Supporting Information

Highly Dispersed Mn–Ce Binary Metal Oxides Supported on Carbon Nanofibers for Hg⁰ Removal from Coal-Fired Flue Gas

Yongjun Xia¹, Zhiqiang Liao^{2,3}, Yan Zheng⁴, Zijian Zhou^{2,*}

¹State Grid Jiangxi Electric Power Science Research Institute, Nanchang 330096, PR China
²State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
³Chongqing Sanfeng Environment Group Co., Ltd, Chongqing 400084, PR China
⁴Nanchang Institute of Technology, Nanchang 330099, PR China

Corresponding Author:

Zijian Zhou (zhouzj2012@hust.edu.cn)

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan 430074, China Tel: +86-27-87542417 Fax: +86-27-87545526

The Supporting Information contains:

I. Sorbent Preparation

II. Sorbent Characterization

III. Supplementary Tables (2 Tables)

V. Supplementary References

I. Sorbent Preparation

Commercial carbon nanofibers (CNFs, purity 99.9%) were purchased from Beijing Dk nano S&T Ltd. The CNFs were pretreated before being used as the support. The CNFs were mixed with concentrated nitric acid for 3 h with ultrasonic oxidation treatment. Then, the mixture was separated by a centrifuge, washed by deionized water, and dried at 75 °C. The pretreated CNFs were named CNFs(OX).

The metal-oxide-loaded sorbents were prepared by a wet chemistry method. CNFs(OX) were mixed with deionized water and the mixture were stirred continuously at 40 °C for 30 min. Then, citric acid solution was added, and the mixture was stirred for another 20 min. Later, the nitrates were added to the beaker and stirred for 4 h continuously. The mixed solution was evaporated at 75 °C, and the dried samples were calcined at 450 °C for 4 h under a N₂ atmosphere. The calcined samples were ground and sieved to 0.45–0.2 mm for activity tests.

The synthesized sorbents were named $\alpha MnO_x-\alpha CeO_2/CNFs(OX)$, where α represents the mass percentage of MnO₂ and CeO₂ in the sorbents. The mass ratio of Mn/Ce was set as 1:1. Sorbents of five different loading values ($\alpha = 6\%$, 9%, 12%, 15%, and 18%) were prepared.

II. Sorbent Characterization

The crystallinity and dispersity of the active metals in the different sorbents were analyzed by X-ray powder diffraction (XRD, PANalytical B.V., Holland). The surface physical characteristics of different sorbents were analyzed using N₂ adsorption– desorption measurements at 77 K by utilizing Brunauer–Emmett–Teller (BET, TriStar, micromeritics, USA). The valence of surface elements and surface atomic concentrations of different loading value sorbents were analyzed by X-ray photoelectron spectroscopy (XPS, Kratos, Japan). The spent sorbent was used to carry out the Hg-TPD test with a carrier gas. The heating rate was 10 °C/min. A Sirion 200 scanning electron microscope (FEI, Holand) was used for detecting the topography.

III. Supplementary Tables

Set	Sorbents	Flue gas components	Temperature (°C)	
I	CNFs, CNFs(OX), α MnO _x - α CeO ₂ /CNFs(OX) (α =6%-18%)	N_{2} +6% O_{2}	170	
II	15% MnOx- 15% CeO ₂ /CNFs(OX)	$N_2 + 6\% O_2$	70, 120, 170, 220	
III	15%MnOx- 15%CeO2/CNFs(OX)	N2 N2+12%CO2 N2+3%.6%O2	120	
IV	15%MnO _x - 15%CeO ₂ /CNFs(OX)	N ₂ +500,1000,1500ppmSO ₂ N ₂ +6%O ₂ +500,1000,1500ppmSO ₂	120	
V	15%MnOx- 15%CeO2/CNFs(OX)	N ₂ +100,200,300ppmNO N ₂ +6%O ₂ +100ppmNO	120	
VI	15%MnOx- 15%CeO2/CNFs(OX)	N ₂ +8%H ₂ O N ₂ +6%O ₂ +8%H ₂ O	120	

Table S1.	Experimental	conditions.
-----------	--------------	-------------

Support	Temperature (°C)	$Q/M (\mathrm{ml}\cdot\mathrm{h}^{-1}\cdot\mathrm{g}^{-1})$	Reaction time (h)	Atmosphere	Efficiency (%)	Ref.
TiO ₂	200	120,000	-	N_2 +4% O_2 +75 $\mu g/m^3$ Hg	75	[1]
γ-Al ₂ O ₃	250	200,000	-	N_2 +4.5% O_2 +75 μ g/m ³ Hg	60	[2]
Ti-PILCs	100-200	120,000	2	$N_2+5\%O_2+45\mu g/m^3 Hg$	>98	[3]
Activated	190	3,333	3	N_2 +6% O_2 +80 $\mu g/m^3$ Hg	95	[4]
coke			3	$N_2 + 9\%O_2 + 80\mu g/m^3 Hg$	~95	
CNFs	120	300,000	9	$N_2+3\%O_2+95\mu g/m^3 Hg$	81.9	Present
			9	N_2 +6% O_2 +95 $\mu g/m^3$ Hg	>99	

Table S2. A comparison of the Hg⁰ removal efficiency in this study and that of other Mn–Ce-based composites reported in the literature.

V. Supplementary References

- Li H, Wu C-Y, Li Y, Zhang J. Superior activity of MnO_x-CeO₂/TiO₂ catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Appl. Catal., B 2012,111-112,381-8.
- [2] He C, Shen B, Chen J, Cai J. Adsorption and Oxidation of Elemental Mercury over Ce-MnO_x/Ti-PILCs. Environ. Sci. Technol. 2014,48(14),7891-8.
- [3] Wang P, Su S, Xiang J, You H, Cao F, Sun L, et al. Catalytic oxidation of Hg⁰ by MnOx–CeO₂/γ-Al₂O₃ catalyst at low temperatures. Chemosphere 2014,101,49-54.
- [4] Xie Y, Li C, Zhao L, Zhang J, Zeng G, Zhang X, et al. Experimental study on Hg⁰ removal from flue gas over columnar MnO_x-CeO₂/activated coke. Appl. Surf. Sci. 2015,333,59-67.