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Abstract: Vision-based vehicle detection is the most basic and important technology in advanced driver
assistance systems. In this paper, we propose a vehicle detection framework using selective multi-stage
features in convolutional neural networks (CNNs) to improve vehicle detection performance. A 10-layer
CNN model was designed and visualization techniques were used to selectively extract features from the
activation feature map, called selective multi-stage features. The proposed features contain characteristic
vehicle image information and are more robust than traditional features against noise. We trained the
AdaBoost algorithm using these features to implement a vehicle detector. The experimental results verified
that the proposed vehicle detection framework exhibited better performance than previous frameworks.

Keywords: vehicle detection; feature extraction; convolutional neural network; AdaBoost

1. Introduction

Vehicle detection has attracted considerable attention in the field of object detection technology,
with an increase in the demand for automotive safety and autonomous vehicles and an increase in the
number of countries implementing institutional support for driver safety. Reducing the number of
traffic accidents directly affects not only human lives, but also many social costs. At the very center of
social change are advanced driver assistance systems (ADASs). Vehicle detection is the most basic and
important technology underlying ADASs, and vehicle detection research has considerably developed
in recent years. On-road vehicle detection has become a significant research topic in the ADAS context
with the development of various available sensing technologies (radar, lidar, camera, etc.) and the
emergence of multi-core and graphics processing unit (GPU) computing [1]. Vehicle detection is largely
divided into technologies that use vision sensors and those that do not. In contrast to other sensors,
vision-based vehicle detection can directly recognize vehicles and is a hot research field because of its
price advantage.

Vision-based vehicle detection methods can be categorized into appearance- and motion-based
methods [2]. Appearance-based methods have been studied extensively for monocular vehicle
detection frameworks to recognize the vehicle directly in the image region of interest (ROI).
Appearance-based vehicle detection methods extract appearance features from training images to
train the classifier using machine learning algorithms and then identify vehicle(s) in the new image
ROIs. Many appearance features have been proposed to detect vehicles, including color, symmetry,
edges, and histogram of oriented gradients (HOG) features [3]. The following two best practice
appearance-based vehicle detection methods have been developed thus far:
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1. HOG features are extracted from each training image, and the classifier is trained using the
support vector machine (SVM) algorithm [4].

2. Local binary pattern (LBP) features are extracted from each training image, and the classifier is
trained using the adaptive boosting algorithm (AdaBoost) [5].

Motion-based vehicle detection methods generally use optical flow and occupancy grids. Optical
flow vehicle detection has been proposed for monocular vehicle detection frameworks [6], and recent
dynamic grid processing developments have allowed an efficient use of occupancy grids to monitor
highly dynamic scenes; therefore, grids have become a generic tool for obstacle detection [7].

Appearance-based methods generally use monocular vehicle detection, whereas motion-based
methods use stereo vehicle detection. The commercial availability of monocular vehicle detection
systems means that appearance-based methods have attracted more research and practical application
attention than motion-based methods, but they do not provide three-dimensional (3D) depth.

Handcrafted features, such as HOG and LBP, have been widely used by appearance-based
vehicle detection methods to discriminate among vehicle images. Handcrafted features are also
called middle-level features. Although vehicle detection frameworks that use middle-level features
achieve moderate performance, the features are insufficient to fully represent characteristic vehicle
image information.

Therefore, in this paper, we propose a vehicle detection framework using a selective multi-stage
feature fusion method selectively extracted from convolutional neural networks (CNNs) to improve
vehicle detection performance. CNN is a type of deep learning, mainly used to classify images,
where vehicle image features are learned in each layer’s feature map. The proposed vehicle detection
framework does not use CNN as a classifier, but uses it only to extract specific features in the feature
maps of each layer, with the proposed algorithms using visualization techniques. Thus, not only
can the characteristic information of the learned features be examined, but the features suitable for
vehicle detection can also be selected. We then fuse these selectively extracted features and use
AdaBoost to identify vehicle images within the ROI, providing a robust vehicle detection framework.
The experiments showed that the proposed vehicle detection framework is more effective than current
vehicle detection frameworks that use handcrafted features.

The remainder of this paper is organized as follows: Section 2 describes the related works and the
proposed vehicle detection framework. Section 3 defines the experiments and compares the outcomes
from the proposed framework and the current best practice frameworks. Finally, Section 4 summarizes
and concludes the paper.

2. Vehicle Detection Framework Using Selective Multi-Stage Features

This section details the proposed vehicle detection framework that selectively extracts and
fuses features from each CNN layer trained on a vehicle dataset, called selective multi-stage
features. In contrast to conventional vehicle detection frameworks, the proposed framework does
not use handcrafted features such as HOG or LBP, and the CNN is not used as a classifier, but for
feature extraction.

2.1. Related Works

Here, we will describe the basic theory of the CNNs used to selectively extract features in
this study.

CNN is an abbreviation for convolutional neural networks and is one of the deep learning models
used in image classification and object detection in the field of computer vision. A CNN is a neural
network structure for solving the problems of applying the existing multi-layer neural networks to
computer vision. Learning 2D images as the input data in the existing multi-layer neural networks
takes a long training time, leads to a large network size, and increases the number of free parameters.
To solve these problems, the CNN concept was developed on the basis of the human visual cortex.
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The attribute of a CNN is its ability to utilize local information in a manner similar to that of the
receptive field of cells. Therefore, correlation relationships and local features can be extracted using a
non-linear filter in the neighboring pixels. By repeating this filter operation with a deep set of layers,
the global features can be extracted from the upper layer. In addition, the number of free parameters
in a CNN can be reduced as compared to that in the existing multi-neural networks. The CNN was
first introduced in 1989 by Yan LeCun [8]. In Reference [8], meaningful results were obtained in
handwriting recognition, but there was a limit to the computational power. Then, in Reference [9],
the basis of CNN popularization came into being. In this section, we will describe the layers in a CNN
and the typical CNN models that should be considered when designing a CNN model.

2.2. Methodology Overview

Figure 1 shows that the proposed vehicle detection framework consists of the training and the
detection stages. The training stage includes the following three steps:

1. CNN model design. We designed a CNN model for the proposed vehicle detection framework.
The design is important because the features to be extracted depend on the CNN model structure,
which should ensure that the characteristic vehicle image information can be learned. We trained
the CNN model with a prepared vehicle dataset using the stochastic gradient with momentum
and back-propagation algorithms.

2. Feature extraction and fusion. We extracted and fused the features containing the characteristic
vehicle image information in the trained CNN model using a visualization technique that
considered certain aspects of the feature map from each model layer. This step is critical, because
the visualization technique implied that we do not need to use all the available feature maps, but
can selectively extract features that include only the characteristic vehicle image information.

3. Detector training. We trained the detector with the extracted features using the AdaBoost algorithm.

The detection stage included vehicle hypothesis and verification processes. The vehicle hypothesis
defined an ROI that was probably a vehicle using a sliding window method. Once the ROI was defined,
the trained vehicle detector verified it as either a vehicle or a non-vehicle.
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2.3. Designing and Training the CNN Model

The CNN model could be freely designed depending on the application. The purpose of the
model in the proposed vehicle detection framework was to selectively extract features reflecting the
characteristic vehicle image information from each layer. The feature map aspects learned in the upper
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and the lower layers differed considerably; therefore, the CNN model had to have sufficient depth to
ensure that the lower and the upper layers could be distinguished. The AlexNet [10] characteristics
were analyzed by Zeiler and Fergus [11] using Zeiler’s visualization technique and clarified that
more than five convolution layers are required to distinguish between the lower and the upper layers.
Subsequent CNN research has suggested that very deep CNN models are preferable [12,13]. However,
the proposed CNN model was not intended for image classification, but for selectively extracting
features representing the vehicle image information from each layer. Therefore, we designed the CNN
model with five convolution layers, similar to AlexNet [10] or ZFNet [11].

The factors considered important in the design of the CNN model were the number of filters
in the convolution layers and the filter size and stride. More filters meant that more features could
be learned from each layer. Furthermore, visualization techniques could be used to systematically
identify the patterns of the learned feature maps. Therefore, we designed a CNN model with 60 filters
for each convolution layer, each having a size of 5 × 5 pixels and a stride of 1, on the basis of the recent
CNN model design trends towards smaller filter sizes and strides [12]. Rectified linear unit (Relu)
layers were used to accommodate non-linearity and two max-pooling layers. Table 1 and Figure 2
show the proposed CNN model details.

The CNN model was then trained with the prepared vehicle image training dataset, using data
augmentation and dropout techniques to prevent overfitting. For data augmentation, we randomly
flipped the vehicle images horizontally with 50% probability and took a random crop from the training
image with the same size as the input data. The dropout technique omitted some neurons in the
input or the hidden layers. For other training options, we set max epochs = 77, initial learning
rate = 0.001, and mini batch size = 128. We also used cross-entropy as the cost function and softmax as
the activation function.

Table 1. Proposed convolution neural network (CNN) model parameters.

Layer Conv_1 Conv_2 Maxp_1 Conv_3

Size 5 × 5 5 × 5 2 × 2 5 × 5
Stride 1 1 2 1

Layer Conv_4 Conv_5 Maxp_2 Full_1, 2

Size 5 × 5 5 × 5 2 × 2 2500
Stride 1 1 2
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2.4. Selective Multi-Stage Feature Extraction

In this section, we explain selective feature extraction and fusion using the CNN model designed
and trained as described in Section 2.3. The features used for the vehicle detection framework should
be robust to geometric transformation and illumination changes and represent the characteristic vehicle
image information.

The current features used in the vehicle detection frameworks include the HOG and LBP features.
To obtain the HOG features, we divided the input image into cells of a given size, calculated a
histogram of the gradient magnitude for each cell, and concatenated the histogram bin values into a
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1D vector. As HOG uses gradient information from edges in the input image, it is robust to brightness
and illumination changes. Therefore, it is a suitable feature for identifying objects such as people
and cars that have clear contour information, but not complicated internal patterns. However, as the
HOG feature mainly includes vehicle contour information, it is difficult to say that it contains the
characteristic vehicle image information.

The LBP feature is a 1D matrix representing the given-size block histograms of the converted
binary index and includes circular texture information, which is robust to illumination changes.
However, the original purpose of the LBP feature was to classify image texture; hence, it is difficult to
say that the LBP feature contains the characteristic vehicle image information.

The HOG and LBP features are called handcrafted features. Although these are enhanced
middle-level features that provide some degree of detection performance over low-level features, such
as edges or corners, various new features are emerging that improve vehicle detection performance.
Therefore, we propose a feature that can improve vehicle detection performance using selective
multi-stage feature extraction and fusion from a CNN. The proposed features effectively reduce
dimensionality while including the characteristic vehicle image information and are robust to noise.
To selectively extract and fuse features in the CNN model, we must analyze each CNN layer’s feature
map. Therefore, we introduced a visualization technique to simplify this task, as shown in Figure 3.
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First, we constructed a validation dataset to be used as the input images for the CNN model
to visualize the feature map. The validation dataset must not include any images from the training
dataset. We investigated the feature maps learned for each CNN layer. When a validation dataset
image was input into the trained CNN model, the trained filters in the first convolution layer performed
a convolution operation, producing the feature map. The proposed technique visualized these feature
maps. The feature maps from the first convolution layer passed through the Relu layer and then to
the next convolution layer that performed further convolutions with the previously trained filters,
producing the feature map of the second convolution layer. Thus, we obtained the feature maps for
all the layers as the image passed through the final convolution layer. Visualizing these feature maps
allowed the verification of what vehicle image information was learned as a feature for each layer’s
feature map. The visualization technique was essential to selectively extract and fuse features from
each layer of the CNN model. Figure 3 shows each numbered layer, and the subsequent sections
discuss the feature map visualization in this numerical order to describe the feature map characteristics
in each layer.

(1) Verification Dataset
Figure 4 shows a typical example image from the validation dataset that was input into the CNN

to visualize the feature maps in the trained CNN model in the subsequent sections.
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(2) Conv_1 Layer Visualization
There are 60 feature maps in the first convolution. The Conv_1 layer visualization result includes

the resultant feature map extracted from the 5 × 5 filter, where the white pixels show significant
activation. The first convolution layer extracts the low-level features, such as edge information.
Moreover, as it is the initial layer, there is little here that represents the vehicle image characteristics.

(3) Relu_1 Layer Visualization
The first convolution layer feature maps are passed through the Relu function in the Relu_1 layer.

As the Relu treats the feature map pixels with value < 0 as 0, the feature map is globally dark. This
confirms that only low-level features, i.e., the edge information in the x direction, are learned.

(4) Conv_2 Layer Visualization
There are 60 feature maps in the second convolution layer, and Figure 5a shows the resulting

feature map extracted from the 5 × 5 filter, where the white pixels show significant activation.
The second convolution layer is also a lower layer, so mainly the low-level features are learned.
There are two major differences between the first and the second convolution layer feature maps.
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Figure 5. Example result of CNN’s layer visualizations: (a) Conv_2 Layer Visualization, (b) Maxpool_1
Layer Visualization, (c) Conv_5 Layer Visualization.

1. More edge information in the x direction is learned. The feature maps in the second convolution
layer represent richer low-level features than those from the first convolution layer. Therefore,
when we include low-level features in the fusion process, the second convolution layer feature
maps are more appropriate than the first convolution layer ones.

2. Some features represent the vehicle head lamp, because the second convolution layer includes
the low-level color information features. The head lamp area contains the characteristic vehicle
information and can be differentiated from other objects. This particular characteristic information
was not found in the other layers. Therefore, the feature map that contains the head lamp
information must be included in the fusion process.
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(5) Relu_2 Layer Visualization
Relu_2 layer visualization result includes the Relu_2 layer feature maps, produced by passing

the second convolution layer through the Relu function. The dark areas are similar to the Relu_1
layer outcome.

(6) Maxpool_1 Layer Visualization
Figure 5b shows the Maxpool_1 layer feature map, which is the result of the max-pooling operation

on the feature maps passed through the Relu_2 layer. Max pooling selects only the largest value in the
subsampling window. Therefore, Maxpool_1 layer feature maps are stronger and more global than the
second convolution or Relu_2 layer feature maps. The feature map visualization is similar to that from
the second convolution layer because it is the result of only the max-pooling operation.

(7) Conv_3 Layer Visualization
There are 60 feature maps in the third convolution layer. The Conv_3 layer visualization result

includes the resulting feature map extracted from the 5 × 5 filter, where the white pixels show
significant activation. Edge information in the x direction is further enhanced, and edge information
is concentrated in a specific area of the vehicle image. This is a middle-level feature, intermediate
between the low- and the high-level features.

(8) Relu_3 Layer Visualization
The Relu_3 layer visualization result includes the Relu_3 layer feature maps, resulting from

passing the third convolution layer feature maps through the Relu function. Dark areas appear, similar
to those in the Relu_1 layer maps.

(9) Conv_4 Layer Visualization
There are 60 feature maps in the fourth convolution layer. The Conv_4 layer visualization

result includes the resulting feature map extracted from the 5 × 5 filter, where the white pixels show
significant activation. The edge information in the x direction is becoming integrated, and this begins
to produce a centralized activation around the rear window region of the vehicle image. The global
features in the specific narrow region start to be extracted as the high-level features.

(10) Relu_4 Layer Visualization
The Relu_4 layer visualization result includes the Relu_4 layer feature maps, resulting from the

fourth convolution layer feature maps passed through the Relu function. Dark areas appear, similar to
those in the Relu_1 layer.

(11) Conv_5 Layer Visualization
There are 60 feature maps in the fifth convolution layer. Figure 5c shows the resulting feature

map extracted from the 5 × 5 filter, where the white pixels show significant activation. The fifth
convolution layer feature maps are focused on the rear window area of the vehicle. Similar to the
fourth convolution layer, global features have been learned in a specific narrow area of the vehicle.
The difference between the fourth and the fifth convolution layers is that the higher-level features are
extracted because of the small feature map dimensions.

(12) Relu_5 Layer Visualization
The Relu_5 layer visualization result includes the Relu_5 layer feature maps, resulting from

passing the fifth convolution layer feature maps through the Relu function. Similar to those in the
previous Relu feature maps, many dark areas appear.

(13) Maxpool_2 Layer Visualization
The Maxpool_2 layer visualization includes the Maxpool_2 layer feature maps, resulting from

max pooling the Relu_5 layer feature maps. Max pooling selects the largest value in the sub-sampling
window. The feature map aspects learned are similar to those of the fifth convolution or Relu_5 layer
feature maps. Maxpool_2 is the final CNN model layer. Therefore, the Maxpool_2 layer feature map
has the smallest dimensionality.
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2.5. Selective Multi-Stage Feature Fusion

Visualization steps 1–13 show how the feature map visualizations learned for each layer in the
CNN model can be examined. We can identify distinct feature map properties in each layer. However,
it is not appropriate to use all these feature maps learned in the CNN model as the vehicle detection
feature set. We require an efficient feature set to improve vehicle detection performance while reducing
feature dimensionality. Therefore, we propose to fuse selective multi-stage features based on the
feature map visualizations, as shown in Section 2.4.

The selective multi-stage feature fusion process was as follows: First, the feature maps were
examined using the visualization technique and a few features were selectively extracted from each
layer. We then concatenated the selected features into a 1D vector. The criterion for selecting features
in each layer was to include the characteristic vehicle image information or to select a feature map with
a large activation among the 60 learned feature maps. The characteristic information is an important
factor in vehicle detection, because this information is the most effective cue that the detector uses to
distinguish whether the target object is a vehicle or non-vehicle. The HOG and LBP features used for
conventional vehicle detection frameworks cannot be considered to include the characteristic vehicle
image information, because the existing features only use the edge gradient or brightness information.
Thus, the proposed fusion of the selective multi-stage feature method differs significantly. Figure 6
shows that information such as the vehicle’s head lamp is the characteristic vehicle image information.
Only some of the feature maps among the 60 in Maxpool_1 layer intensively learned the vehicle head
lamp information.
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We selected the feature maps with a large activation because the corresponding feature was the
best learned in each layer. Therefore, the proposed selection and fusing of the maximum value feature
maps is effective in enhancing vehicle detection performance. Figure 7 shows the maximum value
feature maps for each layer. The white pixels show that significant activation for these feature maps is
considerably larger than that for the other feature maps in each layer.

Thus, considering the feature dimensions to be fused and the characteristic vehicle image
information, we extracted features from the Maxpool_1, fourth convolution, and fifth convolution
layers, and combined them into a 1D vector to create the feature set for the proposed vehicle detection
framework. As several features could be extracted from each layer, we compared performances by
fusing features in various combinations, where the best performing feature set was chosen.



Appl. Sci. 2018, 8, 2468 9 of 16

Appl. Sci. 2018, 8, x FOR PEER REVIEW  8 of 15 

reducing feature dimensionality. Therefore, we propose to fuse selective multi-stage features based 

on the feature map visualizations, as shown in Section 2.4. 

The selective multi-stage feature fusion process was as follows: First, the feature maps were 

examined using the visualization technique and a few features were selectively extracted from each 

layer. We then concatenated the selected features into a 1D vector. The criterion for selecting features 

in each layer was to include the characteristic vehicle image information or to select a feature map 

with a large activation among the 60 learned feature maps. The characteristic information is an 

important factor in vehicle detection, because this information is the most effective cue that the 

detector uses to distinguish whether the target object is a vehicle or non-vehicle. The HOG and LBP 

features used for conventional vehicle detection frameworks cannot be considered to include the 

characteristic vehicle image information, because the existing features only use the edge gradient or 

brightness information. Thus, the proposed fusion of the selective multi-stage feature method differs 

significantly. Figure 6 shows that information such as the vehicle’s head lamp is the characteristic 

vehicle image information. Only some of the feature maps among the 60 in Maxpool_1 layer 

intensively learned the vehicle head lamp information. 

   
(a) (b) (c) 

Figure 6. Characteristic vehicle image information from the Maxpool_1 layer: (a) 24th, (b) 42th, and 

(c) 45th feature maps. 

We selected the feature maps with a large activation because the corresponding feature was the 

best learned in each layer. Therefore, the proposed selection and fusing of the maximum value feature 

maps is effective in enhancing vehicle detection performance. Figure 7 shows the maximum value 

feature maps for each layer. The white pixels show that significant activation for these feature maps 

is considerably larger than that for the other feature maps in each layer. 

Thus, considering the feature dimensions to be fused and the characteristic vehicle image 

information, we extracted features from the Maxpool_1, fourth convolution, and fifth convolution 

layers, and combined them into a 1D vector to create the feature set for the proposed vehicle detection 

framework. As several features could be extracted from each layer, we compared performances by 

fusing features in various combinations, where the best performing feature set was chosen. 

 

Figure 7. Maximum value feature maps in each CNN layer. Figure 7. Maximum value feature maps in each CNN layer.

2.6. Vehicle Detector Trained by AdaBoost

We trained the detector for the proposed vehicle detection framework using the multi-stage
features extracted in Section 2.5 and took advantage of the AdaBoost algorithm. At this time, we
selected the decision stumps as a weak classifier of AdaBoost to distinguish whether the input feature
is a vehicle or non-vehicle. Freund [14] proposed the adaptive boosting algorithm. It is an aggressive
mechanism for selecting a small set of good classification functions, which nevertheless have significant
variety [15]. AdaBoost training is iterative. First, we created a weak classifier by inputting the labeled
multi-stage features extracted from the CNN. The weight for each input was 1/N, where N is the
amount of input data; i.e., all the data had the same weight for the first iteration. The weights of the
misclassified data and the weights of the weak classifiers exhibiting good classification performance
were iteratively increased. Finally, the weak classifiers were combined to produce the final strong
classifier. The training error of the strong classifier approached zero exponentially with the number of
iterations [14]. Figure 8 shows the detector training process using the proposed multi-stage features
with respect to the AdaBoost algorithm.
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3. Experiments and Comparisons

3.1. Environments

The hardware platform used in this study was an Intel dual core i3-6100 processor at 3.70 GHz,
with 4 GB memory and Windows 7 operating system. We used the GTI DATA vehicle image database
2012, containing 3425 images of different vehicle rear ends taken from different points of view, and 3900
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road sequence images containing no vehicles [16]. All the images were 64 × 64 pixels, and the vehicle
and non-vehicle images were considered positive and negative images, respectively. The database
contained not only images taken directly behind the vehicle, but also images taken at different angles,
in different ranges, and under different lighting conditions. Thus, this database was ideal to create a
robust vehicle detection framework, including noise and geometric transformations. We divided the
database into the training, test, and validation datasets containing 2950 and 2950, 500 and 975, and
5 and 5 positive and negative images, respectively. Figure 9 shows the typical sample images from the
database. Detection error tradeoff (DET) curves were used to evaluate vehicle detection performance.
The DET curves were first used to represent the performance of detection tasks that involved a tradeoff
of error types [17], contrasting the false positives per window (FPPW) on the horizontal axis and the
miss rate on the vertical axis. FPPW is another way of expressing the false alarm rate and represents
the average number of false positives per input window; i.e., FPPW is an index indicating how many
false positives actually occur. The miss rate is plotted opposite the recall rate; this refers to the ratio of
the target object that is not detected among all the target objects in the input data:

Miss rate =
Number of False Negatives

Number of True Positives + Number of False Negatives
(1)

We used a logarithmic scale for the DET curves, where better detectors were located closer to the
left bottom corner, and 10−4 FPPW on the horizontal axis was used as a reference point to compare the
detector performance.
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3.2. Feature Sets

To create a feature set using the proposed selective multi-stage feature method, we compared the
feature set dimensions. As discussed above, two criteria were considered for the feature extraction
from each CNN layer: The characteristic vehicle image information was included in the trained feature
map, and the feature map with the largest activation in each layer was selected. The Maxpool_1, fourth
convolution, and fifth convolution layers were selected for the feature extraction, and we input the
validation data to the trained CNN model to generate the feature maps for each layer. Three feature
maps were selected in the increasing order of the activation value for each layer, as shown in Figure 10
and Table 2.

Table 2. Top-three maximum value features selected for each layer.

Maxpool_1 4th Convolution Layer 5th Convolution Layer

Max 1 45 3 55
Max 2 43 38 9
Max 3 10 40 28
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3.3. Experiment 1

The first experiment compared the performance depending on the feature combination dimension,
using the feature sets shown in Figure 11. Feature set 1 concatenated the first maximum feature map
from each layer sequentially (the Maxpoo1, fourth convolution, and fifth convolution layers). Feature
set 2 concatenated the first and the second maximum feature maps sequentially, and feature set 3
concatenated all the top three feature maps selected from each layer sequentially. The feature set
dimensions were 1440, 2880, and 4320, respectively. Detectors were trained by the AdaBoost algorithm
using the three feature sets, and the performance was compared using the DET curves, as shown in
Figure 12.
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The performance did not significantly improve when more feature maps with vehicle information
were included. We investigated the negative image visualization results to identify the reason. Figure 13
shows the visualizations of the same feature map sequence for each layer for the positive and the
negative image samples. Low-level features extracted from the initial layer showed large differences
between the positive and the negative images. The 45th feature map in the Maxpool_1 layer, where the
headlamp information of the vehicle was extracted, was clearly visible. The same edge information
was extracted from the other feature maps in the Maxpool_1 layer, but the edge directions differed.
High-level features were extracted from both the positive and the negative image samples for the
Conv_4 layer, with the high-level features concentrated in a specific area in each image sample; i.e.,
the difference between the trained feature maps for the positive and negative image samples was not
as significant as that for the initial layer. Finally, the Conv_5 layer, which contained the highest-level
features, was extracted. The trained feature maps were similar because the high-level feature was
extracted over a narrower specific area than the Conv_4 layer. Thus, the detector performance
suffered when we increased dimensionality by concatenating several features with the vehicle image
information in the feature set. The larger the number of feature maps from the upper layers (Conv_4
and Conv_5) included in the feature set, the more likely it was that these feature maps would act as
noise. Therefore, we chose a 1440-dimensional feature set, including just the maximum feature maps
from the Maxpool_1, Conv_4, and Conv_5 layers.
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3.4. Experiment 2

We compared the proposed selected multi-stage feature outcomes to select the most suitable
feature combination set for vehicle detection. From the above experiment, the feature set dimensionality
was set to 1440. Then, we selected one feature from each of the Maxpool_1, Conv_4, and Conv5_layers
(as shown in Figure 10) and constructed the feature sets by concatenating them. Thus, there were 27
possible combinations of the feature set, as shown in Figure 14. We trained the AdaBoost algorithm
using the 27 feature set cases and compared their performance using the DET curves, as shown in
Figure 15.

The best performance was obtained by combining the Maxpool_1 45th, Conv_4 38th, and Conv_5
55th feature maps. All the outcomes that included the Maxpool_1 45th feature exhibited good
performance because this feature map characteristic information included the vehicle head lamps.
Thus, feature map inclusion or otherwise of characteristic information regarding the head lamp
considerably influenced the performance of the proposed selective multi-stage feature fusion method.

Based on the experimental results, the feature set for the proposed vehicle detection framework
was finally selected as the concatenation of the Maxpool_1 45th, Conv_4 38th, and Conv_5 55th
feature maps.
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3.5. Performance Comparisons

We compared the proposed vehicle detection framework using the selected feature set with
the conventional vehicle detection frameworks using HOG, LBP, and HOG + LBP features and a
CNN detector. We used AdaBoost to train the detectors for each model and included the second-best
performing proposed method detector (as shown in Figure 15).

Figure 16 compares the six models. The proposed vehicle detection framework exhibits the
best performance with 10−4 FPPW. As the selective multi-stage features extracted from the CNN
model contained the characteristic vehicle image information, this reduced the false positive rate.
The proposed method was more robust to noise than the handcrafted feature methods, even the
CNN detector, and provided computational advantages because it had smaller dimensionality than
conventional handcrafted methods, requiring 0.07 s to extract the selective multi-stage features,
whereas the time taken to extract the LBP and HOG features was 0.0529 s and 0.0926 s, respectively.
Thus, the proposed multi-stage feature set extracted from the CNN was the most suitable for
vehicle detection.
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4. Conclusions

In this paper, we proposed a vehicle detection framework consisting of a vehicle hypothesis stage
and a vehicle verification stage. The vehicle hypothesis stage uses a sliding window method, and
the vehicle verification stage constructs selective multi-stage features extracted from each CNN layer
through a visualization technique. We chose an optimal feature set that returned the best vehicle
detection performance by comparing feature combinations, and used this feature set as the input for
AdaBoost to create the vehicle detector.

To the best of our knowledge, the proposed method is the first system applied to vehicle detection
frameworks that creates high-level features that did not exist previously. The experimental results
verified that the proposed vehicle detection framework had superior performance to the previous best
practice vehicle detection frameworks. In the future, we intend to conduct studies on the generation of
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and the test dataset.
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