuable information from the transcript. In this section,
we present a simple amendment that inserts random inputs and significantly increases the reliability of
online authentication. The overall process is illustrated in Algorithm 3, with example data composed
of four blocks. Associated notations are summarized in Table 1.

Algorithm 3 Merkle tree-based online authentication with randomized input
Verifier V

1. Given data D, invoke ConstructMerkleTree(D) to
obtain number of blocks n, Merkle tree MTD for D, and
its height h

Keep n, h, MTroot
D in local storage privately, where MTroot

D
is the value of the root node extracted from the Merkle
tree MTD
2. Choose random index(es) chal ∈ N and the length
of sibling path(s) L ∈ N (e.g., chal = 100, L = 7 for
D = (B1, . . . , B4))

6. Invoke RestoreProof(pr f , h, MTroot
D) to obtain the

restored original sibling path of chal as proof pr f
(e.g., pr f = (H′1, H′2, H′3−4))

7. Invoke VerifyProof(pr f , MTroot
F) to validate the proof.

The return value True indicates successful
authentication. Otherwise, verification has failed

chal(= 100),
L(= 5)

−−−−−−→

pr f←−−−−−−

Prover P

3. Calculate challenged index chal ← (chal mod n) + 1
(i.e., (100 mod 4) + 1 = 1)

4. Possessing data D′, invoke ConstructMerkleTree
to obtain n′, h′, and MTD′ followed by
GenerateProof(MTD′ , chal, L) to obtain authentication
proof pr f of chal, in sequence

(e.g., pr f = (H′1, H′2, H′3−4, MTroot
D′))

5. Make pr f look random by invoking
ObfuscateProof(pr f , L)
(i.e., pr f = (R, H′1 ⊕ mask, H′2 ⊕ mask, H′3−4 ⊕

mask, MTroot
D′ ⊕mask)

(n, h, MTD)← ConstructMerkleTree(D):
Split D into |B|-bit blocks as D̃ = (B1, B2, . . . , Bn),

where n is the number of blocks that make up D
Construct Merkle tree MTD with D̃ as leaf nodes

pr f ← GenerateProof(MTD , chal, L):
Put the values for the siblings of the nodes that lie on

the path from the chal-th leaf node to the root node in
MTD (including the root) into pr f
while pr f > L:

pr f ← (H(pr f 1, pr f 2), pr f 3, . . . , pr f |pr f |)

endif

res← VerifyProof(pr f , MTroot
D):

Set vt to be the first element in pr f
Compute verification term vt by evaluating hash

function H of vt and an element in pr f from second
element to the last one .5emin a recursive manner

if vt = MTroot
D :

res← True
else:

res← False

pr f $←− ObfuscateProof(pr f , reqLen):
Let pr f = (pr f 1, . . . , pr f |pr f |)

mask← s ∈R {0, 1}|H|
for 1 to i = |pr f |:

pr f i ← pr f i ⊕mask
endfor
if |pr f | < reqLen:

R ∈R {0, 1}(reqLen−|pr f |)·||H||)

pr f ← (R, pr f)
endif

pr f ← RestoreProof(pr f , h, MTroot
D):

confirm that |pr f | = reqLen
Let pr f = (pr f 1, . . . , pr f reqLen)

mask← pr f reqLen ⊕MTroot
D

for i = reqLen− 1 down to reqLen− h− 1:
pr f i ← pr f i ⊕mask

endfor
pr f ← (pr f reqLen−h−1, . . . , pr f reqLen−1)

Appl. Sci. 2018, 8, 2532 11 of 29

Table 1. Notations.

Notation Description

H(·) Cryptographic hash function
||H|| Size of the hash value (in bits)

n Number of data blocks for the entire data D
MTD Merkle tree constructed from data D

MTroot
D Root node in the Merkle tree MTD

h Height of the Merkle tree
L Required length of the sibling path in the authentication proof

valN Value of the given node N
sib(N) Sibling node in the sibling path for the given node N

Ai i-th element in sequence A (cardinality)
|A| Number of elements in set A

a ∈R A Random selection of element a in set A
b← B Assignment of the result of the deterministic algorithm (operation) B to b

b $←− B Assignment of the result of the probabilistic algorithm (operation) B to b

4.3.1. Authentication Initiation

First of all, the verifier V constructs a Merkle tree for data D to be verified following the generic
Merkle tree construction process (Step 1). Notice that V needs to construct this tree only once (usually
before verification) to store the number of leaf nodes and the root node value in the tree, and then
discards all remaining information about the tree. As for specifying the data to be verified, the verifier
and the prover can use H(H(D)) as an identifier. Due to the collision-resistant property of the
cryptographic hash function, we assume that the probability that different data files produce the same
hash tree is negligible.

4.3.2. Randomized Challenge Generation

In this phase, the verifier V generates a random challenge for the claim that prover P manages
the data properly as V desires. Unlike previous Merkle tree-based authentication approaches in which
the challenge is selected from within a limited range (i.e., {1, 2, . . . , n}), the verifier V selects a random
integer without restriction. V also specifies the length of the proof to be received and sends this value
and the challenge to the prover (Step 2). The length of the proof can be an arbitrary number when
it is greater than 2. In our approach, the proof length does not depend on the Merkle tree structure,
unlike the original Merkle tree-based verification process. Specifically, the value of the sibling nodes in
the Merkle tree may not be used in the proposed scheme when the requested proof length is shorter
than the length of the sibling path from the leaf (challenged) node to the root. For a detailed description,
see Section 4.3.4.

4.3.3. Original Challenge Restoration

Upon receipt of the challenge and proof length specification, the prover P restores the intended
challenge index chal (Step 3). The prover P can specify the data block to which the challenge points,
on the assumption that the prover P and the verifier V have common knowledge about the number of
data blocks constituting the data D. The index of the challenged block becomes the remainder after
dividing the challenge by the total number of data blocks.

4.3.4. Proof Generation

Using the restored challenge and proof length specification, the prover P generates the
corresponding proof pr f . Unlike the typical Merkle tree-based approach, the proposed protocol
requires the value of root node to be appended to the end of the proof (Step 4).

Appl. Sci. 2018, 8, 2532 12 of 29

It is worth noting that the proposed protocol does not depend on the Merkle tree structure for
concealing size information. In other words, a proof that is shorter than the length of the sibling nodes
is possible, thus making the data look smaller than its actual size. (In this case, the values of the nodes
closest to the leaf node in the certificate must be removed in order, but the value remaining at the end
after this removal (corresponding to the leaf node in the certificate) must be derived from the removed
values.) In addition, a proof longer than the length of the sibling nodes is also possible, making the
data look larger than its actual size, as described in the following subsection.

4.3.5. Proof Obfuscation

In this phase, the prover P obfuscates the proof, prepends a random bitstring to the proof if
necessary for the purpose of concealing the size information (making the data appear larger than the
actual size), and then passes the resulting proof to the verifier V (Step 5).

Based on the algorithm ObfuscateProof, the prover P first selects a random bitstring s with a
length equal to the hash value. The bit string s is then masked iteratively by applying a bitwise XOR
operation to each element of the sibling path sib.

To obtain the bit-length of the resuting proof L · |H| when the requested proof length is longer
than the obfuscated proof, a randomly selected bitstring R of length (L− h− 2) · |H| is prepended to
the proof pr f (when L > h + 2). Note that, before generating the proof, the prover P can derive the
height h of the Merkle tree that is to be constructed because P knows the total number of leaf nodes
(i.e., data blocks). Thus, P calculates the length of hash values to be appended as L− h− 2 (h for
the number of siblings on the path from the challenged node to the root, 1 for the challenged node,
and another 1 for the root node). From this calculation, prover P generates an arbitrary bitstring R
with a length equal to (L− h− 2) hash values .

The key to this phase is allowing individual provers to insert random sources into the verification
proof in a non-deterministic manner.

4.3.6. (Original) Proof Restoration

When the verifier V receives the masked authentication proof from the prover P on the challenge
chal with a bit-length equal to L · |H|, V restores it to the generic form of a sibling path (Step 6).

First, the unnecessary heading (L − h − 2) · |H|-bit bitstring is removed from the obfuscated
proof pr f . The last element in pr f , corresponding to the masked value of the root node MTroot

D′ is
then XORed with V ’s value of MTroot

D to obtain the masking factor mask. For the remaining elements,
mask is recursively XORed for each one in reverse order.

4.3.7. Proof Verification

In this phase, the restored proof pr f is validated by the verifier V in the same way as in the typical
approach (Step 7).

The hash value corresponding to the root node of the tree is obtained by repeating the process
of re-hashing two neighboring hash values from the first hash value of the proof. If the calculated
hash value is the same as the value stored by the verifier V , the authentication succeeds. Otherwise,
validation is considered a failure.

5. Security Analysis

In this section, the security of the proposed scheme is analyzed in detail. First, the security of
Merkle tree-based online authentication, which is assumed to be conducted only once, is discussed.
Using this as a baseline, the security of the proposed method and its ability to improve reliability are
then examined.

Appl. Sci. 2018, 8, 2532 13 of 29

5.1. Security of Merkle Tree-based Authentication

The primitive used to construct a Merkle tree is a cryptographic hash function that satisfies
preimage resistance, second preimage resistance, and collision resistance properties.

Definition 1. (Preimage-resistant hash function) Given image y of a hash function h, for all pre-defined
outputs, the function is preimage-resistant if it is computationally infeasible to find any preimage x such that
y = h(x) [33].

In the verification of data integrity stored in remote storage, the Merkle tree-based approach
begins with the assumption that the verifier and the prover share the same information (i.e., the value
of the root node and the number of leaf nodes in the tree). Otherwise, the verifier can neither generate
a valid challenge nor validate the correctness of the proof. Under this assumption, when online
authentication is performed only once, its security can be summarized as Theorem 1.

Theorem 1. (Security of Merkle tree-based authentication) Given a randomly chosen leaf index,
the probability that an adversary without knowledge of the entire tree (data) can forge a valid sibling path
is negligible if a cryptographic (specifically, preimage-resistant) hash function is used to construct the tree.

Proof. Suppose that there is an adversary who knows the number of leaf nodes and the value of the
root node in the Merkle tree generated from the target data. For the adversary to pass validation, it has
to find a preimage of the root node with a bit-length twice that of the hash value. Regarding each half
of the discovered preimage as children of the target node, the adversary has to repeatedly search for
preimage of each half until the preimage corresponds to the leaves (i.e., d log ne times, where n is the
number of leaf nodes in the tree). However, this contradicts the assumption that each hash value is
an output of the cryptographic hash function. Therefore, the probability of the adversary forging a
valid proof is negligible as long as a cryptographic (specifically, preimage-resistant) hash function is
used to build the Merkle tree. Formal security model and proof of unforgeability for Merkle tree-based
authentication can be found in [20,34–36].

5.2. Security of the Proposed Scheme

The data authentication process can be completely bypassed if eavesdropping is performed on
the initial transmission of the underlying data. As noted in [35], the reliability of online authentication
is weakened through extra information gathered by eavesdropping unless the Merkle tree is combined
with private keys. In short, one-time online authentication is reliable only when a Merkle tree is used
without modification. However, since this data transmission is performed at most once and subsequent
data authentication can be conducted several times, the general assumption that the initial data is
transmitted through a secure channel if necessary is reasonable.

5.2.1. Security of One-time Secret Delivery

One simple way to improve security and reliability is to have the prover P and the verifier V
agree on an extra shared secret additional to the Merkle tree itself. To achieve this, we devise a one-way
secret delivery mechanism following Definition 2.

Definition 2. (One-way secret delivery) Let two parties, say A and B, share secret information shared of
bit-length λ. A can send another secret value toShare to B by embedding toShare in shared such that

transmitted = shared⊕ toShare

where ⊕ represents a bitwise exclusive-or (XOR) operation and transmitted is data transmitted via a public
channel. The recipient B can then recover the secret key such that

toShare = transmitted⊕ shared.

Appl. Sci. 2018, 8, 2532 14 of 29

Specifically, every time the prover P tries to convince the verifier V , P can choose a uniform
random mask and securely send it to V by exploiting the one-way secret delivery mechanism in the
proposed scheme. This can be achieved by embedding the mask in the shared value, which is the value
of the root node in the Merkle tree such that transmitted = mask⊕MTroot

D , where mask and MTroot
D

are a mask randomly chosen by P and the value of root node shared between P and V , respectively.
The one-way secret delivery mechanism can be thought of as a one directional password-authenticated
key exchange (PAKE), in which the previously shared information is considered to be a password [37].

Prior to examining the security of the proposed scheme, notice that the result of the
bitwise-exclusive (XOR) operation of a random value is also random regardless of other operands.

Lemma 1. Let X, Y ∈ {0, 1} be random variables, where Pr[X = 0] = Pr[X = 1] = 1/2 and Y is drawn
from any distribution. The distribution for X⊕Y is also random as long as Y is independent of X such that

Pr[Y = y|X = x] = Pr[Y = y]

for any fixed bits x, y ∈ {0, 1}.

Proof. Let b ∈ {0, 1} be a fixed bit. Then,

Pr[X⊕Y = b] = Pr[X⊕Y = b|X = 0] · Pr[X = 0] + Pr[X⊕Y = b|X = 1] · Pr[X = 1]

= Pr[0⊕Y = b|X = 0] · (1/2) + Pr[1⊕Y = b|X = 1] · (1/2)

= Pr[Y = b|X = 0] · (1/2) + Pr[Y = b⊕ 1|X = 1] · (1/2)

= Pr[Y = b] · (1/2) + Pr[Y = b⊕ 1] · (1/2)

= (Pr[Y = b] + Pr[Y = b⊕ 1]) · (1/2)

= 1/2.

Therefore, the result of XORing a certain bit with a random bit is also random.

Lemma 2. Let X′ = (X1, X2, . . . , Xr) ∈ {0, 1}r be a random variable where Pr[Xi = 0] = Pr[Xi = 1] = 1/2
and Xi and Xj are independent of each other for any positive integer r, 1 ≤ i, j ≤ r, and i 6= j. The distribution
for X′ ⊕Y′ is also random as long as Y′ is independent of X′ regardless of the distribution Y is drawn from.

Proof. Let each bit of X′ and Y′ be Xi and Yi for 1 ≤ i ≤ r, respectively. The probability that the XOR
result of Xi and Yi becomes any of {0, 1} is thus 1/2 according to Lemma 1. Because Xi and Xj for
1 ≤ i, j ≤ r and i 6= j are independent variables, the probability of Pr[X′ ⊕ Y′ = bs] is (1/2)r for any
fixed bitstring bs ∈ {0, 1}r. Therefore, the result of XORing a certain bitstring with a random bitstring
is also random.

Using Lemma 2, the one-time security of the one-way secret delivery mechanism can be proven.

Theorem 2. (One-time Security of One-way Secret Delivery) The one-way secret delivery protocol in the
proposed scheme is one-time secure against adversaries as long as the mask value is drawn independently and
uniformly at random.

Proof. Following the definition of entropy [38], the random mask has maximum uncertainty because
it is chosen independently and uniformly at random from {0, 1}λ, where λ is the bit-length of the
hash value. According to Lemma 2, the XORed value with this random mask is also unpredictable
(i.e., indistinguishable from other random bitstrings).

Appl. Sci. 2018, 8, 2532 15 of 29

5.2.2. Security of the Proposed Scheme

In the proposed approach, the size of the proof generated by the prover P can be either shorter
than, exactly equal to, or longer than that of the typical Merkle tree-based approach. Typical types of
proof according to proof size are presented in Figure 4.

First, consider a passive adversary who does not affect the designated protocol but collects
proof information leaked by eavesdropping on a public channel. (Cases in which the prover and the
verifier collude are not considered in this paper because this action invalidates the effectiveness of the
authentication process and is beyond the scope of our discussion.) Because this kind of adversary has
no knowledge of the underlying data used to construct the Merkle tree, it can be assumed not to have
all of the necessary information in advance before the attack.

𝐻𝐻4𝐻𝐻2𝐻𝐻1 𝐻𝐻2

𝐻𝐻1−2 𝐻𝐻3−4

𝑀𝑀𝑀𝑀𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐻𝐻𝑛𝑛… 𝐻𝐻𝑛𝑛−1

𝐻𝐻 𝑛𝑛−1 −𝑛𝑛

……

𝐻𝐻𝑖𝑖 𝐻𝐻𝑗𝑗

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍: 𝟏𝟏

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍: 𝟐𝟐

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍: 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏 + 𝟏𝟏

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍: 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏

…

𝒉𝒉𝒍𝒍𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉: ⌈𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏⌉

𝒉𝒉𝒍𝒍𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉: 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏 − 𝟏𝟏

𝒉𝒉𝒍𝒍𝒉𝒉𝒉𝒉𝒉𝒉:𝟎𝟎

𝒉𝒉𝒍𝒍𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉:𝟏𝟏

…

(a) Merkle tree MT with n leaf nodes

1) Requested length < tree level +1

2) Requested length = tree level +1

3) Requested length > tree level +1

𝑀𝑀𝑀𝑀𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙. 2
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 … 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑙𝑙

⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚1 … 𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑚𝑚𝑙𝑙−⌈log 𝑛𝑛⌉
𝑀𝑀𝑀𝑀𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙. 2
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 … 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑙𝑙

⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 …

𝐻𝐻𝑙𝑙𝑒𝑒𝑣𝑣𝑒𝑒𝑙𝑙. 𝑙𝑙−1
⊕𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(b) Three possible types of proof

Figure 4. Classification of the proofs in the proposed scheme.

Appl. Sci. 2018, 8, 2532 16 of 29

Theorem 3. (Resilience to the leakage of size information) An adversary who knows neither the number of
blocks nor the value of the root node in the Merkle tree (nor the original data used to construct the tree) cannot
obtain any meaningful information through eavesdropping on the proposed authentication protocol.

Proof. The proposed protocol allows the verifier to randomly select the proof length regardless of
the Merkle tree structure. In the proposed scheme, the verifier sends a uniform random value as
part of the challenge and the prover obtains the index value of the leaf node by taking the remainder
after dividing the value by the number of blocks already known. This prevents the adversary from
inferring the upper bound of the leaf node index during a repeated verification process as long as
the verifier chooses different uniform random challenges with each execution, unlike typical Merkle
tree-based authentication. Further, the sibling path generated using the Merkle tree is reduced or
enlarged according to the requested proof length, which is also chosen uniformly at random by the
verifier as another component of the challenge. As a result, there is no relationship between the size of
the final proof and the size of the actual Merkle tree, making it impossible for the adversary to infer
the size of the underlying data by calculating how the proof size corresponds to the number of leaf
nodes in the tree.

Upon closer inspection, the proof generated in the proposed scheme includes the value of the root
node in the tree in masked form, which differs from typical Merkle tree-base authentication. Using this
feature, it may be possible to uncover the mask when the number of data blocks is known to the
adversary. In this case, the adversary can identify the starting position of the meaningful portion
(i.e., the location of MTroot

D in Figure 4b) of the proof sent by the prover to the verifier. All they need to
do is to uncover this mask value.

Theorem 4. (Reliability of the proposed authentication) An adversary who knows the number of blocks within
the underlying data cannot obtain any meaningful information from the proposed authentication protocol.

Proof. Even if it were possible to track the location of the beginning portion (excluding bitstrings filled
with random values) of the meaningful proof from the total number of blocks and the requested proof
length, the adversary cannot recover the value of the root node in the tree from the masked proof in
Theorem 2. Consequently, the probability of recovering the value of a root node is identical to finding
the mask value, which is (1/2)λ, where λ is the bit-length of the security parameter (or the hash
value). It is notable that the prover chooses different random mask values on every proof generation.
Therefore, the reliability of the challenge-response protocol remains the same as long as the adversaries
cannot uncover the value of the root node.

In this context, the increased security of the proposed scheme exploiting Merkle tree is dependent
on the secrecy of the value of the root node of the tree. We define an experiment to show the formal
security of the proposed scheme in the presence of eavesdropping adversary.

Appl. Sci. 2018, 8, 2532 17 of 29

Definition 3. The experiment is defined for the proposed Merkle tree-based authentication Π for the security
parameter λ and an adaptive adversary A who only receives oracle accesses to the prover. The oracle access
to the prover is again divided into access to the proof Oproo f

P and access to the corresponding data Odata
P .

The indistinguishability experiment PrivKA,Π(λ):
1. (Init) The adversary A is given input 1λ and the hash function h used to construct a Merkle tree.
2. (QueryI-I) A requests oracle acces to Oproo f

P , with challenging index chali and required proof
length Li each chosen randomly and independently, polynomially many times. The oracle
randomly creates and stores data Di locally, generates obfuscated proof proo f i (by performing
(ni, hi, MTDi) ← Π.ContructMerkleTree(Di), proo f

′
i ← Π.GenerateProof(MTDi , chali, Li), and

proo f i ← Π.ObfuscateProof(MTDi , Li) successively), and sends it to A.
3. (QueryI-II) A requests oracle access to Odata

P by sending the received proof proo f i to obtain the
corresponding underlying data. The oracle retrieves the underlying data Di used to generate the proof proo f i
and sends it to A.
4. (Challenge) The challenger creates random data D that is not already queried and generate an
obfuscated proof proo f 1 following the specified protocol in Π. It also generates an arbitrary bitstring proo f 2
of the same length as proo f 1. Then, according to the result of the fair coin toss b ∈ {0, 1}, proo f b is delivered
to A.
5. (QueryII-I) The step 2 is repeated in polynomial time.
6. (QueryII-II) The step 3 is repeated except for proo f b as necessary in polynomial time.
7. (Guess) A guesses the value of b. If A’s guess is correct, A wins the game. Otherwise, it loses.

Theorem 5. (Consistent reliability of the proposed authentication with repeated requests) An adversary who
knows the number of blocks within the underlying data cannot obtain any meaningful information by repeatedly
running the proposed authentication protocol.

Proof. Note that the random mask used in Step 2 presented in the Definition 3 is randomly selected
in the uniform distribution for each proof generation. Although the adversary A can verify the
validity of the received proof (by performing proo f

′
i ← Π.RestoreProof(proo f i, hi, MTroot

Di
) and resi ←

Π.VerifyProof(proo f
′
i, MTroot

Di
) successively) in Step 3, A cannot distinguish whether proo f b received

in Step 4 is valid proof or not by Theorem 3. Furthermore, A cannot know the mask value used
to generate the proof proo f b by Theorem 2 so that the prior knowledge does not help to break the
proposed authentication mechanism. In the same context, Steps 5 and 6 also only give at most negligible
advantage to determine the validity of the proof proo f b given by the challenge. This means the leakage
resilience of the proposed authentication scheme even in the presence of adaptive adversary.

Now, we consider another adversary who has knowledge of both the number of blocks in the
tree and the value of the root node in the Merkle tree. However, it make sense to assume that this
kind of adversary has no knowledge of the underlying data without loss of generality (e.g., when an
adversary is delegated to audit data integrity held in remote storage by a valid data owner, while the
actual content is kept private). Nevertheless, even though the above two pieces of information are
known to the adversary, the proposed scheme provides security that is as strong as that of typical
Merkle tree-based authentication (Section 5.1).

6. Efficiency Analysis

In this section, the efficiency of the proposed scheme is evaluated based on the experimental
implemention of related schemes.

Appl. Sci. 2018, 8, 2532 18 of 29

6.1. Experimental Environment

According to the Commercial National Security Algorithm (CNSA) Suite [39] recommended
by the National Security Agency (NSA), we used SHA-3 384-bit as a cryptographic hash function,
a Diffie-Hellman key with a 3072-bit modulus, and AES-256 for key agreement and a secure encryption
algorithm when implementing comparison schemes.

All experiments were performed on a single machine with a 3.5 GHz CPU (Intel i7-7800x) and
64 GB RAM (3600 MHz 4 × 16 GB) running Windows 10. Each algorithm was implemented as
a singrypto version 2.6.1) [40] for AES and Diffie-Hellman key agrele-threaded 32-bit Python [41]
program, using the Python cryptography toolkit (pycement and the SHA-3 wrapper for Python (Pysha3
version 1.0.2) [42] for SHA-3, respectively. In addition, the data was split into 256-byte blocks when
the Merkle tree was constucted to allow for a consistent comparison.

To minimize errors caused by outliers, each experiment was repeated 1000 times in the same
environment, and then the average and the standard deviation are calculated and reported. It is worth
nothing that there is room for additional performance improvement because the specified libraries
were used without further optimization.

6.2. Computation Overhead

The computation time for each experiment was measured based on CPU time. The performance
of each algorithm for varying data sizes is analyzed and the time overhead is compared .

6.2.1. Authentication Based on Merkle Tree

Conventional online authentication applying Merkle tree guarantees neither consistent reliability
nor protection from information leakage, but it was added to the experiment as a baseline indicator
for efficiency. The size of the data block was fixed for the system initialization but could be varied
according to the system configuration. To allow for a consistent comparison, the block size was set to
256 bytes in this and following experiments.

A comparison of the computation time required for Merkle tree-based authentication for different
data sizes is presented in Figure 5. The prover constructs a Merkle tree for the possessed data and
generates a proof by finding sibling nodes in the tree, while the verifier selects a random index for the
leaf node (corresponding to the index for the data block) and validates the proof received from the
prover by repeatedly applying a hash function for each element in the proof.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB

Data size

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

C
om

pu
ta

tio
n

tim
e

(m
s)

Prover
Verifier

Figure 5. Computation time for Merkle tree-based authentication.

The required computation time increases as the soze of the data becomes larger. Merkle tree
construction has a linear relationship with the number of blocks (i.e., leaf nodes) because the number
of nodes in the tree can be at most 2n− 1 for n blocks of data. Meanwhile, the computation time for

Appl. Sci. 2018, 8, 2532 19 of 29

proof generation and verification is logarithmically proportional to the number of data blocks because
the number of elements is related to the tree height.

In the Merkle tree-based approach, the computation time between the prover and the verifier is
not equal. This is because the prover has to construct the entire Merkle tree from the underlying data
but the verifier does not. The verifier only has to apply the hash function using the received proof and
compare the bitstrings of the result with locally stored information. For a data file of 1 MB, Merkle tree
generation by the prover accounts for 99.9% of the computational time, which is 581.5 times longer
than the verification time required for the verifier. Detailed results are summarized in Table 2.

Table 2. Average computation time (ms) for authentication based on Merkle tree by data size (standard
deviation in parentheses).

100 B 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1 GB

Merkle tree generation
0.00461 0.01748 0.11897 1.05451 10.67579 107.07319 1134.07592 11,191.59684

(0.00062) (0.00080) (0.00247) (0.00723) (0.09199) (1.07465) (19.51252) (33.31233)

Challenge generation
0.00086 0.00086 0.00099 0.00101 0.00100 0.00100 0.00087 0.00087

(0.00019) (0.00017) (0.00020) (0.00021) (0.00021) (0.00023) (0.00017) (0.00016)

Sibling path generation
0.00201 0.00389 0.00662 0.00863 0.01101 0.01258 0.02032 0.02273

(0.00024) (0.00066) (0.00048) (0.00038) (0.00059) (0.00054) (0.00159) (0.00168)

Verification
0.00127 0.00417 0.00937 0.01398 0.01836 0.02369 0.02840 0.03294

(0.00034) (0.00030) (0.00077) (0.00075) (0.00096) (0.00149) (0.00085) (0.00096)

6.2.2. Authentication Based on the Hardcore Function

A comparison of the computation time required for hardcore function-based authentication for
different data sizes is displayed in Figure 6, in which Verifier and Prover indicate the computation time
required by the verifier and the prover, respectively. The verifier selects a random seed, generates a
pseudorandom bitstring based on the selected seed, generates a proof using the generated bitstring,
and validates the proof received from the prover by comparing it with the locally generated proof.
On the other hand, the prover generates a pseudorandom bitstring based on the seed received from
the verifier and generates a proof using the independently generated bitstring.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

C
om

pu
ta

tio
n

tim
e

(m
s)

Prover
Verifier

Figure 6. Computation time for hardcore function-based authentication.

The required computation time increases as the volume of data becomes larger. Seed generation
time is almost constant because the size of the seed does not change. However, pseudorandom bitstring
generation and verification are proportional to the logarithmic size of the data because they are closely
related to the size of the proof. Proof generation is lenearly proportional to the size of the data.

Appl. Sci. 2018, 8, 2532 20 of 29

There is little difference in the computation time between the prover and the verifier. This is
because both the verifier and the prover generate their own proofs based on the self-generated
pseudorandom bitstring, which requires the most computation time, although the verifier adiitionally
conducts the initial seed generation and proof validation through a simple comparison, which requires
relatively little time. For 1 MB of data, proof generation accounts for 98.2% of computation time for
both the verifier and the prover. The detailed experiment results are summarized in Table 3.

Table 3. Average computation time (ms) for authentication based on a hardcore function by data size
(standard deviation in parentheses).

100 B 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1 GB

Seed generation
0.00065 0.00075 0.00092 0.00223 0.00313 0.00420 0.00822 0.01068

(0.00016) (0.00018) (0.00020) (0.00061) (0.00037) (0.00054) (0.00101) (0.00119)

Pseudorandom bitstring 0.01106 0.01417 0.03730 0.28324 4.12432 44.29721 450.26368 4690.52351

generation (0.00085) (0.00133) (0.00351) (0.02986) (0.79537) (8.69847) (89.4971) (488.92123)

Proof generation
0.04765 0.57035 7.20359 84.95004 1058.25365 12,523.93617 139,315.96462 1,666,976.31436

(0.00148) (0.01614) (0.09508) (0.86894) (2.32808) (8.65474) (236.08956) (2663.86754)

Verification
0.00018 0.00019 0.00022 0.00032 0.00036 0.00036 0.00036 0.00100

(0.00014) (0.00014) (0.00013) (0.00013) (0.00013) (0.00013) (0.00014) (0.00023)

6.2.3. Authentication Based on Merkle Tree with Transmission in Encrypted Form

This approach requires the encryption and decryption of data transmitted between the prover
and the verifier using a key agreed upon by both entities in addition to the typical Merkle tree-based
authentication. Therefore, there is an additional need for a trusted authority in order to set the
parameters to create an environment for key agreement. In this experiment, a Diffie-Hellman key
agreement mechanism was adopted with a modulus of 3072 bits. (If communication parties require
data authentication and continuous communication, the computation time for key agreement may be
excluded from computation overhead. However, in this paper, we experimented with parameter setting
for the same security level on the assumption that only communication for online data authentication
is done.) Additionally, the data to be transmitted to the other party is encrypted with the agreed key
and decrypted on the recipient’s side, leaving the rest of the process the same as in the typical Merkle
tree-based approach. In other words, the verifier encrypts and transmits a random challenge and
decrypts the proof received from the prover. The prover decrypts the challenge received from the
verifier to generate the proof, and then encrypts that proof.

If the parties communicate and perform data authentication continuously, the computation time
for key agreement may be excluded from computation overhead. In this case, however, there is a
possibility that an adversary can bypass authentication from eavesdropping of repeated authentication
process, and there is still a leak in size information. In practice, since most of the authentication
is done by a large number of independent users, individual users need to establish a new session
(using a new session key) and perform authentication. Therefore, in this paper, we only measured
communication overhead for online data authentication in encrypted form after a key agreement on
the same security level.

A comparison of the computation time required for Merkle tree-based authentication for
different data sizes is presented in Figure 7, in which Public setting refers to the time required for
parameter generation by the trusted authority for Diffie-Hellman key agreement. As this approach
is also based on a Merkle tree, the computation time increases as the volume of data increases.
In addition, computational load for the prover and the verifier is also similar to that of the Merkle
tree-based approach.

Appl. Sci. 2018, 8, 2532 21 of 29

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB

Data size

10 0

10 1

10 2

10 3

10 4

10 5

C
om

pu
ta

tio
n

tim
e

(m
s)

Public setting Prover Verifier

Figure 7. Computation time for Merkle tree-based authentication with encrypted communication.

However, public setting in the initial stage requires a relatively high computation time even for
1 GB of data (although it is executed only once and requires a constant amount of time). Encryption,
decryption, and key agreement also increase the computation time for both the verifier and the prover
for exchanges of challenges and proofs, respectively.

The detailed experiment results are summarized in Table 4. For 1MB of data, key agreement
accounts for 46.9% and 99.3% of the computation time for the prover and the verifier, respectively,
while encryption and decryption uses only 0.2% and 0.5%, respectively.

Table 4. Average computation time (ms) for Merkle tree-based encrypted authentication by data size
(standard deviation in parentheses).

100 B 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1 GB

Parameter 9468.19790 9538.16482 9794.65946 9532.98866 9452.51795 9727.44050 9064.76798 9633.54744

generation (8493.82876) (8975.20449) (9175.01323) (8829.14856) (8759.71474) (9374.65954) (7981.16155) (8863.74385)

Partial key 4.80688 4.79883 4.78975 4.79192 4.80195 4.80006 4.81253 4.96501

generation (0.18776) (0.18395) (0.18719) (0.18367) (0.18475) (0.18142) (0.19221) (0.25943)

Key 4.57732 4.57399 4.56398 4.56755 4.57577 4.57745 4.57501 4.57433

agreement (0.13962) (0.14449) (0.14221) (0.15151) (0.15099) (0.14848) (0.14461) (0.14200)

Challenge 0.00087 0.00098 0.00091 0.00088 0.00100 0.00087 0.00099 0.00087

generation (0.00018) (0.00020) (0.00020) (0.00016) (0.00021) (0.00016) (0.00023) (0.00018)

Encryption of 0.02674 0.02647 0.02668 0.02702 0.03341 0.03457 0.03739 0.05227

the challenge (0.00145) (0.00140) (0.00117) (0.0013) (0.00210) (0.00235) (0.00323) (0.00281)

Decryption of 0.01458 0.01567 0.01597 0.01776 0.01967 0.02292 0.02444 0.02568

the challenge (0.00068) (0.00065) (0.00042) (0.00088) (0.00118) (0.00097) (0.00064) (0.00066)

Merkle tree 0.00324 0.01570 0.11664 1.05112 10.55169 106.34833 1072.881132 11,196.73308

generation (0.00024) (0.00043) (0.00184) (0.03182) (0.08447) (0.36833) (6.69879) (33.06858)

Sibling path 0.00271 0.00429 0.00655 0.00808 0.01018 0.01172 0.01773 0.02247

generation (0.00033) (0.00042) (0.00047) (0.00054) (0.00079) (0.00047) (0.00100) (0.00101)

Encryption of 0.01639 0.01751 0.01866 0.02067 0.02978 0.04813 0.05219 0.05405

the sibling path (0.00061) (0.00043) (0.00089) (0.00117) (0.00323) (0.00177) (0.00118) (0.00357)

Decryption of 0.01782 0.01776 0.01895 0.01714 0.01790 0.01957 0.02026 0.02090

the sibling path (0.00061) (0.00071) (0.00062) (0.00085) (0.00058) (0.00102) (0.00080) (0.00129)

Verification
0.00130 0.00454 0.00981 0.01408 0.01836 0.02378 0.02848 0.03252

(0.00018) (0.00041) (0.00078) (0.00091) (0.00112) (0.00121) (0.00088) (0.00041)

Appl. Sci. 2018, 8, 2532 22 of 29

6.2.4. Authentication Based on the Proposed Approach

Similar to Merkle tree-based authentication after encryption, the proposed mechanism obfuscates
the transmitted data (i.e., challenges from the verifier and proofs from the prover). Notice that,
however, unlike the other scheme, ours does not require an additional trusted authority to generate
public parameters for key agreement as a preprocessing stage before the challenge-response process.
In addition, the proposed scheme hides the size information by randomizing the proof size regardless
of the Merkle tree structure. Specifically, the verifier requests an arbitrary proof length in terms of
the hash values and the prover generates and obfuscates (and truncates if necessary) the sibling path
according to the requested proof length, followed by padding with a random bitstring when the
generated proof is shorter than the specified length. A comparison of the computation time required
for the proposed approach by data size is illustrated in Figure 8.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

Co
m

pu
ta

tio
n

tim
e

(m
s)

Prover

Veri�er

Figure 8. Computation time of the proposed authentication scheme.

The detailed experiment results are summarized in Table 5. The computation time increases as
the volume of the data (consequently, the size of Merkle tree) increases, and most of the time is used to
construct the tree. For 1 MB of data, Merkle tree generation requires 92.1% of the time, while the time
used by the prover to obfuscate the sibling path and to add a random bitstring is just 1.6% and 6.4%,
respectively. On the verifier side, mask removal is additionally performed, taking a similar amount
time as the verification. However, it is logarithmically proportional to the number of data blocks and
accounts for negligible amount of time.

Appl. Sci. 2018, 8, 2532 23 of 29

Table 5. Average computation time (ms) of the proposed authentication scheme by data size (standard
deviation in parenthesis).

100 B 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1 GB

Requested proof length
49.04100 50.84400 52.70700 52.58500 52.22300 51.67100 50.86000 50.81600

(27.97269) (28.63403) (27.93591) (28.83915) (28.47626) (28.3989) (27.28825) (28.78524)

Merkle tree generation
0.00299 0.01417 0.11407 1.04286 10.53377 106.27209 1081.34281 11,178.68500

(0.00098) (0.00324) (0.03135) (0.29979) (3.02505) (30.96492) (320.58949) (354.27592)

Challenge generation
0.00216 0.00226 0.00247 0.00243 0.00216 0.00240 0.00243 0.00238

(0.00068) (0.00067) (0.00062) (0.00053) (0.00070) (0.00056) (0.00059) (0.00068)

Sibling path generation
0.00000 0.00000 0.00000 0.00000 0.00002 0.00002 0.00003 0.00002

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Sibling path obfuscation
0.04547 0.06643 0.10507 0.13948 0.17899 0.23363 0.26413 0.29186

(0.00596) (0.00338) (0.01607) (0.01782) (0.02655) (0.03630) (0.04581) (0.06181)

Random bitstring padding
0.89665 0.87894 0.85868 0.78980 0.72994 0.66017 0.59333 0.55448

(0.54933) (0.53655) (0.53474) (0.53037) (0.51176) (0.49959) (0.46923) (0.47786)

Mask removal
0.02384 0.04487 0.08232 0.11417 0.14501 0.17849 0.20863 0.23202

(0.00310) (0.00207) (0.01486) (0.01715) (0.02501) (0.03532) (0.04438) (0.06090)

Verification
0.00886 0.01602 0.01936 0.02576 0.02953 0.03799 0.04319 0.04763

(0.00358) (0.08621) (0.00421) (0.05892) (0.00504) (0.01028) (0.00676) (0.00924)

6.2.5. Analysis of Computation Overhead

Based on analyses of individual algorithms, the computation overhead for the prover and the
verifier is summarized in Figures 9 and 10, respectively. Although Merkle tree-based authentication
(the first bar in the figures) does not consider information leakage, its computation overhead is used as
a reference for ideal computation efficiency.

On the prover side, the operation of authentication based on a hardcore function (the second bar) is
performed on the entire data while repeating the log of the data bit-length, leading to a computation
overhead that is linearly proportional to data size. All of the other algorithms only require all of
the data when constructing a Merkle tree, and the proof generation process has a relatively low
overhead because it deals only with the logarithm of the data in bit-length. For‘data smaller than
10 MB in size, the proposed scheme demonstrates the most efficient computation (next to the one
adopting only a Merkle tree). For data over 10 MB in size, the computation overhead is very similar
for the three algorithms exploiting Merkle trees. This indicates that the overhead generated by
encryption/decryption and random masking in the proposed scheme is negligible.

On the verifier side, there is a relatively clear difference between the algorithms because the
computation required is lower than that of the prover. Other than authentication based on Merkle tree,
the proposed scheme exhibits the greatest efficiency, followed by authentication based on Merkle
tree with encrypted transmission, with hardcore function-based authentication demonstrating the
lowest efficiency. The majority of the overhead is due to key agreement stage in the algorithm
requiring encrypted communication and sibling path obfuscation in the proposed scheme. However,
this difference does not exceed 1ms regardless of the data size in the experimental results. Furthermore,
the proposed scheme might be able to further narrow the gap by optimizing the bitwise exclusive-or
(XOR) operation, which is not natively supported in Python.

Appl. Sci. 2018, 8, 2532 24 of 29

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

10 -4

10 -2

10 0

10 2

10 4

10 6

10 8

Co
m

pu
ta

tio
n

tim
e

(m
s)

Authentication based on Merkle tree
Authentication based on a hardcore function
Authentication based on Merkle tree with encrypted communication
Authentication of the proposed scheme

Figure 9. Comparison of computation overhead on the prover side.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

10 -4

10 -2

10 0

10 2

10 4

10 6

10 8

Co
m

pu
ta

tio
n

tim
e

(m
s)

Authentication based on Merkle tree
Authentication based on a hardcore function
Authentication based on Merkle tree with encrypted transmission
Authentication of proposed the scheme

Figure 10. Comparison of computation overhead on the verifier side.

Considering the features of the related schemes summarized in Table 6, the verifier in authentication
based on a hardcore function allows anyone to know the size of the underlying data (because the bit-length
of the transmitted seed is logarithmically proportional to the data volume) even though the transmitted
data is randomized. Authentication based on Merkle tree with encrypted communication (the third bar)
is resilient to replay attacks that let the adversary reuse previously successful validation, but is still
susceptible to size information leakage. In short, none of the comparison algorithmsare able to reduce
information leakage to the same extent as the proposed scheme.

Nevertheless, the proposed scheme requires the least computation overhead for both the
prover and the verifier (except for Merkle tree-based authentication, which does not consider
information leakage).

Appl. Sci. 2018, 8, 2532 25 of 29

Table 6. Average computation time (ms) for Merkle tree-based encrypted authentication by data size
(standard deviation in parentheses).

Features
Authentication Based on

Merkle Tree Hardcore Function
Merkle Tree with Proposed

Encrypted Communication Scheme

Resilience against size information leakage X X X O
Resilience against replay attacks X O O O
Requirement for an additional trusted authority X X O X

6.3. Communication Overhead

For all of the compared schemes, the proof is generated using all of the data, but the final proof
transmitted to the verifier is proportional to the log of the data bit-length. Looking closely at the
amount of data for each entity, however, there are noticible differences between approaches.

In the transmission from the prover to the verifier, authentication based on a hardcore function
generates and sends a proof of bit-length (|M|+ log(M)− 1) for data M. Therefore, the size of the
generated proof becomes very small. Specifically, the proof size is only 1 Byte when the data is
100 Bytes in size, 2 Bytes for data between 1 KB and 10 KB in size, 3 Bytes for 100 KB-10 MB of data,
and 4 Bytes for 1 GB of data. On the other hand, the other approaches generate and send a proof.
The proof corresponds to a series of hash values and is logarithmically proportional to the number
of all of the data blocks, where the size of the hash value is 384 bits (i.e., 48 Bytes). Authentication
based on Merkle tree requires the additional transmission of a partial key generated by the prover that
is 3072 bits (i.e., 384 Bytes) in size. The comparison of the data transmission from the prover to the
verifier is presented in Figure 11.

Recall that the size of a proof, which is embedded in the challenge, is determined by the verifier.
Therefore, the transmitted proof size is independent of the actual data size. As specified in Table 5,
the average requested proof length (which is proportional to the number of hash values) of 51 is much
longer than the sibling path in the Merkle tree approach. For example, 1 MB of data has a sibling path
length of 13 and 1 GB of data has a sibling path length of 23. The communication overhead when
the requested proof length is fixed at 25 is also illustrated as the last bar in Figure 11. In this case,
the communication overhead is almost the same as that of 100 MB of data in conventional authentication
based on Merkle tree even for 1 GB of data. This characteristic of the proposed scheme is positive in that
it provides flexibility for the verifier in setting the proof length regardless of the actual data size.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

0

512

1024

1536

2048

2560

3072

Tr
an

sm
itt

ed
 d

at
a

(B
yt

es
)

Authentication based on Merkle tree
Authentication based on a hardcore function
Authentication based on Merkle tree with encrypted communication
Authentication of the proposed scheme
Authentication of the proposed scheme (with requested proof length = 25)

Figure 11. Comparison of trasmitted data on prover side with varying data size.

Appl. Sci. 2018, 8, 2532 26 of 29

On the other hand, in the transmission from the verifier to the prover, only a constant amount of
transmission is required regardless of the data size, because only the challenge is transmitted in all
schemes except authentication based on a hardcore function. The comparison of the data transmission
from the prover to the verifier is presented in Figure 12.

In terms of storage, there is no additional overhead because the random sources can be removed
from the local storage immediately after the hash evaluations.

100B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
Data size

10 0

10 2

10 4

10 6

10 8

10 10

Tr
an

sm
itt

ed
 d

at
a

(B
yt

es
)

Authentication based on Merkle tree
Authentication based on a hardcore function
Authentication based on Merkle tree with encrypted communication
Authentication of the proposed scheme

Figure 12. Comparison of trasmitted data on verifier side with varying data size.

7. Conclusions

At the present time, when data storage and maintenance costs can be reduced due to advances
in information and communciation technologies, it is easy to overlook whether data is correctly and
legitimated managed when outsourced to remote repositories. In this paper, we investigated the types
of information leakage that can occur when data integrity is compromised between physically separate
entities and reviewed representative approaches to handling this issue. A simple but efficient approach
is presented to improve the security and reliability of data integrity validations, something which
has been neglected in previous research. Providing rigorous security analysis, the effectiveness of
the proposed scheme is examined in terms of resilience against the leakage of size information and
replay attacks. Performance analysis shows that our method provides the highest efficiency in terms
of computation load and improves security and reliability.

Author Contributions: D.K. contributed the ideas and wrote the paper; Y.S. and J.Y. designed and conducted the
experiments; J.H. performed the security analaysis and supervised the whole paper including paper organization
and proofread.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2017R1C1B5077026) for Dongyoung Koo. This work was supported by Institute
for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP)
(No.2018-0-00477, Development of Malware Analysis Technique based on Deep Web and Tor) for Junbeom
Hur. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIP) (No.2017R1C1B5015045) for Youngjoo Shin. This research was supported by the
MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support
program(IITP-2018-0-01423) supervised by the IITP(Institute for Information & communications Technology
Promotion) for Joobum Yun.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2018, 8, 2532 27 of 29

References

1. CPA Practice Advisor. The Top Cyber Risks to Accounting Firms Come from Inside the Firm. Available
online: https://www.cpapracticeadvisor.com/news/12427308/the-top-cyber-risks-to-accounting-firms-
come-from-inside-the-firm (accessed on 13 September 2018).

2. Chen, C.; Deng, I. Tencent Cloud Says Ímproper Operationsĺed to Data Loss for Client as It Seeks to
Implement Improvements. Available online: https://www.scmp.com/tech/article/2158785/tencent-
cloud-says-improper-operations-led-data-loss-client-it-seeks-implement (accessed on 13 September 2018).

3. Zeng, K. Publicly Verifiable Remote Data Integrity. In Information and Communications Security; Springer:
New York, NY, USA, 2008; pp. 419–434. doi:10.1007/978-3-540-88625-9_28.

4. Henry, J. These 5 Types of Insider Threats Could Lead to Costly DAta Breaches. Available online: https://
securityintelligence.com/these-5-types-of-insider-threats-could-lead-to-costly-data-breaches/ (accessed
on 13 September 2018).

5. Sambit.k. Global Cloud Data Loss Prevention (DLP) Market 2023 Growth Factors, Regional
Analysis by Types, Applications, & Manufacturers with Forecasts. Available online: https:
//thetradereporter.com/global-cloud-data-loss-prevention-dlp-market-2023-growth-factors-egional-
analysis-by-types-applications-manufacturers-with-forecasts/139976/ (accessed on 13 September 2018).

6. Vacca, J.R. Cloud Computing Security: Foundations and Challenges; CRC Press: Boca Raton, FL, USA, 2016.
7. Symantec Corporation. Symantec Data Loss Prevention. Available online: https://www.symantec.com/

products/data-loss-prevention/ (accessed on 13 September 2018).
8. Trustwave Holdings, Inc. Trustwave Data Loss Prevention. Available online: https://

www.trustwavecompliance.com/solutions/compliance-technologies/data-loss-prevention/ (accessed
on 13 September 2018).

9. McAfee, LLC. McAfee Total Protection for Data Loss Prevention. Available online: https://www.
mcafee.com/enterprise/en-ca/products/total-protection-for-data-loss-prevention.html/ (accessed on
13 September 2018).

10. Check Point Software Technologies, Ltd. Data Loss Prevention Software Blade. Available online:
https://www.checkpoint.com/products/dlp-software-blade/ (accessed on 13 September 2018).

11. Digital Guardian. Digital Guardian Encpoint DLP. Available online: https://digitalguardian.com/
products/endpoint-dlp/ (accessed on 13 September 2018).

12. Merkle, R.C. A Digital Signature Based on a Conventional Encryption Function. In Advances
in Cryptology—CRYPTO; Springer: Berlin/Heidelberg, Germany, 1988; pp. 369–378.
doi:10.1007/3-540-48184-2_32.

13. Swan, M. Blockchain Thinking: The Brain as a Decentralized Autonomous Corporation [Commentary].
IEEE Technol. Soc. Mag. 2015, 34, 41–52. doi:10.1109/MTS.2015.2494358. [CrossRef]

14. Liang, X.; Shetty, S.; Tosh, D.; Kamhoua, C.; Kwiat, K.; Njilla, L. ProvChain: A Blockchain-based Data
Provenance Architecture in Cloud Environment with Enhanced Privacy and Availability. In Proceedings
of the 2017 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’17),
Madrid, Spain, 14–17 May 2017; pp. 468–477. doi:10.1109/CCGRID.2017.8. [CrossRef]

15. Bitcoin.com. Bitcoin. Available online: https://www.bitcoin.com/ (accessed on 13 September 2018).
16. Halevi, S.; Harnik, D.; Pinkas, B.; Shulman-Peleg, A. Proofs of Ownership in Remote Storage Systems.

In Proceedings of the 2011 ACM Conference on Computer and Communications Security (CCS), Chicago,
IL, USA, 17–21 October 2011; pp. 491–500. doi:10.1145/2046707.2046765. [CrossRef]

17. Yang, C.; Ren, J.; Ma, J. Provable Ownership of Files in Deduplication Cloud Storage. Secur. Commun. Netw.
2015, 8, 2457–2468. doi:10.1002/sec.784. [CrossRef]

18. Armknecht, F.; Boyd, C.; Davies, G.T.; Gjøsteen, K.; Toorani, M. Side Channels in Deduplication:
Trade-offs Between Leakage and Efficiency. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security (ASIA CCS ’17), Abu Dhabi, UAE, 2–6 April 2017; pp. 266–274.
doi:10.1145/3052973.3053019. [CrossRef]

19. Koo, D.; Shin, Y.; Yun, J.; Hur, J. An Online Data-Oriented Authentication Based on Merkle Tree with
Improved Reliability. In Proceedings of the 2017 IEEE International Conference on Web Services (ICWS),
Honolulu, HI, USA, 25–30 June 2017; pp. 840–843. doi:10.1109/ICWS.2017.102. [CrossRef]

https://www.cpapracticeadvisor.com/news/12427308/the-top-cyber-risks-to-accounting-firms-come-from-inside-the-firm
https://www.cpapracticeadvisor.com/news/12427308/the-top-cyber-risks-to-accounting-firms-come-from-inside-the-firm
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://www.scmp.com/tech/article/2158785/tencent-cloud-says-improper-operations-led-data-loss-client-it-seeks-implement
https://doi.org/10.1007/978-3-540-88625-9_28
https://securityintelligence.com/these-5-types-of-insider-threats-could-lead-to-costly-data-breaches/
https://securityintelligence.com/these-5-types-of-insider-threats-could-lead-to-costly-data-breaches/
https://thetradereporter.com/global-cloud-data-loss-prevention-dlp-market-2023-growth-factors-egional-analysis-by-types-applications-manufacturers-with-forecasts/139976/
https://thetradereporter.com/global-cloud-data-loss-prevention-dlp-market-2023-growth-factors-egional-analysis-by-types-applications-manufacturers-with-forecasts/139976/
https://thetradereporter.com/global-cloud-data-loss-prevention-dlp-market-2023-growth-factors-egional-analysis-by-types-applications-manufacturers-with-forecasts/139976/
https://www.symantec.com/products/data-loss-prevention/
https://www.symantec.com/products/data-loss-prevention/
https://www.trustwavecompliance.com/solutions/compliance-technologies/data-loss-prevention/
https://www.trustwavecompliance.com/solutions/compliance-technologies/data-loss-prevention/
https://www.mcafee.com/enterprise/en-ca/products/total-protection-for-data-loss-prevention.html/
https://www.mcafee.com/enterprise/en-ca/products/total-protection-for-data-loss-prevention.html/
https://www.checkpoint.com/products/dlp-software-blade/
https://digitalguardian.com/products/endpoint-dlp/
https://digitalguardian.com/products/endpoint-dlp/
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/MTS.2015.2494358
http://dx.doi.org/10.1109/MTS.2015.2494358
https://doi.org/10.1109/CCGRID.2017.8
http://dx.doi.org/10.1109/CCGRID.2017.8
https://www.bitcoin.com/
https://doi.org/10.1145/2046707.2046765
http://dx.doi.org/10.1145/2046707.2046765
https://doi.org/10.1002/sec.784
http://dx.doi.org/10.1002/sec.784
https://doi.org/10.1145/3052973.3053019
http://dx.doi.org/10.1145/3052973.3053019
https://doi.org/10.1109/ICWS.2017.102
http://dx.doi.org/10.1109/ICWS.2017.102

Appl. Sci. 2018, 8, 2532 28 of 29

20. Merkle, R.C. A Certified Digital Signature. In Advances in Cryptology—CRYPTO; Springer: New York, NY,
USA, 1990; pp. 218–238.

21. Lamport, L. Constructing Digital Signatures from a One-Way Function; Technical Report, Technical Report
CSL-98; SRI International Palo Alto: Menlo Park, CA, USA, 1979.

22. Kundu, A.; Atallah, M.J.; Bertino, E. Leakage-free Redactable Signatures. In Proceedings of the 2012
ACM Conference on Data and Application Security and Privacy, CODASPY ’12, San Antonio, TX, USA,
7–9 February 2012; ACM: New York, NY, USA, 2012; pp. 307–316. doi:10.1145/2133601.2133639. [CrossRef]

23. Buldas, A.; Laur, S. Knowledge-Binding Commitments with Applications in Time-Stamping.
In Public Key Cryptography—PKC; Springer: Berlin/Heidelberg, Germany, 2007; pp. 150–165.
doi:10.1007/978-3-540-71677-8_11.

24. Wikipedia. Binary Tree. Available online: https://en.wikipedia.org/wiki/Binary_tree/ (accessed on
13 September 2018).

25. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable Data
Possession at Untrusted Stores. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), Alexandria, VA, USA, 28–31 October 2007; pp. 598–609. doi:10.1145/1315245.1315318.
[CrossRef]

26. Zhao, Y.; Chow, S.S.M. Towards Proofs of Ownership Beyond Bounded Leakage. In Proceedings of the
2016 International Conference on Provable Security (ProvSec), Nanjing, China, 10–11 November 2016;
pp. 340–350. doi:10.1007/978-3-319-47422-9_20. [CrossRef]

27. Atallah, M.J.; Cho, Y.; Kundu, A. Efficient Data Authentication in an Environment of Untrusted Third-Party
Distributors. In Proceedings of the IEEE 24th International Conference on Data Engineering, Cancun,
Mexico, 7–12 April 2008; pp. 696–704. doi:10.1109/ICDE.2008.4497478. [CrossRef]

28. Atallah, M.J.; Li, J. Enhanced smart-card based license management. In Proceedings of the 2003
IEEE International Conference on E-Commerce, CEC 2003, Newport Beach, CA, USA, 24–27 June 2003;
pp. 111–119. doi:10.1109/COEC.2003.1210240. [CrossRef]

29. Benjamin, D.; Atallah, M.J. Private and Cheating-Free Outsourcing of Algebraic Computations.
In Proceedings of the 2008 Annual Conference on Privacy, Security and Trust, Fredericton, NB, Canada,
1–3 October 2008; pp. 240–245. doi:10.1109/PST.2008.12. [CrossRef]

30. Keelveedhi, S.; Bellare, M.; Ristenpart, T. DupLESS: Server-Aided Encryption for Deduplicated Storage.
In Proceedings of the 22nd USENIX Security Symposium, Washington, DC, USA, 14–16 August 2013;
pp. 179–194.

31. Xu, J.; Chang, E.C.; Zhou, J. Weak Leakage-resilient Client-side Deduplication of Encrypted Data in
Cloud Storage. In Proceedings of the 2013 ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, Berlin, Germany, 4–8 November 2013; pp. 195–206.
doi:10.1145/2484313.2484340. [CrossRef]

32. Li, H.; Lu, R.; Zhou, L.; Yang, B.; Shen, X. An Efficient Merkle-Tree-Based Authentication Scheme for Smart
Grid. IEEE Syst. J. 2014, 8, 655–663. doi:10.1109/JSYST.2013.2271537. [CrossRef]

33. Rogaway, P.; Shrimpton, T. Cryptographic Hash-Function Basics: Definitions, Implications, and Separations
for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance. In Fast Software Encryption;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 371–388. doi:10.1007/978-3-540-25937-4_24.

34. Merkle, R.C. Protocols for Public Key Cryptosystems. In Proceedings of the 1980 IEEE Symposium
on Security and Privacy, Oakland, CA, USA, 14–16 April 1980; pp. 122–122. doi:10.1109/SP.1980.10006.
[CrossRef]

35. Becker, G. Merkle Signature Schemes, Merkle Trees and Their Cryptanalysis; Technical Report; Ruhr-University
Bochum: Bochum, Germany, 2008.

36. Koblitz, N.; Menezes, A.J. Cryptocash, cryptocurrencies, and cryptocontracts. Des. Codes Cryptogr. 2016,
78, 87–102. doi:10.1007/s10623-015-0148-5. [CrossRef]

37. Bellare, M.; Pointcheval, D.; Rogaway, P. Authenticated Key Exchange Secure against Dictionary Attacks.
In Advances in Cryptology—EUROCRYPT 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 139–155.
doi:10.1007/3-540-45539-6_11.

38. Wikipedia. Entropy (Information Theory). Available online: https://en.wikipedia.org/wiki/Entropy_
(information_theory) (accessed on 13 September 2018).

https://doi.org/10.1145/2133601.2133639
http://dx.doi.org/10.1145/2133601.2133639
https://doi.org/10.1007/978-3-540-71677-8_11
https://en.wikipedia.org/wiki/Binary_tree/
https://doi.org/10.1145/1315245.1315318
http://dx.doi.org/10.1145/1315245.1315318
https://doi.org/10.1007/978-3-319-47422-9_20
http://dx.doi.org/10.1007/978-3-319-47422-9_20
https://doi.org/10.1109/ICDE.2008.4497478
http://dx.doi.org/10.1109/ICDE.2008.4497478
https://doi.org/10.1109/COEC.2003.1210240
http://dx.doi.org/10.1109/COEC.2003.1210240
https://doi.org/10.1109/PST.2008.12
http://dx.doi.org/10.1109/PST.2008.12
https://doi.org/10.1145/2484313.2484340
http://dx.doi.org/10.1145/2484313.2484340
https://doi.org/10.1109/JSYST.2013.2271537
http://dx.doi.org/10.1109/JSYST.2013.2271537
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1109/SP.1980.10006
http://dx.doi.org/10.1109/SP.1980.10006
https://doi.org/10.1007/s10623-015-0148-5
http://dx.doi.org/10.1007/s10623-015-0148-5
https://doi.org/10.1007/3-540-45539-6_11
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Entropy_(information_theory)

Appl. Sci. 2018, 8, 2532 29 of 29

39. Information Assurance by the National Security Agency. Commercial National Security Algorithm
(CNSA) Suite. Available online: https://www.iad.gov/iad/customcf/openAttachment.cfm?
FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/
public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=
aF6woL7fQp3dJiShxsuwyRvADMxf4cwBTYEUSz (accessed on 13 September 2018).

40. Python Software Foundation. pycrypto. Available online: https://pypi.org/project/pycrypto/ (accessed
on 13 September 2018).

41. Python Software Foundation. python. Available online: https://www.python.org/ (accessed on
13 September 2018).

42. Python Software Foundation. pysha3. Available online: https://pypi.org/project/pysha3/ (accessed on
13 September 2018).

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=aF6woL7fQp3dJiShxsuwyRvADMxf4cwBTYEUSz
https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=aF6woL7fQp3dJiShxsuwyRvADMxf4cwBTYEUSz
https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=aF6woL7fQp3dJiShxsuwyRvADMxf4cwBTYEUSz
https://www.iad.gov/iad/customcf/openAttachment.cfm?FilePath=/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/assets/public/upload/Commercial-National-Security-Algorithm-CNSA-Suite-Factsheet.pdf&WpKes=aF6woL7fQp3dJiShxsuwyRvADMxf4cwBTYEUSz
https://pypi.org/project/pycrypto/
https://www.python.org/
https://pypi.org/project/pysha3/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Merkle Tree-Based Authentication
	Information Leakage Analysis of Merkle Tree-Based Authentication Schemes
	Analysis of Merkle Tree-Based Authentication
	Leakage of Data Size Information
	Leakage of Merkle Tree Hash Values

	Previous Schemes and Their Vulnerabilities
	Generic Merkle Tree-Based Authentication
	Authentication without a Merkle Tree
	Merkle Tree-Based Authentication of Encrypted Data
	Merkle Tree-Based Authentication with Transmission in Encrypted Form

	Randomized Online Authentication
	Adversarial Model
	Goal
	Construction
	Authentication Initiation
	Randomized Challenge Generation
	Original Challenge Restoration
	Proof Generation
	Proof Obfuscation
	(Original) Proof Restoration
	Proof Verification

	Security Analysis
	Security of Merkle Tree-based Authentication
	Security of the Proposed Scheme
	Security of One-time Secret Delivery
	Security of the Proposed Scheme

	Efficiency Analysis
	Experimental Environment
	Computation Overhead
	Authentication Based on Merkle Tree
	Authentication Based on the Hardcore Function
	Authentication Based on Merkle Tree with Transmission in Encrypted Form
	Authentication Based on the Proposed Approach
	Analysis of Computation Overhead

	Communication Overhead

	Conclusions
	References

