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Abstract: Oxy-fuel combustion technology can capture carbon dioxide (CO2) in the large-scale and
greatly lower nitrogen oxides (NOx) emission in coal-fired power plants. However, the influence of
inherent minerals on NOx reduction still remains unclear and the impact of oxy-fuel combustion on
the transformation of different nitrogen functional groups has yet to be fully understood. The present
work aims to obtain a further understanding of the NOx reduction during oxy-fuel combustion using
synthetic coals with pyrrolic or pyridinic nitrogen. Compared to pyridinic nitrogen, more of the
pyrrolic nitrogen in synthetic coal was converted to NOx. The conversion ratio of nitric oxide (NO)
first increased significantly with the rising oxygen content and then trended to an asymptotically
constant as the oxygen (O2) content varied between 10–50%. The nitrogen dioxide (NO2) formation
was roughly proportional to the oxygen content. The NO2 conversion was increased with particle
size but the case of NO showed a non-monotonic variation. The catalytic effects of sodium carbonate
(Na2CO3), calcium carbonate (CaCO3), and ferric oxide (Fe2O3) on the transformation of pyridinic
nitrogen to NO were independent of the combustion atmosphere, while the alteration from air to the
oxy-fuel combustion led to a change of mineral catalytic effect on the oxidation of pyrrolic nitrogen
within the coal matrix.

Keywords: oxy-fuel combustion; NOx reduction; pyridinic nitrogen; pyrrolic nitrogen; synthetic coal;
mineral effect

1. Introduction

Coal combustion in utility power plants is one of the largest contributors to the anthropogenic
emission of carbon dioxide (CO2), which also brings about many environmental pollution problems,
such as nitrogen oxides (NOx), sulfur oxides (SOx), particulate matters (PMs), mercury (Hg), and so
on [1–7]. Several approaches can be utilized to reduce CO2 emissions originating from coal-fired power
plants, including the improvement of thermal efficiency, the replacement of coal with low-carbon
fuels, the introduction of combined cycles, and the capture and storage of CO2 (CCS) [8–12]. Oxy-fuel
combustion can not only capture CO2 in the large-scale but also obviously lower NOx emission in
coal-fired power plants [13–20], which is a potential clean coal technology in the near future and is
drawing an ever-increasing attention nowadays.

Numerous studies have been carried out on NOx emission in oxy-fuel combustion using various
coals from different regions [21–26]. Ndibe et al. [22] indicated that compared to the air condition,
nitric oxide (NO) emission was reduced obviously during oxy-fuel combustion, while the presence
of steam could further lower the formation of NO from coal nitrogen and diminish the recycled NO.
Ikeda et al. [27] believed that the NOx emission per unit of energy in oxy-fuel combustion was nearly
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70% lower than that in the air case. Notwithstanding, Lupianez et al. [28] reported close emissions of
NOx per energy unit between the air and oxy-fuel conditions using a bubbling fluidized bed combustor,
while Lasek et al. [29] found out that the NO content in oxy-fuel combustion was less than one-third in
air using a pressurized fluidized bed combustor. Under the oxy-fuel condition with gas recirculation,
the emission of NO per energy unit could be reduced by 70–75% compared to air combustion from
experiments performed by Andersson et al. [30]. However, Alves et al. [31] pointed out that the
conversion rates of NH3-to-NOx in the air and a 20.9% O2/79.1% CO2 atmosphere showed similarity,
but the increase of O2 concentration had an obvious promotion on NO formation. The NOx emission
in O2/CO2 atmosphere was roughly 20% lower than that in the air, while the NOx emission under the
condition with recycled flue gas was considerably reduced by approximately 50% [27]. Conclusions
drawn by different investigators were still inconsistent possibly due to the complexity and differences
of coal samples.

The previous research showed that the influences of combustion temperature on NO formation
from volatile-N were contrary between reducing and oxidizing atmospheres [32]. The increase in
pressure did not significantly affect the NO creation but generated preferential conditions for NO
reduction [29]. Stadler et al. [21] believed that the flue gas recirculation could result in a reduction
of NOx emission by 40–50%, and that wet recycling was preferable in term of NOx reduction due to
the inhibition effect of H2O on the oxidation of intermediates to form NO. Shaddix and Molina [33]
concluded that NO reburn fraction was between 20% and 40% in oxy-fuel combustion. The stream
staging was more efficient for the reduction of NOx in oxy-CFB combustion than that in air staging
from experiments conducted by Duan et al. [34] The little formation of thermal-NOx, the destruction
of recycled NOx, and the reduction of NOx on char surfaces by the high concentration of local carbon
monoxide (CO) all have contributions to the reduction of NOx during oxy-fuel combustion. Sometimes,
experimental results from various researchers could differ significantly from one another due to the
inherent complexity of coal compositions. In addition, compared to air combustion, the influence
of inherent minerals on NOx reduction in oxy-fuel combustion still remains poorly understood.
The direct utilization of coal is difficult for exploring the effects of specific minerals on NOx formation
and sometimes it is almost impossible to avoid the complicated interactions from other minerals.
Few investigators have aimed at the combustion atmosphere dependence of mineral effect on NOx

reduction. Little work, if any, has been carried out on the impacts of oxy-fuel combustion on the
transformation of different nitrogen functional groups. The evolutions of NO and nitrogen dioxide
(NO2) formation with coal particle size are still unclear under oxy-fuel condition. Some scholars
believed that the enlargement of coal particle size lowered the devolatilization rate but had a slight
impact on char-nitrogen in the air, while others found out that the release of char-nitrogen presented
an obvious positive correlation with particle size [35]. Conclusions from various scholars are probably
different and sometimes are even contradictory.

Synthetic coals can be utilized to further probe NOx formation and reduction for its known
and simple compositions. Our previous studies indicated that synthetic coals retained the main
structure and property of the aromatic heterocyclic rings, simplified the coal macromolecule, and had
definite chemical compositions and nitrogen functional groups [23,36]. In addition, the combustion
characteristics of synthetic coal under oxy-fuel conditions present a striking similarity to those of high
volatile coal [36]. Hence, the application of synthetic coal can offer an improved understanding of
NOx behaviors in oxy-fuel combustion. The complicated catalytic interactions can be avoided and
a specific study on the influence of certain mineral matter can be achieved due to the convenient
control of mineral matters within the coal matrix. Unfortunately, synthetic coal has not been employed
to elucidate the NOx formation and its reduction mechanisms in oxy-fuel combustion yet.

Based on the advantages of synthetic coal for research on the transformation of coal nitrogen,
the present objective was to study the NOx reduction in oxy-fuel combustion using two synthetic coals
with pyrrolic or pyridinic nitrogen employing a lab-scale entrained flow reactor. The influences of the
combustion atmosphere on the fuel nitrogen (denoted as fuel-N, hereafter) transformation of the two
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main nitrogen functional groups in the coal matrix were experimentally compared. The impacts of coal
particle size on NO and NO2 formation were also evaluated contrastively. In addition, the effects of
mineral matters on NOx reduction were elucidated. The present study will provide a supplementary
information on the mechanisms of NOx formation and reduction in oxy-fuel combustion.

2. Materials and Methods

2.1. Sample Preparation

Two synthetic coals with a specific kind of nitrogen functional group (also known as fuel
nitrogen) were prepared from nitrogen compounds and cellulose by compaction heat-treatment using
an electrical-heating high-pressure reactor, as illustrated in Figure 1. Here, two nitrogen compounds,
8-hydroxyquinoline (C9H7NO) and 4-hydroxycarbazole (C12H9NO), were used to synthesize synthetic
coals with cellulose according to our previous work [36]. The synthetic coals have physical properties
highly similar to real coals. The X-ray photoelectron spectroscopic (XPS) analysis demonstrated
that only one binding energy peak appears at 398.4 eV or 400.7 eV in two synthetic coals as
illustrated in Figure 2, indicating fuel nitrogen of pyridinic or pyrrolic forms in two synthetic coals,
respectively. The compaction heat-treatment did not change the chemical form of fuel nitrogen from
8-hydroxyquinoline or 4-hydroxycarbazole. The synthetic coal with pyridinic nitrogen was denoted as
“M6” hereafter, while the other containing pyrrolic nitrogen was denoted as “M5”.
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Two real coals were chosen for comparison including Qiancheng bituminous coal (QC) and
Pingzhuang lignite (PZ). The proximate and ultimate analyses of experimental fuel samples are listed
in Table 1. No ash nor sulphur was present in synthetic coals due to the absence of corresponding
constituents in the preparation materials. The reactivity of synthetic coal demonstrated a close
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resemblance to that of lignite during oxy-fuel combustion [36]. Hence, the synthetic coal is a highly
effective substitute for coals in term of in-depth research on the transformation of fuel nitrogen
and NOx reduction under oxy-fuel conditions. Three mineral matters, ferric oxide (Fe2O3), sodium
carbonate (Na2CO3), and calcium carbonate (CaCO3), were used to investigate the catalytic effects
of minerals on the formation and reduction of NOx from different functional groups of fuel nitrogen.
Each additive of 5% by weight was loaded with synthetic coals during the present experiments.

Table 1. The proximate and ultimate analyses of real and synthetic coals (wt%, d).

Coal Code
BET

m2 g−1
Fuel Ratio

(w(FC)/w(V))

Proximate Analysis Ultimate Analysis

w(FC) w(V) w((A) w(C) w(H) w(O) a w(N) w(S)

QC 3.87 2.5 46.31 18.26 35.43 55.36 3.12 4.64 1.10 0.35
PZ 9.37 1.2 38.77 31.22 30.01 50.58 3.42 14.09 0.90 1.00
M6 4.12 2.2 68.90 31.10 0.00 65.39 2.86 28.30 3.45 0.00
M5 4.31 2.2 68.47 31.53 0.00 68.12 3.09 25.96 2.83 0.00

a calculated by the subtraction method in the percentage of weight.

2.2. Experimental Setup

A lab-scale entrained flow reactor was employed to investigate the NOx conversion during the
oxy-fuel combustion of synthetic coals as shown in Figure 3, which can realize the rapid combustion of
fine coal particles with a preset stable feeding rate. The experimental reactor had an inside diameter
of 32 mm and was heated by an electrical heating furnace. The temperature was monitored by
an S-type thermocouple. Before the rapid combustion experiments, the reactor was heated to a preset
temperature, a sample of 0.1 g was loaded in the micro-feeder in advance, and the system was
purged by the desired gas mixture at room temperature. The total flow rate of the mixture gas was
1000 mL·min−1, while the whole gas mixture was split into two streams. The primary (oxidizer
carrying the solid fuel) flow rate was 200 mL·min−1 and used to entrain the sample into the reactor
with a feeding rate of 0.04 g·min−1. The oxygen concentration in experiments of oxy-fuel combustion
ranged from 10% to 50%. The outlet concentrations of gas species were continuously analyzed by
an FTIR gas analyzer Gasmet DX-4000. All experiments were carried out at least three times for
repeatability and the results were averaged. Here, a micro-feeder was specially designed to ensure the
micro-scale, continuous, and stable feeding of fine solid particles as the enlarged insect depicted in
Figure 3. The feeding rate can be adjusted by the flow rate of the stream and the rotation speed of the
stepping motor.
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Due to the content differences of fuel nitrogen in various samples, the comparison between the
amounts of nitrogen species cannot reasonably demonstrate the transformation behaviors of various
nitrogen functional groups. Here, the conversion ratios of fuel-nitrogen to nitrogen oxides (NO, N2O,
and NO2) were employed to investigate the transformation of fuel nitrogen during air and oxy-fuel
combustion. The emission content of nitrogen oxides was calculated from the integral of nitrogen
oxide concentration within the duration of a certain time. XNO, XN2O, and XNO2 (%) were used to
represent the conversion ratios of fuel-nitrogen to NO, N2O, and NO2 during combustion within ∆t,
calculated as follows:

XNO−N =

∫ t0+∆t
t0

F · CNO · 10−6 · dt/22.4

M · Nd/14
× 100 (1)

XN2O−N =

∫ t0+∆t
t0

F · CN2O · 10−6 · dt/22.4

M · Nd/14
× 100 (2)

XNO2−N =

∫ t0+∆t
t0

F · CNO2 · 10−6 · dt/22.4

M · Nd/14
× 100 (3)

where F is the volumetric flow, L·s−1; M is the sample weight, g; t0 is the time at which the measurement
begins, s; ∆t is the measurement duration, s; Nd is the nitrogen content in the sample, %; CNO, CN2O,
and CNO2 are the concentrations of NO, N2O, and NO2 in flue gas, respectively, µL·L−1,. The volume
of each mole ideal gas is 22.4 L at the standard condition (t = 273.15 K, p = 101325 Pa), while the atomic
weight of nitrogen is 14.

3. Results

3.1. Influence of Combustion Atmosphere on the Oxidation of Different Nitrogen Functional Groups

The change of the combustion atmosphere presents a certain influence on the transformation of
coal nitrogen. NO accounts for a predominant fraction of NOx during the combustion of pulverized
coal. Therefore, NO was extensively focused on in existing research. Figure 4 illustrates the
comparisons of NO conversion from variation fuel nitrogen between oxy-fuel and air combustion with
a particle size of 63–98 µm. Regardless of the chemical form of fuel nitrogen in synthetic coal, oxy-fuel
combustion leads to a certain reduction of NO relative to air condition. Most previous pilot-scale
experiments indicated that compared to air combustion, the NO emission in oxy-fuel combustion
could be approximately diminished by one-third to two-thirds [21,27,29,30,37], while the extent of NO
decline here is only 7–24% dependent on the combustion temperature and the nitrogen functional
group. Ikeda et al. [27] observed that the NOx emissions in O2/CO2 mixture were decreased by
about 20% compared to those in the air, which supports the present result. In the present study,
the O2/CO2 mixture stream was purged and mixed from the compressed gas cylinders without flue
gas recirculation (FGR), while the FGR was usually regarded as the principal contribution to NO
reduction in oxy-fuel combustion due to both the reduction of recirculated NOx and the inhibition
of fuel-N to NO [21,27,30]. From another aspect, the gas flow under the present experiments was in
excess and the oxidizing environment was around the sample particles. Thus, a smaller decline of NO
emission was observed due to the fewer reduction reactions associated with NO.

The differences of NO conversion between two atmospheres are increased with the increasing
combustion temperature. A higher temperature in oxy-fuel combustion gives rise to more effective
reduction impact on NOx emission. The elevated content of CO on char surfaces due to the intensified
char-CO2 gasification generates an ever-increasing contribution to NOx reduction at high temperature.
In addition, the amount of thermal NOx in air combustion rises substantially with the combustion
temperature while much less thermal NOx is formed in oxy-fuel combustion. The conversion to NO
from synthetic coal “M5” is higher than that from “M6” at a given temperature. Previous studies
indicated that the NO conversion ratios from fuel nitrogen decreased with an increase in nitrogen
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content (dry and ash-free basis) in various coals [38,39], while the conversion of fuel-N to NO show
a positive relationship with fuel ratio (FC/V) in the present research. Compared with pyridinic nitrogen
in coal, more of the pyrrolic nitrogen is converted to NO. Furthermore, an oxy-fuel combustion with
O2 content of 21% exhibits a more effective impact on the reduction of NO2 than that of NO.
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3.2. The Effect of Combustion Temperature on the Formation of NOx

Figure 5 depicts the effect of combustion temperature on the release characteristics of nitrogen
species during the rapid oxy-fuel combustion of real and synthetic coals with a particle size of 63–98 µm
and an O2 content of 21%. The principal nitrogen species during the present oxy-fuel combustion of
synthetic coals is NO with a small amount of NO2 and N2O under certain conditions, similar to the air
case. The conversion of NO from fuel-N with the combustion temperature presents striking similarities
between synthetic and real coals. The NO emissions in the present experiments are increased obviously
with the combustion temperature during the rapid entrained flow combustion, which is consistent
with the results obtained by Sun et al. [32] However, Lasek et al. [29] observed that the NO emission
increased with the temperature to about 850 ◦C but the further rise of temperature brought about
a decline of the NO formation during the oxy-fuel combustion in a fluidized bed reactor. The formation
of NOx is largely dependent on the experimental conditions. Moreover, the competition between
conversions of fuel-N to NO and char-NO reactions occurs on char surfaces with the combustion
temperature. The emission of NO2 is also increased slightly with temperature while none N2O is
generated above 1000 ◦C. With the evolution of the combustion temperature, the conversions of fuel-N
to NO from synthetic coal “M6” exhibits a synchronous variation tendency with those of “M5”, while
the conversion ratios vary with a difference of about five percentage points. The oxidation ratios of the
different fuel nitrogen values varied at a given identical condition.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 13 
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Figure 5. The effect of temperature on the release behaviors of nitrogen species under the 21% 
O2/79% CO2 condition. (a) Nitrogen oxides from “M6”; (b) NO release behaviors. 
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3.3. Comparison of the NO and NO2 Emissions with Oxygen Content

The oxygen content in oxy-fuel combustion can be regulated by adjusting the ratio and location
of FGR while it also yields an impact on the coal reactivity and NOx emission. The effects of oxygen
content on NOx emissions at the combustion temperature of 1200 ◦C are illustrated in Figure 6. The NO
conversion increases with the oxygen content, as shown in Figure 6a. The effect of oxygen variation
on the NO emission is significant as the O2 content is below 21%, while the increase extent of NO
conversion is slowed down with an O2 content beyond 21%. Ndibe et al. [22] and Duan et al. [34] also
observed an increase in NO emission with oxygen concentration for the cases of oxy-fuel combustion,
while Shaddix and Molina [33] concluded that the conversion of fuel-nitrogen to NOx increased notably
with the oxygen content, which is similar to the present study. The oxidation reactions of fuel-N are
promoted by increasing oxygen content. More oxygen leads to less CO on char surfaces and the
oxidizing atmosphere around the char particles impedes the NO reduction. As for the principal NOx

precursor, NH3, the conversion rate of NH3-to-NOx can be increased obviously with the raised O2

concentration under oxy-fuel conditions [31]. Whereas, the further access of oxygen content cannot
considerably enlarge the NO conversion, which is beneficial for the NOx reduction during oxy-fuel
combustion. Zhao et al. [40] investigated the oxidation of pyridine at 1000 ◦C and indicated that the
NO conversion cannot continue to increase with the oxygen content, which is consistent with the
present experimental result of synthetic coal with pyridinic nitrogen.Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 13 
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Figure 6. The comparison between NO and NO2 emissions with oxygen content at 1200 °C under the 
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Figure 6. The comparison between NO and NO2 emissions with oxygen content at 1200 ◦C under the
oxy-fuel condition. (a) Conversion to NO; (b) Conversion to NO2.

Figure 6b shows the evolution of NO2 conversion ratio with the oxygen content. The variation
of NO2 conversion is roughly proportional to oxygen content, largely different from the case of NO.
The NO2/NOx ratios present a slightly increasing tendency with the oxygen content in oxy-fuel
combustion, which is in accordance with results obtained by Ndibe et al. [22] The access O2 can
further enhance the conversion of NO to NO2, which also has a certain association with the slow-down
increase of NO. The rise in the concentration of oxidizing radicals from high oxygen inlet content is
responsible for the promotion of NO2 formation as well. The rise of O2 content not only promotes the
formation of NO, but also intensifies the further oxidation of already-formed NO to NO2. Consequently,
compared with NO, the increase of the oxygen partial pressure in the oxidant has a more obvious
promotion effect with respect to the NO2 formation. It can be seen from Figure 6b that, the conversions
of NO2 from synthetic coal “M5” are considerably higher than those from “M6”. Fuel nitrogen of
pyrrolic form is inclined to transform into NO2 under the condition of a high O2 content in oxy-fuel
combustion. The NO conversion from PZ lignite is the highest while the case of NO2 is different.
The conversion of NOx (sum of NO and NO2) from fuel nitrogen is reduced with an increase in the
nitrogen content of dry ash-free basis within coal matrix. Coal with a high level of pyrrolic nitrogen
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favors the formation of NO2 compared with others. Hence, the coal property and chemical form of
fuel nitrogen exhibit distinct influences on the formation and destruction of NOx during the oxy-fuel
combustion of coal-based fuels.

3.4. Particle Size Dependence of NO and NO2 Emission

The influences of coal particle size on transformation behaviors of fuel nitrogen in coal are still
ambiguous, especially the possibly different particle size dependence of NO and NO2. Figure 7
illustrates the effect of particle size on the NOx release from synthetic coal “M6” with pyridinic
nitrogen under the oxy-fuel condition of 1200 ◦C. It can be observed from Figure 7a that with the
increase of particle size, the conversion ratio of NO from fuel nitrogen first increases and then decreases
with the maximum conversion ratio present at a particle size of 64–98 µm. This can be explained by
the competition between char-O2 reactions and char-NO reactions on particle surfaces. On surfaces
of larger particles, the char-O2 reactions are further enhanced which gives rise to a decrease in NO
formation [29]. The particle size dependence of the NO2 conversion ratio from fuel nitrogen of pyridinic
form differs greatly from the case of NO. As depicted in Figure 7b, the NO2 conversion is increased
with the particle size in the range of <150 µm. The transformation of nitrogen-containing functional
groups in coal is strongly affected by the specific surface area of the coal particles. Compared with
“M6”, the synthetic coal “M5” shows a similar relationship between particle size and NOx emission.
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Figure 6. The comparison between NO and NO2 emissions with oxygen content at 1200 °C under the 
oxy-fuel condition. (a) Conversion to NO; (b) Conversion to NO2. 
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3.5. Mineral Impacts on the Transformation of Fuel Nitrogen

The ash and sulfur were absent in synthetic coals on account of the none corresponding
constituents in raw materials, which is beneficial to probe the influence of certain mineral matters on
NOx reduction during oxy-fuel combustion compared with air. Figure 8 shows the effects of Fe2O3,
Na2CO2, and CaCO3 on NOx emission during air and oxy-fuel combustion. The mineral matters
establish the same influence tendency on NO conversion from pyridinic nitrogen of synthetic coal
between O2/CO2 and O2/N2 atmospheres as shown in Figure 8a,b. The catalytic effects of sodium (Na),
calcium (Ca), and iron (Fe) on the oxidation of pyridinic nitrogen are independent of the combustion
atmosphere, and the change from air to oxy-fuel combustion has a negligible relevance to the impacts
of mineral addition on the transformation behaviors of pyridinic nitrogen. When the combustion
temperature is 1000 ◦C, the additive Fe2O3 reduces the NO conversion while Na2CO3 and CaCO3 can
promote the formation of NO. The presence of Fe2O3 possibly promotes the reduction of NO to N2 via
the following reactions [41,42]:

Fe2O3+3CO→ 2Fe + 3CO2 (R1)

2Fe + 3NO→ Fe2O3 + 1.5N2 (R2)
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The conversion of NO from synthetic coal with pyridinic nitrogen has the following sequence:
Na2CO3 > CaCO3 > without-mineral > Fe2O3. However, the addition of these minerals all reduces
the NO emission at 1200 ◦C with the following sequence of NO conversion from pyridinic nitrogen:
without-mineral > Na2CO3 > CaCO3 > Fe2O3. The contribution of minerals on the transformation
of fuel nitrogen is strongly affected by two competitive aspects during oxy-fuel combustion: the
catalytic effect on oxidation of fuel nitrogen and the impact on the heterogeneous reduction of NOx on
char surfaces.

As Figure 8c,d depicted that the influence of mineral matter on the oxidation of pyrrolic nitrogen
differs significantly from the case of pyridinic nitrogen. Only the addition of Fe2O3 leads to a decline
of NO conversion from pyrrolic nitrogen, while both Na2CO3 and CaCO3 facilitate the release of NO.
Moreover, the mineral matters generate different influences on the oxidation of pyridinic nitrogen
under O2/CO2 and O2/N2 conditions. The conversion of NO from a synthetic coal sample with
Na2CO3 additive exceeds that with CaCO3 in O2/CO2 atmosphere at 1000 ◦C, which differs from the air
case. Compared with air circumstance, oxy-fuel combustion causes the change of the mineral catalytic
effect on the transformation of pyrrolic nitrogen within the organic structure of coal. The combustion
temperature and species of mineral matters exhibit various influences on the formation and reduction
of NOx during the oxy-fuel combustion of coals.Appl. Sci. 2018, 8, x FOR PEER REVIEW 10 of 13 
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distinctly different from the condition of NO. The particle size dependence of NO2 conversion from 
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Figure 8. The effects of mineral matters on NOx emission during air and oxy-fuel combustion. (a) “M6”
in 21% O2/79% CO2 atmosphere; (b) “M6” in 21% O2/79% N2 atmosphere; (c) “M5” in 21% O2/79%
CO2 atmosphere; (d) “M5” in 21% O2/79% N2 atmosphere.

4. Conclusions

The formation and reduction of NOx in oxy-fuel combustion were experimentally investigated
in a lab-scale entrained flow reactor using two synthetic coals with pyrrolic or pyridinic nitrogen.
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The oxidation process of fuel nitrogen in synthetic coal presented a striking similarity to that in real
coal. The differences of NO conversion from fuel nitrogen between the oxy-fuel and air conditions
were enlarged with the combustion temperature. The pyrrolic nitrogen was more inclined to be
oxidized into NOx compared with pyridinic nitrogen. The NO emission first increased significantly
and then trended to an asymptotic constant with the O2 content elevated between 10–50%. Whereas the
variation of NO2 conversion was roughly proportional to the oxygen content, and this was distinctly
different from the condition of NO. The particle size dependence of NO2 conversion from pyridinic
nitrogen was greatly unlike the case of NO. The conversion of NO2 from fuel nitrogen increased with
the particle size, while the formation of NO showed a non-monotonic variation. The catalytic effects of
sodium, calcium, and iron on the oxidation of pyridinic nitrogen were independent of combustion
atmosphere, but the oxy-fuel combustion gave rise to a change of the mineral catalytic effect on the
transformation of pyrrolic nitrogen compared with air combustion. In addition, the kinds of mineral
matter indeed generated different influences on the oxidation of various nitrogen functional groups.
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