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Abstract: Compressive sensing is a very attractive technique to detect weak signals in a noisy background,
and to overcome limitations from traditional Nyquist sampling. A very important part of this
approach is the measurement matrix and how it relates to hardware implementation. However,
reconstruction accuracy, resistance to noise and construction time are still open challenges. To address
these problems, we propose a measurement matrix based on a cyclic direct product and QR
decomposition (the product of an orthogonal matrix Q and an upper triangular matrix R). Using
the definition and properties of a direct product, a set of high-dimensional orthogonal column
vectors is first established by a finite number of cyclic direct product operations on low-dimension
orthogonal “seed” vectors, followed by QR decomposition to yield the orthogonal matrix, whose
corresponding rows are selected to form the measurement matrix. We demonstrate this approach
with simulations and field measurements of a scaled submarine in a freshwater lake, at frequencies
of 40 kHz–80 kHz. The results clearly show the advantage of this method in terms of reconstruction
accuracy, signal-to-noise ratio (SNR) enhancement, and construction time, by comparison with
Gaussian matrix, Bernoulli matrix, partial Hadamard matrix and Toeplitz matrix. In particular, for
weak signals with an SNR less than 0 dB, this method still achieves an SNR increase using less data.

Keywords: compressive sensing; measurement matrix; cyclic direct product; QR decomposition;
underwater echo; sonar measurements

1. Introduction

Compressive sensing (CS) is a rapidly emerging technique [1–3]. Its main attraction is that it
can overcome the shortcomings of the traditional Nyquist sampling theorem [4] in signal processing,
in terms of the large amount of data to be sampled and large data storage space required, because
signal sampling and compression are performed simultaneously. CS is widely applied in medical
image processing [5], image compression [6,7], pattern recognition [8,9], and radar detection [10];
it can also be combined with the Bayesian algorithm [11,12], e.g., to reconstruct underwater echoes.
CS involves three key components: (1) the sparse representation of the signal [13]; (2) the construction
of a measurement matrix [14]; and (3) signal reconstruction [15,16]. The second step, construction
of a measurement matrix, is particularly important as it directly affects the performance of signal
reconstruction and is an indispensable part of sampling systems based on CS, thereby determining
their possible applications in actual engineering situations.

Measurement matrices commonly used in CS are random or deterministic. The former are currently
more popular in the literature, and include the Gaussian matrix [17], the sparse projection matrix [18],
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and the Bernoulli matrix [19,20]. These matrices are nearly orthogonal; they are thus more likely to
satisfy the restricted isometry property (RIP), will require less measurements, and will provide strong
signal reconstruction performance. However, they need a large storage space, and suffer from high
computational volume and time complexity, which makes their hardware implementation difficult.
Conversely, deterministic measurement matrices show lower computational complexity and easier
hardware implementation. For example, the partial Hadamard matrix [21], the Toeplitz matrix [22,23],
and polynomial matrices [24], whose elements possess higher certainty than random measurement
matrices, are frequently used in this field. Signal reconstruction, however, is less satisfactory, and more
measurements are needed to accurately reconstruct the signal.

Studies show that the reconstruction performance of the measurement matrix can be improved
by reducing the cross-correlation coefficient between the measurement matrix and the sparse
matrix [25] and improving the nonlinear correlation of the measurement matrix. The performance
in terms of signal reconstruction and the number of measurements needed depend closely on the
cross-correlation coefficient. A minor number of measurements are required for signal reconstruction
if the cross-correlation coefficient is small, and the signal is adaptive over a larger sparsity range.
Nonlinear correlation is a very important property of the measurement matrix, by which the performance
is better and signal recovery is more accurate if the nonlinear correlation is higher. However, how
would it work in practice?

After more explanations of compressive sensing and construction of the measurement matrix
(Section 2), this study shows how it can construct by combining the cyclic direct product and QR
decomposition (Section 3) possessing less correlation with the sparse matrix and between its own
column vectors (let us remember that the QR decomposition of a matrix A formulates it as the product
A = QR of an orthogonal matrix Q and an upper triangular matrix R, and is often used to solve the linear
least squares problem). It is thus more likely to satisfy the RIP [26,27] required for the measurement
matrix to ensure high-accuracy reconstruction with low computational complexity. This is tested with
simulations of underwater echoes (Section 4) and corresponding experimental measurements of echoes
from a scaled submarine target in a freshwater lake (Section 5).

2. Compressive Sensing and Measurement Matrix

2.1. Compressive Sensing (CS)

The signal x ∈ RN is called the K-sparse signal if it only has K(K � N) nonzero coefficients.
The measured signal y = Φx is obtained by compression and projection. Φ ∈ RM×N(M � N) is
called the measurement matrix, where M is the number of measurements. Using the measured signal y
and the measurement matrix Φ, the original signal x̂ can be recreated by the reconstruction algorithm
through the process depicted in Figure 1 [28].
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Figure 1. Compressive Sensing process of signal (a) compression of signal; (b) reconstruction of
signal [28].
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Since signal x is sparse and its recovery involves inversion, signal reconstruction can be regarded
as the search of the solutions with the least number of non-zero coefficients from all possible solutions,
i.e., the solutions that minimize l0 or l1 norm below:

min‖s‖l0 s.t.y = Φx,
min‖s‖l1 s.t.y = Φx

In summary, CS takes place in the following steps: a suitable measurement matrix is constructed
when sparse representation or compressibility of the original signal under a certain sparse basis is
possible; the original signal of higher dimension is projected onto low-dimensional space using this
matrix; the original signal is restored accurately or with high probability from the observed data with
a reconstruction algorithm.

2.2. Measurement Matrix

The key in signal observation by CS is the construction of the measurement matrix. Using the
same sparse matrix and reconstruction algorithm but different measurement matrices, better signal
reconstruction is achieved by higher-performance measurement matrices. Candès et al. [2,3] formulated
the famous restricted isometry principle, which is a required condition on the measurement matrix for
it to recover the original signal without distortion.

In the RIP, for signal x with length N and sparsity K, let Φ be the measurement matrix of dimension
M × N, and I be the set of subscripts corresponding to the K columns selected from Φ and having a
number of elements less than or equal to the sparsity K. If a constant exists that makes the following
inequality valid:

(1− δK)‖x‖2
2 ≤ ‖ΦI x‖2

2 ≤ (1 + δK)‖x‖2
2,

then the matrix Φ is said to satisfy the K-restricted isometry property, which is written in short as
RIP− (K, δK).

Despite its perfect form and rich connotation, RIP cannot be used to guide the construction of
a particular measurement matrix, as it is only a necessary but not a sufficient condition. According
to the study by Donoho [29], the measurement matrix must satisfy the following three conditions:
(1) the column vectors of a measurement matrix must possess certain linear independence; (2) the
column vectors are random and independent; and (3) the solution that satisfies the sparsity is the
vector that makes the norm minimum. These three characteristics are decisive in the construction
of the measurement matrix, while other considerations include: (1) the amount of data should be
as small as possible; (2) hardware implementation and possibility of algorithm optimization; and
(3) broad applicability.

Two basis vectors that are orthogonal are mutually independent, i.e., they have no correlation
with each other. Therefore, the measurement matrix could be orthogonalized to achieve pairwise
independence between the vectors, and made practical for CS. It is known from matrix properties
that the singular values of a matrix are closely related to its linear correlation property. A larger least
singular value indicates greater independence among the column vectors of the matrix. When the
least singular value approaches zero, the matrix tends to singularity. It is thus possible to construct a
measurement matrix based on this idea to achieve the desired effect.

3. Construction of Measurement Matrix by Cyclic Direct Product and QR Decomposition

3.1. Definition of Direct Product

Let A = (αij)m×n and B = (βij)p×q; then, the mp × nq matrix will be given by
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α11B α12B · · · · · · · · · α1nB
α21B α22B · · · · · · · · · α2nB

· · · · · ·
αm1B αm2B · · · · · · · · · αmnB

.

This matrix is called the Kronecker product or direct product [30] of A and B, and is denoted as
A ⊗ B.

An important property of the direct product is as follows: let χ1, χ2, . . . , χn be N numbers of
linearly independent m-dimensional column vectors, and y1, y2, . . . , yq be q numbers of linearly
independent p-dimensional column vectors; it then follows that the nq numbers of mp-dimensional
column vectors χi ⊗ yj (i = 1, 2, . . . , n; j = 1, 2, . . . , n) are linearly independent, and vice versa.

From the properties of the direct product, it is possible to generate higher-dimension matrices
from lower-dimension ones, and make the resulting column vectors linearly independent. The key
to this method is to select a set of well-behaving lower-dimension orthogonal column vectors as
the “seed sequence” to ensure mutual orthogonality in the set of higher-dimension column vectors
constructed by the cyclic direct product, and the maximum non-correlation possible among the row
vectors. From the definition of the direct product, the number of cyclic direct products performed is
related to the dimension of the “seed” vectors n and the dimension of the higher-dimension column
vectors N, such that the number of cyclic computations k = logn N, as in the case of k = logn N = log21024
= 10. Compared with conventional higher-dimension matrices and their construction, the cyclic direct
product is easier to perform and greatly saves matrix construction time.

3.2. Construction of Measurement Matrix Based On Cyclic Direct Product and QR Decomposition

As stated in Section 3.1, a high-dimension matrix could be constructed by taking the direct
product, and applied to the computation of the measurement matrix for CS, i.e., the formation of
a high-dimension orthogonal column vector set by finite times of cyclic direct product operation
on lower-dimension orthogonal “seed” vectors, yielding a matrix with orthogonal column vectors.
M rows are selected from this matrix to afford the corresponding deterministic measurement matrix.
However, the high-dimension column vector set could only ensure mutual independence among the
columns of the matrix thus formed, while the elements of the column vectors were still highly similar.
When an appropriate number of measurements M is used for the construction of the measurement
matrix, the column vectors may lose their pairwise orthogonality. As described in the introduction,
the measurement matrix should possess column vectors with the highest possible linear independence.
In an orthogonal matrix, the number of rows is far less than the number of columns. As determined
by its structure, the maximum rank of a measurement matrix thus equals the number of rows, which
means that linear correlation necessarily exists for this class of matrix.

The solution to the above problems lies in reducing the correlation between the column vectors.
QR decomposition [31] of a matrix increases the singular value of the matrix without altering the
properties of the measurement matrix, thus bringing the column vectors closer to being linearly
independent. Specifically, QR decomposition is applied to the matrix composed of the set of
higher-dimension orthogonal column vectors to obtain an orthogonal matrix, whose corresponding
rows are selected to construct the measurement matrix. The detailed steps are shown in Figure 2.

Step 1. Suitable low-dimension orthogonal “seed” vectors are selected. The number of these
vectors is equal to its dimension N. In the ideal case, the matrix U formed by these “seed” vectors is an

orthogonal matrix with U ∗ UT = E, where E is the identity matrix. One example of U is

[
1 1
1 −1

]
,

which meets the required pairwise orthogonality among the row vectors and column vectors.
Step 2. The number of cyclic direct product computations, k ≈ logn N, is calculated using the

dimension n of the “seed” vector and the dimension N of the higher-dimension column vectors, giving
the initial value R1 = U, Ri = Ri−1 ⊗ U, while i = 2, 3, . . . , k.
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Step 3. The matrix Rk obtained after k cycles is a matrix of the order N with mutually orthogonal
row vectors and column vectors. By theorems related to the QR decomposition of matrix analysis,
an orthogonal matrix can be obtained by decomposition.

Step 4. M (M is the number of measurements) rows are selected from Uk to give the measurement
matrix, i.e., the matrix by the QR decomposition of the cyclic direct product.

Φ = Uk(c, :), in which c is the set of subscripts for the rows selected, and Φ is the measurement
matrix generated by the QR decomposition of the cyclic direct product.

Step 5. The measurement matrix is normalized in conformance to the RIP.
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QR decomposition.

After the above procedures, the non-correlation among the column vectors of the measurement
matrix formed by the cyclic product and QR decomposition is significantly improved. QR decomposition
increases the least singular value of the matrix and further enhances its nonlinearity and independence,
fulfilling the criteria for the measurement matrix. From the matrix theory, the measurement matrix
constructed by QR decomposition satisfies the RIP. This measurement matrix given by the cyclic
direct product and QR decomposition is deterministic, which greatly facilitates its engineering
and implementation.

4. Testing the Performance of Measurement Matrix Using Simulated Underwater Echo

4.1. Parameters Used in Performance Testing

Let X be the original signal and X̂ be the recovered signal. The following evaluation indices
are defined:
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(a) Signal-to-noise ratio:

SNR = 10lg

(
‖X̂‖2

2

‖X− X̂‖2
2

)
,

(b) Matching rate:

Matchingrate = 1− ‖X̂
′ − X′‖2

‖X̂′ + X′‖2
,

In which X̂′ and X’ are the absolute values of X̂ and X.

4.2. Simulation of Underwater Echo and Its Compression and Reconstruction

To verify the performance of the measurement matrix constructed with the proposed method,
the highlight model [32] is used to simulate underwater echo, which is compressed and reconstructed
by CS to evaluate the performance of the measurement matrix.

For an acoustic emission signal x(t) = x0(t)e−jωct, in which ωc is the carrier frequency at 30 kHz,
and x0(t) is the envelope assuming a trapezoidal shape. Assuming a sound velocity in fresh water
of 1500 m/s and the pulse width is 10 ms. The number of points sampled is 4096. The underwater
echo is simulated by the three-highlight model. Figure 3 shows the simulated echo with different
signal-to-noise ratios (SNRs).
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The simulated underwater echo in Figure 3 is then compressed and reconstructed with CS.
In this study, the discrete cosine transform [33,34] is used as the sparse matrix, and the reconstruction
algorithm adopted is the orthogonal matching pursuit (OMP) [35–37]. The measurement matrix based
on the cyclic direct product and QR decomposition is compared respectively with Gaussian matrix,
Bernoulli matrix, partial Hadamard matrix and Toeplitz matrix. The results are shown in Figures 4–6.

As seen in the performance comparisons above, the signal compressed by the measurement
matrix developed in this study provides better reconstruction results than those by other measurement
matrices. Firstly, the SNR of the reconstructed signal is improved significantly. When the compression
ratio is small, the performance of this matrix is nearly the same as other measurement matrices. As the
compression ratio increases, our method shows greater improvement in the SNR. At a compression
ratio of above 0.7, the SNR of this matrix is approximately 2 dB higher than those provided by other
measurement matrices. In terms of the matching rate, the measurement matrix based on the cyclic
direct product and QR decomposition yields higher reconstruction accuracy than the others, especially
as the compression ratio increases.



Appl. Sci. 2018, 8, 2510 7 of 12Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 12 

 
Figure 4. Reconstruction results by different types of measurement matrices (SNR = −3 dB). 

  
(a) (b) 

 

 

(c)  

Figure 5. The matching rate comparison using different types of measurement matrices. (a) SNR = 4 
dB; (b) SNR = 0 dB; (c) SNR = −3 dB. 

  
(a) (b) 

Figure 4. Reconstruction results by different types of measurement matrices (SNR = −3 dB).

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 12 

 

Figure 4. Reconstruction results by different types of measurement matrices (SNR = −3 dB). 

  
(a) (b) 

 

 

(c)  

Figure 5. The matching rate comparison using different types of measurement matrices. (a) SNR = 4 

dB; (b) SNR = 0 dB; (c) SNR = −3 dB. 

  
(a) (b) 

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 12 

 

Figure 4. Reconstruction results by different types of measurement matrices (SNR = −3 dB). 

  
(a) (b) 

 

 

(c)  

Figure 5. The matching rate comparison using different types of measurement matrices. (a) SNR = 4 

dB; (b) SNR = 0 dB; (c) SNR = −3 dB. 

  
(a) (b) 

Figure 5. The matching rate comparison using different types of measurement matrices. (a) SNR = 4 dB;
(b) SNR = 0 dB; (c) SNR = −3 dB.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 12 

 
Figure 4. Reconstruction results by different types of measurement matrices (SNR = −3 dB). 

  
(a) (b) 

 

 

(c)  

Figure 5. The matching rate comparison using different types of measurement matrices. (a) SNR = 4 
dB; (b) SNR = 0 dB; (c) SNR = −3 dB. 

  
(a) (b) 

Figure 6. Cont.



Appl. Sci. 2018, 8, 2510 8 of 12Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 12 

 

 

(c)  

Figure 6. SNR enhancement comparison by different types of measurement matrices for different SNR 
(a) SNR = 4 dB; (b) SNR = 0 dB; (c) SNR = −3 dB. 

As seen in the performance comparisons above, the signal compressed by the measurement 
matrix developed in this study provides better reconstruction results than those by other 
measurement matrices. Firstly, the SNR of the reconstructed signal is improved significantly. When 
the compression ratio is small, the performance of this matrix is nearly the same as other 
measurement matrices. As the compression ratio increases, our method shows greater improvement 
in the SNR. At a compression ratio of above 0.7, the SNR of this matrix is approximately 2 dB higher 
than those provided by other measurement matrices. In terms of the matching rate, the measurement 
matrix based on the cyclic direct product and QR decomposition yields higher reconstruction 
accuracy than the others, especially as the compression ratio increases. 

Table 1 shows the construction time for various types of measurement matrices at different 
compression ratios. 

Table 1. Construction time for various types of measurement matrix at different compression ratios 
(t/s). 

Compression 
Ratio 

Gaussian 
Matrix 

Partial Hadamard 
Matrix 

Matrix Based on Cyclic Direct 
Product and QR Decomposition 

Bernoulli 
Matrix 

Toeplitz 
Matrix 

0.1 0.094 0.076 0.0374 0.083 0.038 
0.2 0.116 0.106 0.0387 0.199 0.055 
0.3 0.190 0.147 0.0398 0.293 0.071 
0.4 0.218 0.152 0.0399 0.308 0.080 
0.5 0.237 0.198 0.0414 0.517 0.096 
0.6 0.317 0.204 0.0421 0.636 0.131 

As shown in the table, the measurement matrix based on the cyclic direct product and QR 
decomposition requires significantly less construction time than the others, as it only needs one two-
dimensional matrix to be stored during construction, i.e., four elements. The storage space required 
is also less, as it is independent of the number of measurements made and only depends on the signal 
length N. The proposed measurement matrix thus saves storage space and computation time. 

5. Testing the Performance of the Measurement Matrix using Experimentally Measured 
Underwater Echo Data 

The test was carried out at the experimental station of Qiandao Lake (Chunan, China). The test 
target was a scaled model of a submarine. The model is the Benchmark Target Strength Simulation 
Submarine (BeTSSi-Sub) manufactured by Dalian University of Technology. The deployment method 
is shown in Figure 7 [28]. 

The signal is emitted by the signal generator in the form of a Linear Frequency Modulation (LFM) 
signal with a frequency of 40 kHz–80 kHz, a pulse width of 1ms, and a trigger interval of 200 ms. 
Through the power amplifier, an L6 linear power amplifier is used in the test, and its parameters 

Figure 6. SNR enhancement comparison by different types of measurement matrices for different SNR
(a) SNR = 4 dB; (b) SNR = 0 dB; (c) SNR = −3 dB.

Table 1 shows the construction time for various types of measurement matrices at different
compression ratios.

Table 1. Construction time for various types of measurement matrix at different compression
ratios (t/s).

Compression
Ratio

Gaussian
Matrix

Partial Hadamard
Matrix

Matrix Based on Cyclic Direct
Product and QR Decomposition

Bernoulli
Matrix

Toeplitz
Matrix

0.1 0.094 0.076 0.0374 0.083 0.038
0.2 0.116 0.106 0.0387 0.199 0.055
0.3 0.190 0.147 0.0398 0.293 0.071
0.4 0.218 0.152 0.0399 0.308 0.080
0.5 0.237 0.198 0.0414 0.517 0.096
0.6 0.317 0.204 0.0421 0.636 0.131

As shown in the table, the measurement matrix based on the cyclic direct product and QR
decomposition requires significantly less construction time than the others, as it only needs one
two-dimensional matrix to be stored during construction, i.e., four elements. The storage space
required is also less, as it is independent of the number of measurements made and only depends on
the signal length N. The proposed measurement matrix thus saves storage space and computation time.

5. Testing the Performance of the Measurement Matrix Using Experimentally Measured
Underwater Echo Data

The test was carried out at the experimental station of Qiandao Lake (Chunan, China). The test
target was a scaled model of a submarine. The model is the Benchmark Target Strength Simulation
Submarine (BeTSSi-Sub) manufactured by Dalian University of Technology. The deployment method
is shown in Figure 7 [28].

The signal is emitted by the signal generator in the form of a Linear Frequency Modulation (LFM)
signal with a frequency of 40 kHz–80 kHz, a pulse width of 1 ms, and a trigger interval of 200 ms.
Through the power amplifier, an L6 linear power amplifier is used in the test, and its parameters
adjusted according to the transducer’s working mode and impedance matching, with different gains;
the underwater transducer uses a transmitting and receiving transducer through its internal transceiver
conversion module; the transmission voltage response (TVR) is 162 dB and the receiving sensitivity is
−172 dB. The output signal is then passed to the signal modulator and the LDS multi-channel data
acquisition stage, with a sample frequency of 1 MHz. Finally, the signal is stored in the computer: this
is the signal used in this paper.

There are two rotation stages, one for the transmitting/receiving transducer manufactured by the
726 institute in Shanghai, China (working at 40 kHz–80 kHz) and one for the rig holding the model
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submarine. They are 20 m apart, and both are 10 m underwater. In order to obtain echoes at different
incident angles, the submarine model is rotated counterclockwise at uniform velocity.
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Two typical angles, 30◦ and 45◦, are selected for presentation of the measurements in this study.
Figure 8 is the original echo signal obtained at incident angles of 30◦ and 45◦. These signals are
compressed and reconstructed by CS with Gaussian matrix, Bernoulli matrix, partial Hadamard matrix
and Toeplitz matrix as the respective measurement matrix. The performance of the five types of
measurement matrices is compared.
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Figure 9 plots the changes in the SNR with the compression ratio.
The results processed from the experimentally measured data confirm the superior performance

of the measurement matrix based on the cyclic direct product and QR decomposition in the processing
of underwater echo, as compared to Gaussian matrix, Bernoulli matrix, partial Hadamard matrix
and Toeplitz matrix. It provides greater enhancement in the SNR with increasing compression ratio.
The partial Hadamard matrix is a deterministic measurement matrix, and is more effective for signal
processing. However, it falls short on the length of the signal that it can process. This is overcome in
the measurement matrix based on the cyclic direct product and QR decomposition, which also yields a
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better processing outcome than the other measurement matrices. Furthermore, the amount of data is
also reduced, and the SNR is improved as anticipated.
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6. Conclusions

Compressive Sensing overcomes the limitation of traditional sampling and provides a method to
recover the original signal from a handful of non-adaptive nonlinear measurements. The measurement
matrix is the key to this acquisition of data. As it is difficult to engineer a random measurement
matrix, owing to the large storage space and complex computation required, and the deterministic
measurement matrix is less satisfactory in terms of reconstruction accuracy, a measurement matrix
constructed by the cyclic direct product and QR decomposition is proposed here. We tested its
performance using simulated data and echoes from a scaled submarine target in a freshwater lake,
at frequencies of 40 kHz–80 kHz. Gaussian matrix, Bernoulli matrix, partial Hadamard matrix, Toeplitz
matrix and the measurement matrix proposed here are compared and analyzed in terms of their
matching rate, SNR enhancement, and construction time, via signal compression and reconstruction.
The measurement matrix based on the cyclic direct product and QR decomposition yields higher
reconstruction accuracy than the others, especially as the compression ratio increases. In terms
of SNR enhancement, performance is nearly the same as the other measurement matrices when the
compression ratio is small. As the compression ratio increases, our method shows greater improvement
in the SNR. At a compression ratio of above 0.7, the SNR of this matrix is approximately 2 dB higher
than those provided by other measurement matrices. The proposed measurement matrix also requires
significantly less construction time compared with the others, as it only needs one two-dimensional
matrix to be stored during construction, i.e., four elements. The storage space required is less, as it
is independent from the number of measurements made and only depends on the signal length.
The proposed measurement matrix thus saves storage space and computation time.
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