
applied  
sciences

Article

Propagation of Optical Coherence Vortex Lattices in
Turbulent Atmosphere

Yan Huang 1, Yangsheng Yuan 2,*, Xianlong Liu 2 , Jun Zeng 1, Fei Wang 1, Jiayi Yu 1, Lin Liu 1

and Yangjian Cai 1,2,*
1 School of Physical Science and Technology, Soochow University, Suzhou 215006, China;

20164208026@stu.suda.edu.cn (Y.H.); jzeng@stu.suda.edu.cn (J.Z.); fwang@suda.edu.cn (F.W.);
jyyu@stu.suda.edu.cn (J.Y.); liulin@suda.edu.cn (L.L.)

2 Center of Light Manipulations and Applications & Shandong Provincial Key Laboratory of Optics and
Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
xianlongliu@sdnu.edu.cn

* Correspondence: yysheng@sdnu.edu.cn (Y.Y.); yangjiancai@suda.edu.cn (Y.C.);
Tel.: +86-531-89611187 (Y.Y. & Y.C.)

Received: 30 October 2018; Accepted: 27 November 2018; Published: 3 December 2018
����������
�������

Abstract: Propagation properties in the turbulence atmosphere of the optical coherence vortex lattices
(OCVLs) are explored by the recently developed convolution approach. The evolution of spectral
density distribution, the normalized M2-factor, and the beam wander of the OCVLs propagating
through the atmospheric turbulence with Tatarskii spectrum are illustrated numerically. Our results
show that the OCVLs display interesting propagation properties, e.g., the initial Gaussian beam
distribution will evolve into hollow array distribution on propagation and finally becomes a Gaussian
beam spot again in the far field in turbulent atmosphere. Furthermore, the OCVLs with large
topological charge, large beam array order, large relative distance, and small coherence length are
less affected by the negative effects of turbulence. Our results are expected to be used in the complex
system optical communications.

Keywords: optical coherence vortex lattices; atmospheric turbulence; evolution properties; free-space
optical communications

1. Introduction

Optical lattices can be viewed as a typical kind of beam arrays, which display sufficiently small
beam spots. Recently, a novel class of optical lattices, which are named optical coherence lattices
(OCLs), were introduced by Ma and Ponomarenko [1]. The OCLs were described with the help of the
complex Gaussian representation and the time-domain OCLs were generated through superposition
of Gaussian pulses [2]. The property of periodic reciprocity of the OCLs on propagation through the
free-space was found [3]. Periodic reciprocity means the periodic degree of coherence at the source
plane transfers the periodicity to the transverse intensity distribution after a long propagation distance.
Recently, both scalar and vector OCLs were generated in experiment [4,5]. Furthermore, other kinds
of optical lattices were also proposed [6–8]. The optical lattices were found to be useful in various
applications, e.g., image transmission and encryption [4], trapping and cooling atoms [9], photonic
crystals engineering [10], lattice light-sheet microscopy [11], and ultracold trapping of quantum
gas [12].

On the other hand, partially coherent beams have been studied extensively over the last
few decades due to their novel physical properties and widely uses in various fields, such as
free-space optical communications, optical imaging, particle trapping, particle scattering, and remote
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detection. The statistical properties, e.g., degree of coherence [13], beam spreading [14,15], propagation
factor [16–18], Rayleigh range [19], and scintillation index [20–22] of different kinds of partially coherent
beams in free space and in various turbulent atmosphere have been studied in detail. The propagation
properties of the OCLs (i.e., a typical kind of partially coherent beams with periodical degree of
coherence) in atmospheric turbulence were explored [23], and the results showed that the OCLs have
an advantage of mitigating scintillation index in atmospheric turbulence on propagation.

A vortex beam with twisted wavefront carries an orbital angular momentum and has various
applications ranging from optical tweezers to optical communications [24–28]. The topological charge
(which defines how the wavefront of the vortex beam twists) on propagation in atmospheric turbulence
is robust [29]. In 1998, Gori et al. introduced a class of partially coherent beams with helical wavefront,
which were named partially coherent vortex beams (PCVB) [30]. Subsequently, efforts have been
made to the PCVBs [31–44]. A review on propagation, generation, and measurement of PCVBs was
given [41], and self-healing properties of a PCVB was found [42]. More recently, PCVB with a fractional
topological charge [43] and partially coherent vortex beam with periodical degree of coherence (i.e.,
optical coherence vortex lattices) [44] were introduced, respectively. In this paper, we investigate the
statistical properties (i.e., spectral density distribution, normalized M2-factor, and beam wander) of
optical coherence vortex lattices (OCVLs) in turbulent atmosphere by using the recently developed
convolution approach. We find that the initial Gaussian beam distribution of the OCVLs evolves into
hollow array distribution on propagation and finally becames a Gaussian beam spot again in the far
field in turbulent atmosphere. The OCVLs with prescribed beam parameters are less affected by the
turbulence, which will be useful for free-space optical communications.

2. Formulation of the Propagation of OCLVs in Turbulent Atmosphere

The second-order properties of a partially coherent beam in frequency domain can be studied by
the cross-spectral density (CSD) function. To construct a bona fide field, the CSD function at source
can be expanded as follows [45]:

W(r1, r2; 0) =
∫

p(v)H∗(r1, v)H(r2, v)d2v, (1)

where r1 = (x1, y1) and r2 = (x2, y2) are the two arbitrary transverse position vectors at source plane,
p(v) is a scalar nonnegative function, H(r, v) denotes an arbitrary suitable kernel function.

To generate OCVLs, we define p(v) and H(r, v) as follows:

p(v) =
1
M

(M−1)/2

∑
m=−(M−1)/2

exp

[
−|v− v0m|2

2w2
0

]
, (2)

H(r, v) = − i
λ f

τ(r) exp
[

iπ
λ f

(
v2 − 2r · v

)]
. (3)

where p(v) is superposed by the M space-shifted Gaussian functions, w0 and v0m = (md, md) denote
the circular aperture radius and the position vector of the lattices, respectively, and d denotes the
distance between adjacent spots. H(r, v) represents in the experiment the response function of an
optical Fourier transform system consisting of a free-space distance of f, a thin lens with focal distance f,
and an optical filter with transmission function τ(r) [44]. Here we set τ(r) in the cylindrical coordinates
as follows:

τ(r, θ) =

(√
2r

ω0

)l

exp

(
− r2

ω2
0

)
exp(−ilθ), (4)

where l and ω0 are the topological charge and beam width, respectively, (r, θ) are cylindrical
polar coordinates.
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By substituting Equations (2)–(4) into Equation (1), the CSD of the OCVLs at source plane is
obtained as follows:

W0(r1, θ1, r2, θ2) =
2w2

0π

Mλ2 f 2

(M−1)/2
∑

m=−(M−1)/2

(
2r1r2

ω2
0

)l
exp

(
− r2

1+r2
2

ω2
0

)
exp[il(θ2 − θ1)]

× exp
[
− r2

1+r2
2−2r1r2 cos(θ2−θ1)

2δ2
0

]
× exp{−b[(r2 cos θ2 − r1 cos θ1 + r2 sin θ2 − r1 sin θ1)]},

(5)

where δ0 = f /(w0k) is the beam initial coherence width. For the convenience of calculation, we set
a = 1/2δ2

0 = 2w2
0π2/(λ2 f 2), b = 2iπmd/(λ f ).

The spectral density of a propagating partially coherent beam in turbulent atmosphere can be
obtained by using the convolution approach as follows [46]:

S(ρ, z) = S f (−ρ/z)⊗ p1(−ρ/z)⊗ p2(−ρ/z), (6)

where ρ is the position vector in the receiver plane with the propagation distance being z. S f (−ρ/z) is
the spectral density of the incoherent portion on propagation in free space, p1(−ρ/z) is the Fourier
transform of the degree of coherence of the beam at source plane, p2(−ρ/z) is the Fourier transform
of second-order random phase correlation function, and ⊗ is the symbol of convolution.

According to the Huygens-Fresnel integral, S f (−ρ/z) is obtained by:

S f (−ρ/z) =
∣∣∣Ã(ρ/z)

∣∣∣2/λ2z2, (7)

where A(r) = τ(r) exp
(
ikr2/2z

)
and the hat tilde denotes the two-dimensional Fourier transform,

and [47]:

p2

(
v
′
)
=

3
2π3Tz

exp

(
− 3v

′2

2π2Tz

)
, (8)

with:
T =

∫ ∞

−∞
κ3Φn(κ)dκ. (9)

Here Φn(κ) is the power spectrum density of the atmospheric turbulence refractive index
fluctuations, κ denotes the frequency in the space. Here we adopted the Tatarskii spectrum for
the power spectrum density Φn(κ), which is written as [48]:

Φn(κ) = 0.033C2
nκ−11/3 exp

(
− κ2

κ2
m

)
. (10)

Here C2
n denotes the structure parameter of the atmospheric turbulence and κm = 5.92/l0 with

l0 being the turbulence inner scale. In this paper, we set l0 = 0.01 m. Taking Equation (10) into
Equation (9), we obtain:

T = 0.771C2
n. (11)

Taking Equations (2), (4), (7), and (8) into Equation (6), and using the fast Fourier transform (FFT)
algorithm, one can numerically analyze the spectral density of the OCVLs propagating in turbulent
atmosphere by using MATLAB (The MathWorks, Natick, MA, USA).

For further investigating the propagation properties of the OCVLs, we also study the M2-factor
and beam wander [49–51]. The beam’s second-order moments in turbulent atmosphere in the receiver
plane are obtained as follows [51]:〈

r2
〉
=
〈

r2
〉

0
+ 2〈r · θ〉0z +

〈
θ2
〉

0
z2 +

4
3

π2Tz3, (12)
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〈
θ2
〉
=
〈

θ2
〉

0
+ 4π2Tz, (13)

〈r · θ〉 = 〈r · θ〉0 +
〈

θ2
〉

0
z + 2π2Tz2, (14)

By the partial derivative method, the second-order moments of the partially coherent beams at
source plane can be obtained by [52]:

〈
r2
〉

0
=

1
I

∫ 2π

0

∫ ∞

0
r3W0(r, θ, r, θ)drdθ, (15)

〈
θ2〉

0 =
1

k2 I
∫ 2π

0

∫ ∞
0


∂2W0(r1, θ1, r2, θ2)

∂r1∂r2

∣∣∣∣∣∣∣∣ r1 = r2 = r
θ1 = θ2 = θ

+
1
r2

∂2W0(r1, θ1, r2, θ2)

∂θ1∂θ2

∣∣∣∣∣∣∣∣ r1 = r2 = r
θ1 = θ2 = θ

rdrdθ, (16)

〈rθ〉0 =
1

ikI

∫ 2π

0

∫ ∞

0

{
r1

∂W0(r1, θ1, r2, θ2)

∂r1
− r2

∂W0(r1, θ1, r2, θ2)

∂r2

}∣∣∣∣∣∣∣∣ r1 = r2 = r
θ1 = θ2 = θ

rdrdθ, (17)

where k = 2π/λ denotes the wavenumber, and:

I =
∫ 2π

0

∫ ∞

0
W(r, θ, r, θ; 0)rdrdθ, (18)

is the total energy for the beam.
By substituting Equations (5), (15)–(17) into Equations (12)–(14), we obtained:

〈
r2
〉
=

ω2
0(l + 1)

2
+

λ2z2

4π2

4a +
2(l + 1)

ω2
0
− 2

M

(M−1)/2

∑
m=−(M−1)/2

b2

+
4
3

π2Tz3, (19)

〈
θ2
〉
=

λ2

4π2

4a +
2(l + 1)

ω2
0
− 2

M

(M−1)/2

∑
m=−(M−1)/2

b2

+ 4π2Tz, (20)

〈rθ〉 = λ2z
4π2

4a +
2(l + 1)

ω2
0
− 2

M

(M−1)/2

∑
m=−(M−1)/2

b2

+ 2π2Tz2. (21)

The M2-factor is an important parameter to measure the laser quality and is defined as [51–53]:

M2(z) =
2π

λ

(〈
r2
〉〈

θ2
〉
− 〈rθ〉2

)1/2
. (22)

The M2-factor of OCVLs can be obtained by substituting Equations (19)–(21) into Equation (22).
Our results agree well with the Ref. [40] when M = 1 and l = 0.

According to Ref. [51–53], we obtain the following expressions for the effective beam size:

WLT =

√√√√√ω2
0(l + 1)

2
+

λ2z2

4π2

4a +
2(l + 1)

ω2
0
− 2

M

(M−1)/2

∑
m=−(M−1)/2

b2

+
4
3

π2Tz3, (23)

and in free space

WFS =

√√√√√ω2
0(l + 1)

2
+

λ2L2

4π2

4a +
2(l + 1)

ω2
0
− 2

M

(M−1)/2

∑
m=−(M−1)/2

b2

. (24)
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Beam wander is characterized by
〈
r2

c
〉1/2 of the variance of off-axis displacement of the

instantaneous beam center. Beam wander is defined as follows [54]:

〈
r2

c

〉
=

16π3

λ2 W2
FS

∫ L

0

∫ ∞

0
κΦn(κ) exp

(
−κ2W2

LT

){
1− exp

[
−2L2κ2(1− z/L)

k2W2
FS

]}
dκdz, (25)

taking Equation (10) into Equation (25), Equation (25) is simplified as:

〈
r2

c
〉
= 0.132

λ π3W2
FSΓ(−5/6)

∫ L
0

{(
2.85× 10−6 + W2

LT
)5/6 −

[
2L2(1−z/L)2

k2W2
FS

+ 2.85× 10−6 + W2
LT

]5/6
}

dz, (26)

the evolution properties of the beam wander in turbulent atmosphere of OCVLs can be calculated
numerically by taking Equations (23) and (24) into Equation (26).

3. Numerical Results

3.1. Spectral Density Distribution

Figure 1 displays the spectral density distribution of the OCVLs in turbulent atmosphere at
various propagation distances with λ = 532.8 nm, M = 3, l = 2, ω0 = 1 mm, δ0 = 3.4 mm, C2

n =

10−13 m−2/3, and d = 0.3 mm. From Figure 1a), one finds that the spectral density distribution of the
OCVLs at source is a single beam spot with doughnut beam profile. The single beam spot gradually
evolves into 3× 3 hollow beam arrays (see Figure 1e) with the increase of the propagation distance z,
which is similar to its evolution properties in free-space [44]. However, when we further increase the
propagation distance, the effect of turbulence on beam properties accumulates gradually. The hollow
beam arrays disappear gradually and finally become a Gaussian beam profile in the far field (see
Figure 1h).
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Figure 1. Spectral density distribution at several z of the optical coherence vortex lattices in turbulent
atmosphere with λ = 532.8 nm, M = 3, l = 2, ω0 = 1 mm, δ0 = 3.4 mm, C2

n = 10−13 m−2/3, and d =

0.3 mm. (a) z = 0; (b) z = 1 m; (c) z = 2 m; (d) z = 3 m; (e) z = 10 m; (f) z = 500 m; (g) z = 5 km; (h) z = 20 km.

Figure 2 displays the spectral density distribution of the OCVLs in turbulent atmosphere at z =
5 km for several values of the relative distance with λ = 532.8 nm, M = 3, l = 2, ω0 = 1 mm, δ0 =

3.4 mm, and C2
n = 10−13 m−2/3. From Figure 2, one sees that the beam distribution of the OCVLs

evolves into Gaussian distribution rapidly when the relative distance d is small (see Figure 2a). On the
contrary, the beam array profile persists for longer distances when the relative distance d increases
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(see Figure 2d). Figure 3 displays the spectral density of the OCVLs in turbulent atmosphere at
z = 5 km for several values of the array index M with λ = 532.8 nm, l = 2, δ0 = 0.45 mm, ω0 =

1 mm, C2
n = 10−13 m−2/3, and d = 0.3 mm. From Figure 3, the beam spot size of the OCVLs increases

as the array order M increases, which indicates the OCVLs spread more rapidly as the array order M
increases. Figure 4 displays the spectral density distribution of the OCVLs in turbulent atmosphere
at z = 500 m for several values of l with λ = 532.8 nm, M = 3, δ0 = 0.7 mm, ω0 = 1 mm, C2

n =

10−13 m−2/3, and d = 1 mm (see Figure 4a). One finds that the beam arrays keep hollow profiles for
longer propagation distances as the topological charge l increases, which means the OCVLs with large
topological charges are less affected by turbulence.Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 10 
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3.2. M2-Factor

In this subsection, we explore the evolution of the normalized M2-factor of the OCVLs in
turbulent atmosphere.

Figure 5 displays the normalized M2-factor of the OCVLs in turbulent atmosphere for several
different topological charge l and beam array order M with λ = 532.8 nm, C2

n = 10−15 m−2/3, d =

1 mm, δ0 = 5 mm, and ω0 = 1 cm. Figure 5a shows that as the normalized M2-factor of the OCVLs
remains invariant on propagation in free space (C2

n = 0), this property represents the best beam
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quality. However, for the turbulent atmosphere, the normalized M2-factor of the OCVLs increases
on propagation, and its value is smaller than that of the Gaussian Schell-model (GSM) array (l = 0)
when the propagation distance is fixed. Furthermore, the normalized M2-factor increases with the
decrease of the topological charge l. From Figure 5b, one can see that the normalized M2-factor of the
OCVLs (M > 1) is smaller than that of the GSM vortex beam (M = 1), and the normalized M2-factor
increases as M decreases. Figure 5 indicates that the OCVLs will be less affected by the negative effects
of the turbulence for larger topological charge and larger beam array order from the view point of the
normalized M2-factor.
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3.3. Beam Wander

In this subsection, we explore the beam wander of the OCVLs in turbulent atmosphere for several
different initial beam parameters.

Figure 6 shows the beam wander of the OCVLs in turbulent atmosphere for various δ0,
relative distance d, topological charges l, and beam array order M with λ = 532.8 nm, C2

n =

10−15 m−2/3, and ω0 = 1 cm. From Figure 6, it is found that the beam wander of the OCVLs in
turbulent atmosphere increases as the coherence width δ0 increases, or as the relative distance d,
topological charge l, and beam array order M decrease, which means that the OCVLs are less affected
by turbulence for large topological charge, large beam array order, large relative distance, and small
coherence length from the view point of the beam wander.
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4. Conclusions

We have formulated the propagation of the OCVLs in turbulent atmosphere by using the
convolution approach, and we have explored propagation dynamics, such as the spectral density,
the normalized M2-factor, and the beam wander of the OCVLs in turbulent atmosphere. We have
found that the beam distribution of the OCVLs changes from a single doughnut beam distribution
to hollow array distribution on propagation, and finally becomes the Gaussian distribution in the far
field. We also have found that the OCVLs with large topological charge, large beam array order, large
relative distance, and small coherence length can mitigate the influence of atmospheric turbulence.
Our findings are useful for free-space optical communications and information transfer.
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