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Abstract: When large-scale annotated data are not available for certain image classification tasks,
training a deep convolutional neural network model becomes challenging. Some recent domain
adaptation methods try to solve this problem using generative adversarial networks and have
achieved promising results. However, these methods are based on a shared latent space assumption
and they do not consider the situation when shared high level representations in different domains do
not exist or are not ideal as they assumed. To overcome this limitation, we propose a neural network
structure called coupled generative adversarial autoencoders (CGAA) that allows a pair of generators
to learn the high-level differences between two domains by sharing only part of the high-level layers.
Additionally, by introducing a class consistent loss calculated by a stand-alone classifier into the
generator optimization, our model is able to generate class invariant style-transferred images suitable
for classification tasks in domain adaptation. We apply CGAA to several domain transferred image
classification scenarios including several benchmark datasets. Experiment results have shown that
our method can achieve state-of-the-art classification results.

Keywords: unsupervised domain adaptation; generative adversarial networks; autoencoder

1. Introduction

Large-scale well-annotated datasets such as Microsoft COCO [1], ImageNet [2] and KITTI [3] have
played a vital role in the recent success of deep learning based models on computer vision tasks such
as image classification, target detection, semantic segmentation and so on. However, models trained
with large datasets still cannot generalize well to novel datasets when these datasets have different
feature distributions. The typical solution is to further fine-tune these models on the task specific
datasets. However, creating such datasets can be expensive and time-consuming. Unsupervised
domain adaptation offers a solution to this problem by learning a mapping between a labeled dataset
(source domain) and an unlabeled dataset (target domain) or by learning domain invariant features.
Conventional domain adaptation approaches for image classification are usually developed in two
separate steps: designing and extracting fixed features and then training models to reduce their
differences in either the marginal distributions or the conditional distributions between domains [4–7].
Recent deep learning based domain adaptation approaches avoid the difficulty of feature design by
extracting features automatically through convolutional neural networks [8–13].

Among all kinds of deep neural network based domain adaptation approaches, generative
adversarial network (GAN) [14] has become a popular branch. A typical GAN trains a generator and
a discriminator to compete against each other. The generator is trained to produce synthetic images as
real as possible, whereas the discriminator is trained to distinguish the synthetic and real images. When
applying GAN to domain adaptation for image classification, there are two major types of approaches.
The first type trains a GAN to generate unlabeled target domain images, thus enlarging the data
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volume to train a more robust image classifier [15–17]. In these methods, the training strategy of the
final classifier need to be carefully designed since the newly generated images have no label. The other
type of approaches generate labeled target domain images directly by transferring the source domain
images into target domain style and have achieved some state-of-the-art results, such as CoGAN [18]
and UNIT [19]. These methods are based on the shared latent space assumption, which assumes that
the differences of the source domain and the target domain are primarily low-level, and that the two
domains share a common high-level latent space. This assumption works well for simple scenarios
such as digits adaptation between MNIST [20] and USPS [21] but faces challenges when the semantic
features are more complex. When shared high-level latent space in different domains does not exist or
such latent space is not as ideal as assumed, these methods will fail [18].

In this paper, we propose an unsupervised domain adaptation method for image classification
by combining generative adversarial networks with autoencoders. We call our proposed network
architecture Coupled Generative Adversarial Autoencoders (CGAA). Our work is perhaps most similar
to CoGAN and UNIT, but we try to solve the aforementioned shortcomings of these methods by the
following designs: CGAA consists of a pair of generative adversarial networks (GAN) and a domain
adaptive classifier. The architecture of the generator in GAN is designed based on the autoencoder.
During training, part of the layers in the generators are forced to share their weights, which gives
our model the ability to learn the domain transformation in an unsupervised manner and generate
synthetic target domain images with label. By decoupling the highest level layer, we give our model
the capacity to tolerant the differences of high-level features between the domains. The classifier
provides a class-invariant loss to help the generator produce more suitable images for the classification
task in domain adaptation. The main contributions of this work are:

• We propose an unsupervised domain adaptation method for image classification. Our method
trains a pair of coupled generative adversarial networks in which the generator has an encoder-
decoder structure.

• We force part of the layers in the generator to share weights during training to generate labeled
synthetic images, and make the highest level layer decoupled for different high-level representations.

• We introduce a class consistent loss into the GAN training, which is calculated from the output
of a stand-alone domain adaptive classifier. It can help the generator to generate more suitable
images for domain adaptation.

2. Related Work

The goal of unsupervised domain adaptation is to transfer knowledge from a labeled source
dataset to a target dataset where labeled data is not available. Recent studies have tried to learn
transferable features with deep neural networks. The DDC method [11] learned domain invariant
representations by introducing an adaptation layer and a Maximum Mean Discrepancy (MMD)
domain confusion loss. The work in [22] extended the MMD to jointly mitigate the gaps of marginal
and conditional distributions between source and target domain. The DAN method [9] embedded
task-specific layers in a reproducing kernel Hilbert space to enhance the feature transferability.
The DANN method [8,23] suggested that the features suitable for domain adaptation should be both
discriminative and domain-invariant and added a domain classifier at the end of the feature extractor
to learn domain invariant features. CAN [24] suggested that some characteristic information from
target domain data may be lost after learning domain-invariant features with DANN. Therefore, CAN
introduced a set of domain classifiers into multiple blocks to learn domain-informative representations
at lower blocks and domain-uninformative representations at higher blocks. The work of [25] proposed
to learn a representation that transfered the semantic structure from a well labeled source domain
to the sparsely labeled target domain by adding a domain classifier and a domain confusion loss.
The DRCN [12] proposed a model which had two pipelines: The first was label prediction for the
source domain and the second was data reconstruction for the target domain. ADDA [26] learns
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the representation of the source domain and then maps the target data to the same space through
a domain-adversarial loss.

Other works have attempted to use GANs [14] into image-to-image translation and domain
adaptation. The “pix2pix” framework [27] used a conditional generative adversarial network to learn
a mapping from input to output images with paired images. CycleGAN [28] learned the mapping
without paired training examples using a cycle consistency loss. The method in [29] used GAN to
translate unpaired images between domains while remain high level semantic information aligned
by introducing attention consistent loss. CoGAN [18] learned a joint distribution of images without
corresponding supervision by training two GANs to generate the source and target images respectively
given the same noise input and tying the high-level layer parameters of the two GANs. Instead of
generating images from noise vectors, PixelDA [30] generated style-transferred images conditioned on
the source images. CoGASA [31] integrated a stacked autoencoder with the CoGAN, and UNIT [19]
proposed an image-to-image translation framework based on CoGAN and VAE [32].

3. Proposed Approach

In this section, we introduce the model structure of CGAA and explain our training strategy.
As illustrated in Figure 1, CGAA contains seven sub-networks. Two image encoders ENCS and ENCT ,
two image decoders DECS and DECT , two adversarial discriminators DS and DT , and a classifier C.
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Figure 1. Overview of our model architecture. xS and xTare images from the source and target
domain. The encoder ENCS and ENCT are two sequences of convolution layers (including Resnet
blocks [33]) that map images to a code in a higher level latent space, DECS and DECT are two
sequences of de-convolution layers (including Resnet blocks) that generate images from the outputs
of the encoder. The Discriminator DS and DT determine whether an image is real or synthesized.
During training, we share the weights of the two encoders except for the first and the last layer.
Similarly, the weights of decoders are also tied except the first and the last layer. DECS

(
ENCS

(
xS))→

xS→S and DECT
(
ENCT

(
xT)) → xT→T are reconstructed images. DECS

(
ENCT

(
xT)) → xT→S and

DECT
(
ENCS

(
xS)) → xS→T are style-transferred images. C is the classifier trained by the source

images and the style-transferred source images.

3.1. Image Reconstruction and Autoencoder

The encoder ENCS and decoder DECS constitute an autoencoder for the source domain XS .
The ENCS maps an input image xS ∈ XSto a code in a latent space and based on this code, the DECS
reconstructs the input image as xS→S . Similarly, ENCT and DECT constitute an autoencoder for the
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target domain XT . The aim of these two autoencoders is to reconstruct images as similar as possible to
their input images in each domain. We use the mean squared error as the loss function to penalize the
differences between inputs and outputs:

LRECS(ENCS, DECS) = EXS [
1
k
‖xS − DECS(ENCS(xS))‖2

2] (1)

LRECT (ENCT , DECT) = EXT [
1
k
‖xT − DECT(ENCT(xT))‖2

2] (2)

where k is the number of pixels in input xS and ‖ · ‖ is the squared L2-norm.

3.2. Style Transfer and GAN

Style-transferred synthetic images can be generated by changing the combination of encoders
and decoders. More specifically, let DECT take the output of ENCS, and let DECS take the output of
ENCT , thus we are able to change the style of images between domains.

When training an autoencoder, element level penalties such as squared error, is the classic choice.
However, as discussed in [34], they are actually not ideal for image generation, and the generated
images are always blurred. Therefore, we combine autoencoder with GAN in our method. By jointly
training an autoencoder and a GAN, we can generate better images with the feature level metric
expressed by the discriminator. In our method CGAA, the ENCS, DECT and DT constitute a generative
adversarial network. During training, DECT takes the output of ENCS, mapping an input source
domain image xS into a target domain style synthetic image xS→T , and discriminator DT is trained
to distinguish between synthetic images xS→T and real images xT from the target domain. Similarly,
ENCT and DECS generate synthetic source-style images xT→S conditioned on the target domain
images xT and DS is trained to distinguish between real source domain images xS and synthetic
images xT→S . With this pair of GANs, our goal is to minmax the following object:

min
ENCS ,ENCT ,DECS ,DECT ,C

max
DS ,DT

αLGANS(ENCT , DECS, DS) + βLRECS(ENCS, DECS)

αLGANT (ENCS, DECT , DT) + βLRECT (ENCT , DECT)
(3)

where α and β are weights that balance the GAN loss and the reconstruction loss. LGANS and LGANT

represent the GAN loss:

LGANS(ENCT , DECS, DS) = EXS [log DS(xS)] +EXT [log(1− DS(DECS(ENCT(xT))))] (4)

LGANT (ENCS, DECT , DT) = EXT [log DT(xT)] +EXS [log(1− DT(DECT(ENCS(xS))))] (5)

3.3. Weight Sharing

Previous shared latent space assumption based methods such as CoGAN [18] and UNIT [19]
are able to conduct the domain transfer training without paired images in different domains by
sharing weights in the generators. They assume that images from different domains only have
low-level semantic differences due to noise, resolution, illumination and color, etc. Furthermore,
a pair of corresponding images in two domains share the same high-level concepts. Therefore, layers
responsible for high level representation are forced to share their weights. However, these methods
are based on the existence of shared high-level representations in the two domains. If the high-level
semantic features are complex and such shared representations do not exist or are hard to find, these
methods will not work out well. To this end, our method extends the previous works by only sharing
part of the high-level layers and decoupling the rest. More specifically, we do not share the weights of
last layer in the encoder, the first layer in decoder, and the last two layers in the discriminator, as shown
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is Figure 2. Under this structure, the generative models will, to some extent, tolerate different high
level representations in different domains.
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Figure 2. The network architecture. The ENCS and ENCT are of the same structure as the encoder
shown in this figure, so are the two decoders and the two discriminators. The convolution layer is
denoted as conv, the transposed convolution layer (deconvolution layer) is denoted as dconv and the
residual block is denoted as ResBlock. N means neurons (channels), S means stride, and LReLU means
leaky ReLU. BN stands for batch normalization layer and Fc stands for fully connected layer. We share
the weights of the dark-color layers in the coupled models during training.

3.4. Domain Adapted Classifier

The focus of the unsupervised domain adaptation method described in this paper is to extend
a classifier’s generalization ability on two domains, originally trained on the source domain that
generalizes to the unlabeled target domain. To this end, we train a classifier C with the source
domain images and the synthetic target domain images generated by {ENCS, DECT}. Unlike some
other domain adaptation works where the discriminator is modified as classifier, our classifier has
a stand-alone structure, shown in Figure 1, which is easy to be detached from the whole network for
future training. We do not describe the detailed architecture of the classifier in Figure 2 because it is
task specific. During training, we use the typical cross-entropy loss to optimize C:

LC(ENCS, DECT , C) = ExS ,yS [−yS log C(DECT(ENCS(xS)))− yS log C(xS)] (6)

In addition, the classifier C has another function in CGAA, that is being a part of the optimization
of the generator {ENCS, DECT} with a class-consistency loss. When training the generator, C assigns
a label ŷ the generated image xS→T , and the class-consistency loss is defined as:

LCC(ENCS, DECT , C) = ExS ,yS [−yS log C(DECT(ENCS(xS)))] (7)

where yS is the class label of the input xS. The class-consistency loss makes sure the output image xS→T

remains class-invariant, which is essential for the classification task in domain adaptation. With LC
and LCC, our final optimization object becomes:

min
ENCS ,ENCT ,DECS ,DECT ,C

max
DS ,DT

αLGANS(ENCT , DECS, DS) + βLRECS(ENCS, DECS)

αLGANT (ENCS, DECT , DT) + βLRECT (ENCT , DECT) + γLCC(ENCS, DECT , C)

LC(ENCS, DECT , C)

(8)

The minmax optimization of Equation (8) is achieved by two alternative steps. During the first
step, we keep the discriminators and the classifier fixed, optimize the generators and at the same time,
minimize the reconstruction losses and the class consistent loss. During the second step, we keep the
generators fixed and optimize the discriminators and the classifier.
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4. Experiment Results and Evaluation

To evaluate our method, we conduct experiments on various domain adaptation scenarios and
compare our results with other recently reported methods.

4.1. Facial Expression Recognition

We first evaluate our method on cross domain facial expression recognition task with three
publicly available facial expression datasets: JAFFE, MMI and CK+. The images in these datasets have
different resolutions and illuminations, and the subjects vary in gender, age and cultural background.
Figure 3 shows some of the sample images from these datasets.

JAFFE dataset [35,36] contains 213 facial expression images. These images are from 10 Japanese
females with seven expressions (angry, disgust, fear, happy, sad, surprise and neutral). We use all of
the images in JAFFE in our experiments.

MMI dataset [37,38] consists of over 2900 videos as well as still images of 75 subjects, in which
235 videos have emotional labels. We choose the peak frame of each video that has the six basic
emotions (angry, disgust, fear, happy, sad and surprise) and the first frame of these videos as neutral
emotion images. In total we use 242 images from MMI.

CK+ dataset [39] consists of 593 image sequences from 123 subjects, 327 sequences of which
have emotional labels. The dataset labels seven expressions including angry, disgust, fear, happy, sad,
surprise, and contempt. We only choose the peak frame from the sequences labelled with the first six
expressions. In addition, we choose the first frame from some of the sequences as neutral samples.
In total we use 363 images from CK+.

JAFFE

MMI

CK+

Angry Disgust Fear Happy Sad Surprise Nuetral

Figure 3. Sample images from facial expression recognition datasets.

In this experiment, the network structure of our method is shown in Figure 2. Since the facial
expression datasets are rather small, to avoid over-fitting, we use the Alexnet model pre-trained
on ImageNet as the base model of the classifier and fine-tune it in our experiment. Table 1 shows
experiment results of the classifier’s accuracy tested on the target domain. In Table 1, the source model
is trained with only the labeled source dataset. As for the adapted model, to evaluate the effectiveness
of our proposed method, we train with three different settings. In all three settings, the parameters of
the low-level layers in encoders, decoders and discriminators are not shared, which are the first layer
of the encoder, the last layer of the decoder and the first layer of the discriminator. As for the high-level
layers, the first experiment shares the weights of all of these layers, which is a similar structure to
UNIT described in [19]. The second experiment has decoupled high-level layers in ENC and DEC,
which means we do not share the last layer of the two encoders and the first layer of the two decoders.
The last one is to have decoupled high-level layers in ENC, DEC as well as D, which is the same setting
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described in Figure 2. A decoupled D means we do not share the last two layers in the discriminators.
Figure 4 shows examples of the style-transferred images generated by UNIT and the last experiment
setting of CGAA.

(d)JAFFE

(c)C2J-UNIT

(b)C2J-CGAA

Angry Disgust Fear Happy Suprise NeutralSad

(a)CK+

Figure 4. The style-transferred images generated by our model when trained to adapt CK+ to JAFFE.
(a) The Source images from CK+. (b) The generated samples when adapt CK+ images in (a) into JAFFE
style using UNIT. (c) The generated samples when adapt CK+ images in (a) into JAFFE style using our
method CGAA. (d) Random target images from the JAFFE.

Table 1. Recognition accuracy evaluation for domain adaptation on facial expression datasets. JAFFE(J),
MMI(M), CK+(C). J→M means J is the source and M is the target. Bold numbers are the best results.

Training Method Decoupled Layers J→M M→J C→M M→C J→C C→JENC DEC D

Source 0.330 0.362 0.428 0.697 0.634 0.437
UNIT − − − 0.507 0.470 0.567 0.719 0.733 0.526

CGAA
√ √

− 0.521 0.460 0.581 0.736 0.744 0.559√ √ √
0.521 0.498 0.581 0.736 0.769 0.573

In each domain adaptation, we use all available source examples and target examples and resize
them to 224 × 224 pixels to train the generative adversarial networks. Only the label information of
the source dataset is used to train the classifier. Optimization is done on Pytorch using Adam with the
learning rate set as 0.0001 and the weight decay as 0.0001. The α, β and γ in Equation (8) are set as
1.0, 1.0 and 0.1. Figure 4 shows some of the style-transferred images generated in the C→J domain
adaptation under our last kind of network setting. The experiment results in Table 1 show that our
CGAA model with partially-decoupled high level layers outperforms the model with all the high level
layers tied-up in all six domain adaptations. In addition, we find that decoupling the encoder-decoder
can lead to a significant increase of recognition accuracy, whereas decoupling the discriminator has
only a small impact on the experiment result. Therefore, in other experiments described in this paper,
we use the last setting in Table 1 as CGAA for evaluation. We visualize the feature distribution of
the two domains before and after the adaptation (J→C), as shown in Figure 5. Figure 5 proves that
our model can make the distribution of the features from the two domains much closer, which brings
about a higher accuracy in the classification.
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(a) Source-only   J C (b) Adapted J C

Figure 5. The effect of our adaptation depicted by t-SNE [40] visualizations of the extracted features
from the last hidden layer of the classifier in the JAFFE to CK+ scenario. Blue dots are examples from
the source dataset JAFFE, red dots are examples from the target dataset CK+. (a) is when only the
source dataset is used for training. (b) is when our adaptation procedure is done. The adaptation of
our method makes the distribution of the features from the two datasets much closer.

To further evaluate the effectiveness of our method, we compare the confusion matrices of the
class-wise classification accuracy on target domain before and after adaptation.

As shown in Figure 6, the blue ones are the confusion matrices when only source domain images
are used for training, the green ones are matrices when UNIT is used for domain adaption and the
red ones are matrices when our method is used for domain adaptation. When trained on source
domain only, the model have difficulties separating Angry and Neutral between CK+ and JAFFE (see
Figure 6a,b, and also cannot seperate Angry and Sad between MMI and CK+ (see Figure 6c,d). When
trained on MMI and tested on JAFFE, the model misclassifies a lot of images as Surprised (see Figure 6e)
whereas when trained on JAFFE and tested on MMI, the model misclassifies most of the images as
Angry (see Figure 6f). These misclassifications are caused by the semantic gap between domains.
Figure 6 shows that our domain adaptation method can help the model to cross the semantic gap
between domains and increase the class-wise classification accuracies.

(a) CK+ to JAFFE
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(b) JAFFE to CK+

(c) MMI to CK+

(d)CK+ to MMI

(e) MMI to JAFFE
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(f) JAFFE to MMI

Figure 6. Confusion matrices of the classification accuracy on target domain in facial expression
recognition experiment.

4.2. Office Dataset

In this experiment, we evaluate our method on the Office dataset [41]. This is the most popular
benchmark dataset for object recognition in the domain adaptation field. This dataset has 4410 images
across 31 classes of everyday objects in three domains: amazon (A), webcam (W), and dslr (D).
The amazon contains product pictures with no background from the Amazon website, and images
in webcam and dslr contains similar real-world objects with different resolution. Following previous
domain adaptation work [26], we use ResNet-50 as the model structure for the classifier. Other
sub-parts of the model are the same as those shown in Figure 2. We adopt the common “fully-
transductive” training protocol [8,9,26], using all available labeled source examples and unlabeled
target examples. Optimization is done on Pytorch using Adam for 10 epochs with the learning
rate set as 0.0001 and the weight decay set as 0.0001. The α, β and γ in Equation (8) are 1.0, 1.0
and 0.1. We evaluate our method on all six domain adaptations and compare our method with
other reported domain adaptation approaches (some of them only have experiment results on three
domain adaptations). We also implement two other methods on Pytorch based on share-latent space
assumption, which are CoGAN and UNIT. Note that in the original papers of these two methods,
the classifier is gained by attaching a softmax layer to the last hidden layer of the discriminator.
Whereas in our implementation of these methods, we train a stand-alone classifier with the same
structure of our method for a fair comparison. The experiment results in Table 2 show that our method
is a competitive method and achieve state-of-the-art results compared with previously-reported
methods, except for D→W. The method proposed in this paper aims to solve the problem of domain
adaptation when the high-level features in the two domains are different and the shared high-level
latent space cannot be established. As shown in Figure 7, the images of webcam (W) and dslr (D) are
actually very similar, only having differences in the illumination and the image resolution. In other
words, their high-level features are the same. Therefore, our method did not achieve better results than
other methods in this particular task, but obtained better results in other more challenging tasks with
obvious high-level feature differences, such as W→A and D→A.
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amazon dslr webcam

Figure 7. Sample images from Office dataset.

Table 2. Recognition accuracy evaluation for domain adaptation on the Office dataset. Amazon (A),
webcam (W), dslr (D). A→W indicates A is the source dataset and W is the target dataset. Bold numbers
are the best results.

Training Method A→W W→A W→D D→W A→D D→A

Source 0.670 0.498 0.952 0.941 0.689 0.515
DDC 0.594 − 0.917 0.925 − −
DAN 0.685 0.531 0.990 0.960 0.670 0.540
DAH 0.683 0.530 0.988 0.961 0.665 0.555

DRCN 0.687 0.549 0.990 0.964 0.668 0.560
DANN 0.730 − 0.992 0.964 − −

RTN 0.733 0.510 0.996 0.968 0.710 0.505
ADDA 0.751 − 0.996 0.970 − −

CoGAN 0.745 0.549 0.996 0.968 0.710 0.560
UNIT 0.751 0.566 0.992 0.968 0.715 0.568

CGAA 0.752 0.575 0.996 0.957 0.723 0.572

4.3. Office-Home Dataset

Finally, we test our model on Office-home dataset [13]. This is a newer, larger and more
challenging dataset compared to the classic Office dataset. It has about 15,500 images cross 4 domains,
with each domain containing images from 65 classes of everyday objects. As shown in Figure 8,
the four domains are: Art, Clipart, Product and Real-world. Images in Art are artistic depictions of
objects and Clipart contains clipart images. Product consists of images of objects without background
and Real-World consists of images of objects captured with a camera. We conduct this experiment with
the same setting as the classic Office dataset experiment. Table 3 shows that our results outperform
competitors in all of the domain adaptations in this experiment.

Table 3. Recognition accuracy evaluation for domain adaptation on the office-home dataset. Art
(A), Clipart (C), Product (P), Real-World (R). A→C indicates A is the source dataset and C is the
target dataset. Bold numbers are the best results.

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P

DAN 1 0.307 0.422 0.541 0.328 0.476 0.498 0.291 0.341 0.567 0.436 0.383 0.627
DANN 1 0.333 0.430 0.544 0.322 0.491 0.498 0.305 0.381 0.568 0.447 0.427 0.647
DAH 0.316 0.408 0.517 0.347 0.519 0.528 0.299 0.396 0.607 0.450 0.451 0.625
CoGAN 0.399 0.545 0.672 0.471 0.570 0.579 0.478 0.406 0.635 0.580 0.489 0.728
UNIT 0.404 0.554 0.670 0.480 0.572 0.583 0.509 0.412 0.658 0.599 0.503 0.726

CGAA 0.434 0.571 0.676 0.499 0.577 0.591 0.517 0.435 0.662 0.612 0.517 0.749
1 Results reproduced from [13].
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Art Clipart Product Realworld

Figure 8. Sample images from Office-home dataset.

5. Conclusions

In this paper, we proposed an unsupervised domain adaptation method called coupled generative
adversarial autoencoders. The weight-sharing training strategy proposed in this paper extends the
shared high-level latent space assumption and improves the tolerance of the model to the differences
in high-level semantic features between domains. Under this training strategy, our model can generate
style-transferred images with unpaired images in the two domains and domain adaptation is done
by training a classifier with the target-style images generated from the source images. With this
proposed method, we achieve state-of-the-art experiment results on various domain adaptation
scenarios including popular benchmark datasets.
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