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Abstract: Wearable electronics are believed to be the future of the next-generation electric devices.
However, the comfort of current wearable devices is greatly limited due to the use of airtight materials,
which may even lead to inflammation of the skin. Therefore, breathable, skin-friendly materials, are
highly desired for wearable devices. Here, the recent progress of the breathable materials used to
fabricate skin-friendly electronics is reviewed by taking triboelectric effect-based wearable electronics
as a typical example. Fibers, yarns, textiles, and nanofiber membranes are the most popular dielectric
materials that serve as frictional materials. Metal mesh, silver yarn, and conductive networks
made up of nanomaterial are preferred as air-permissive electrodes. The breathable materials for
skin-friendly wearable electronics summarized in this review provide valuable references for future
fabrication of humanized wearable devices and hold great significance for the practical application of
wearable devices.
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1. Introduction

The rapid development of electronic technology has brought portable and wearable electronics into
a new era [1–3]. Wearable electronics tend to be multifunctional, small, humane, and comfortable [4,5].
Health monitoring has becoming a hot topic in recent years and wearable electronics are one of
the most convenient ways to monitor people’s health conditions. Wearable electronic with good
air permissivity, high sensitivity, light weight, and small volume are highly desirable for real-time
and long-term health monitoring. However, commonly used materials for wearable devices are cast
films such as polydimethylsiloxane (PDMS) [6–8], fluorinated ethylene propylene (FEP), and metal
foils [9,10]. There is no doubt that the assembly of those materials will be stiff and airtight, which
obstructs the comfort of human skin or organs. Even worse, long-term wear of such devices may lead
to inflammation [11,12]. Therefore, breathable materials such as textiles are promising candidates for
the fabrication of wearable devices [13,14].

For the operation of electric devices, a power supply is often necessary. However, currently,
power supplies such as bulk and stiff batteries are burdensome for lightweight, convenient wearable
electronics. The newly raised triboelectric effect-based devices can generate electric signals under
external mechanical force by themselves, which can be regarded as self-powered electronics that
are free of battery [15]. With features such as light weight [15,16], simple structure [17,18], easy
integration [19,20], and cost-efficient [21,22], triboelectric effect-based wearable electronics have wide
applications in the area of energy conversion [23,24], biomedical sensing [25,26], and human–machine
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interface [27,28]. However, the comfort of those wearable electronics is still a big challenge. In this
review, based on the triboelectric effect, the most recent materials and fabrication of air-permissive
wearable electronics are discussed and summarized, which represents a further step toward the
fabrication and design of future breathable wearable devices.

2. Working Mechanism and Application of Wearable Electronics Based on the Triboelectric Effect

2.1. Working Mechanism of the Triboelectric Effect-Based Electronics

There are four operation modes that depict the working process of triboelectric effect-based
electronics, namely vertical contact-separation mode, in-plane sliding mode, single-electrode mode
and freestanding friction layer mode [29–32]. The electron-generation processes of the four working
modes are illustrated in Figure 1. As the principles of the four modes are similar and have been
summarized in previous works, only vertical contact-separation mode is explained here in detail as a
typical example to get a better understanding of the electron-generation process of the device.
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device in vertical contact-separation mode (a), planer sliding mode (b), single-electrode mode (c),
and freestanding friction layer mode (d).

As presented in Figure 1a, in the initial state, the surfaces of the two friction materials will obtain
equal amounts of positive and negative charge on the surface of the friction layers when the two
friction materials contact each other. This phenomenon can be explained by their different ability to
gain or lose electrons, which relies on their varied tribo-polarity [33–35]. Once the two layers move
away from each other, the electron will move through the external circuit to balance the potential
difference between two electrodes attached on the back of friction layers (between the electrode and
the ground in single-electrode mode). Therefore, the current and voltage can be obtained in the eternal
circuit and further be used. When the two friction layers are approaching, the current in the opposite
direction will appear in the external circuit until the two layers full contact each other. Then, the next
working period begins and repeats the whole process.

2.2. Application of Triboelectric Effect-Based Wearable Electronics

As mentioned above, triboelectric effect-based wearable electronics have wide applications.
With high sensitivity, the electronics can be used as self-powered sensors to monitor human
health ranging from elbow motion and finger bending to breath and heartbeat [36,37]. Moreover,
triboelectric effect-based wearable devices can perform human–machine interaction, which could
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easily control computer and home applications [38,39]. Figure 2 presents the overview application of
wearable devices in energy conversion [40,41], health monitoring [42,43], pressure detection [44], and
human–machine interaction [45]. From the point of comfort and humane use, the use of breathable
materials is a promising direction to optimize the development of wearable devices, as materials are
the fundament of the device, which will be discussed in the following section.
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monitoring and human–machine interfacing. Figure adapted from ref. [39–45].

3. Breathable Wearable Electronics Based on Triboelectric Effect

3.1. Woven-Structured Wearable Electronics

Everything around us has friction characteristics. As textiles and fibers are believed to be the
second human skin [46,47], researchers have considered using fibers, the essential components of
clothes, to fabricate triboelectric effect-based wearable devices. Zhou was the first to put this idea into
action [48]. By weaving polyester and nylon fabric, the triboelectric effect-based wearable device is
breathable, flexible, and washable, which is similar to commonly worn clothes. Figure 3 is the structure
illustration and fabrication process of the woven-structured electronics. To realize the washability and
flexibility, silver fabric was chosen to replace metal foils to act as the electrode of the device. A single
component of the device was constituted through covering both sides of the silver fabric with nylon or
polyester. Weaving the single component of the fabrics together finished the device. In this situation,
nylon and polyester fabrics act as two friction materials of the device. The working mechanism of
the device can be concluded to freestanding friction layer. Benefiting from the easy integration of the
device into clothes such as shirts, trousers or shoes, the device can harvest different kinds of human
motion energy and powers several LEDs effortlessly. This work opened a new approach for fabricating
breathable and comfortable wearable electronics.

Inspired by the components of clothes, the homemade woven-structured device is a great step
forward in skin-friendly wearable devices. However, the fabrics were weaved by hand, which is
time-consuming and relatively expensive. Therefore, a mass-production method is necessary to realize
the commercialization of the wearable device [49]. To solve this problem, normal yarn-winding
machine was introduced to fabricate wearable electronics.
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Figure 3. Woven-structure wearable triboelectric devices. (a) Fabrication process of the wave structure
device. (b) Structure and circuit of the wave structure device. Figure adapted from ref. [48].

Recently, a wearable triboelectric device (WTD) made of compound yarns, mass produced by a
commercial yarn-winding machine, was put forward [50]. As presented in Figure 4a, the yarn has a
core-shell structure, where silver-plated yarn and nylon-6 (PA6) or polytetrafluoroethylene (PTFE) acts
as core and shell, respectively. During the contact-separation process, PA6 and PTFE will rub against
each other and silver-plated yarn serves as an electrode to collect the induced electrons. Figure 4b is a
simple illustration of the process of how the friction materials such as PA6 or PTFE covered the surface
of the silver-plated yarn through the winding machine. The flexibility and washability of the WTD
are shown in Figure 4c, which shows firm evidence for the practicability of the WTD when integrated
with commonly worn clothes. Moreover, the cross-sectional and top view of the core-shell yarn was
presented in the bottom of Figure 4c as well. When directly integrated into the garment, the WTD
with a size of 4 × 4 cm can easily charge a capacitor from 0 to 5 V within 100 s and, further, power
an electric watch and scientific calculator. With the help of the commercial yarn-winding machine,
a breathable, flexible, and washable WTD can easily be scaled up, which is a significant step forward
for the mass fabrication and commercialization of wearable WTDs.
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Figure 4. Wearable device made up of compound yarns, mass produced by a commercial yarn-winding
machine. (a) Structure and application of the wearable triboelectric device (WTD). (b) The schematic of
the formation of one yarn. (c) The flexibility and washability of the WTD and cross-sectional view of
one yarn (Scale bar, 2 cm (i–iii), 200 µm (iv), 400 µm (v)). Figure adapted from ref. [50].
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3.2. Textile-Based Wearable Electronics

The fabrication process of the fiber-based wearable electronics is still complex, as every fiber
should be treated seriously. For the purpose of simplifying the fabrication process of the wearable
device, Cao et al. directly used textiles to manufacture wearable electronics [38]. A washable electronic
textile (WET) can be regarded as a self-powered sensor for human–machine interaction. Figure 5a is a
schematic of the structure of the WET. Nylon and silk act as substrate and friction layers, respectively.
To guarantee the air permissivity of the whole device, a conductive network made up of carbon
nanotubes (CNTs) sandwiched between silk and nylon textiles serves as an electrode. Please note that
the conductive network was fabricated through screen-printing CNT ink onto the nylon substrate,
which is an easy mass-production method. Moreover, the size and shape of the electrode is a designable
benefit of a screen-printing technology. Figure 5b is the optical photograph of the as-fabricated
WET with strip array electrode. The scanning electron microscope (SEM) image of the nylon textile
covered with CNTs is illustrated in Figure 5c. The magnified image of the surface of the fabric
with CNT showed that even grooves between fibers were covered with CNT (Figure 5c), which
provides further evidence for the good conductivity of the printed electrode. It is believed that nylon
and silk textiles are breathable for human skin. The addition of the CNT conductive network will
decrease the air permissivity of the nylon textiles, but the influence is negligible. For example, the air
permissivity of the nylon substrate with 20 µm CNT ink on its surface is 88.6 mm/s, which is much
higher than jeans (26.4 mm/s). When anchored on the surface of a wrist band, the WET can control
software on computers and wirelessly trigger home appliances. Based on commonly worn clothes
and screen-printing technology, this work provides a new and easy method to fabricate breathable,
washable, and wearable devices for practical applications.
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Figure 5. The textile-based wearable electronic device. (a) Illustration of the structure of the washable
electronic textile (WET). (b) Photograph of the as-fabricated WET. (c) The SEM image of the nylon
textile covered with CNT ink. (d) The magnified SEM image of the nylon textile covered with CNT ink.
Figure adapted from ref. [38].

3.3. Nanofiber Membrane-Based Wearable Electronics

The direct use of textile is a convenient and easy way to design comfortable and wearable electronics.
Nevertheless, the electric output performance and sensitivity of these electronics are barely satisfactory.
According to existing literature, the nanostructure on the surface of the friction materials will increase the
output of the triboelectric effect-based devices, as a larger effective contact area will be obtained [51,52].
Therefore, a nanofiber membrane, which has both air permissivity and a nanostructure on its surface, was
introduced to prepare the wearable electronics.

As presented in Figure 6 [53], polyvinylidene fluoride (PVDF) and thermoplastic polyurethanes
(TPU) nanofibers, prepared through electrospinning, were chosen as friction layers of the device.
Figure 6b,c present the SEM images of the surface of the PVDF and TPU nanofiber. The nanofiber
membrane was formed by the pile of millions of nanofibers, which lead to nano-micro-holes between
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nanofibers. It is speculated that gas can diffuse through the holes. The surface is relatively rough,
as well, because of the irregular pile of the nanofibers. At the same time, conductive gauze, and
silver elastic textile, which act as breathable electrodes, were used as substrates to collect PVDF and
TPU nanofibers. Consequently, the whole device is breathable and comfortable. Interestingly, the
TPU membrane and its substrate, silver textile, are elastomer, which made the device stretchable.
The stretchability and flexibility of the device is favorable for harvesting irregular human motion
such as stretching or twisting the wrist, and is a more comfortable and durable method compared to
traditional non-elastic materials.
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As mentioned above, nanofiber membrane-based electronics have high sensitivity compared with
textile-based sensors. It has been demonstrated that sensors fabricated with nanofiber membranes
were able to detect slight mechanical force. For example, our group put forward a self-powered
and nanofiber-based triboelectric sensor (SNTS) for respiratory monitoring [54]. Figure 7a presents
the structure of the SNTS. The friction material and electrode is PVDF nanofiber membrane (PVDF
NM) and Ag nanoparticles (AgNPs), respectively. The SEM in Figure 7b is the surface of the PVDF
NM coated with AgNPs, where little holes indicate the air permissivity of the device in terms of the
micro-nano morphology of the materials. Based on a single-electrode working mode, the detailed
process of the transfer of the electrons is described in Figure 7c. With the idea of simple structure and
mass production, electrospinning and screen-printing are combined to fabricate the SNTS (Figure 7d).
The SNTS used for respiratory monitoring, with light weight and small volume, is shown in Figure 7e.
Figure 7f compares the air permissivity of the as-fabricated sensor with other commonly used materials.
Although the gas permeability of the SNTS is worse than jeans, it is about 4.5 times higher than A4
printing paper, not to mention its superiority compared with cast film. Given features such small
volume and light weight, the SNTS can be easily attached on the inner side of a mask to monitor
respiratory conditions with high sensitivity.

In previous work, nanofibers of PVDF NW was shown to be waterproof with high electronegativity.
However, its application in wearable electronics is still unsatisfactory, as it will crack under high stretch
stress or deformation [55]. Therefore, devices which can be stretched, bent, and compressed are necessary
to meet the higher requirements of wearable electronics [56]. In addition, for an elastic electrode,
conductive networks made up of nanotubes are much better than those made up of nanoparticles,
because of the weak interaction and connection between nanoparticles.
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The structure of a stretchable wearable device (SWD) is shown in Figure 8a [57]. Elastic TPU
nanofiber membrane (TPU NM), which has great stretchability and flexibility, was the main component
of the device. On the one hand, TPU NM acts as the substrate to support the screen-printing CNT
ink. On the other hand, TPU NM was the substrate that holds PVDF NM, the friction layer of the
SWD. PVDF NM is used to improve the electric output performance of the SWD, as PVDF is more
tribo-negative than TPU. Interestingly, during the electrospinning process, it was found that the
nanofiber-collecting substrate is a critical factor that influences the tensile property of the TPU NM.
As shown in Figure 8b, the stretchable ability of the TPU NM collected on the substrate of PDMS is
much better than that of polyethyleneterephthalate (PET) or polypropylene (PP). The high tensile
performance of the TPU NM collected on the PDMS substrate can be attributed to the homogeneous
and smooth surface of the PDMS, which avoids the non-uniformity of the NM. Figure 8c is the
fabrication process of the SWD, which constitutes the commercial technologies of electrospinning
and screen-printing. The breathable and stretchable SWD showed outstanding performance in joints
of body. For instance, the as-fabricated SWD can be used to prepare a glove and detect the motion
state of five fingers at the same time. The lightweight, air-permissive, and stretchable SWD is more
shape-adaptive and skin-attachable, which is of great importance to the use of wearable electronics
with high sensitivity.
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4. Discussion

The breathable materials summarized in this review comprise three types, namely fiber, textile,
and nanofiber membrane-based wearables. Table 1 presents an overview comparison of the three
types of materials. For breathability, fiber and textile-based devices have superiority over nanofiber
membrane-based electronics. In contrast to textile and nanofiber membrane, the fabrication process
of the fiber-based device is much more complex, as every single fiber is made up of an electrode and
friction layer. For electronic devices that have higher requirements with sensitivity, the nanofiber
membrane cannot be replaced by fiber or textile-based devices, which benefit from its nanostructure
on its surface. Moreover, a nanofiber membrane is soft, lightweight, small, shape-adaptive, and easy to
integrate. Therefore, for practical application, sensitivity, breathability, processability, and cost should
all be taken into consideration when designing and fabricating wearable electronics.

Table 1. Comparison of the breathable materials.
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To sum up, Figure 9 depicts the summary of the breathable materials used to fabricate 
comfortable wearable electronics by replacing traditional airtight materials. To meet the 
requirements of comfort and skin friendliness, the components of clothes such as fibers and textiles 
were selected to fabricate wearable electronics, which are also low-cost and easy to integrate with 
clothes. Wearable electronics fabricated with nanofiber membranes are preferred due to relatively 
good air-permissibility and micro-nano structure, which guarantees both skin friendliness and 
sensitivity of the device. Single conductive fibers, metal mesh, conductive textiles, and networks 
made up of conductive nanomaterial are the commonly used air-permissive electrodes. Elasticity is 

To sum up, Figure 9 depicts the summary of the breathable materials used to fabricate comfortable
wearable electronics by replacing traditional airtight materials. To meet the requirements of comfort
and skin friendliness, the components of clothes such as fibers and textiles were selected to fabricate
wearable electronics, which are also low-cost and easy to integrate with clothes. Wearable electronics
fabricated with nanofiber membranes are preferred due to relatively good air-permissibility and
micro-nano structure, which guarantees both skin friendliness and sensitivity of the device. Single
conductive fibers, metal mesh, conductive textiles, and networks made up of conductive nanomaterial
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are the commonly used air-permissive electrodes. Elasticity is another critical factor that influences the
comfort of the devices, being is shape-adaptive and thus offering a better attachment to skin.
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The breathable materials and fabrication methods reviewed in this paper can be expanded to all
wearable devices, which provide valuable references for the design and fabrication of skin-friendly
devices. However, effects are still needed to realize superior air-permissibility, higher sensitivity, and
better stretchability of wearable electronics. Mass production, minimization and easy integration are
also critical for the commercialization of wearable devices.
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