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Abstract: This paper introduces a tunable metamaterial absorber (MA) based on polymer network
liquid crystal (PNLC) in the terahertz (THz) frequency band. Under the optimal polymerization
condition, through electrical control of the orientation of the PNLC embedded in the frequency
selective surface, the resonant frequency of the absorber can be tuned from 416.5 to 405.0 GHz,
corresponding to fractional frequency bandwidth of 2.8%. The experimental results show that the
proposed MA based on the PNLC offers an adjustment time of 10 ms and recovery time of 85 ms,
which is significantly faster than the tunable metamaterial devices based on conventional nematic
liquid crystal (LC).
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1. Introduction

Over the past few years, realization of telecommunication, imaging, sensing, and biomedical
instruments and devices in the THz regime of the electromagnetic spectrum have attracted a great
deal of research attention. This is due to the prominent potential of the THz frequency regime in the
realization of highly efficient and ultra-broadband wireless communication systems [1–3]. A variety of
THz devices have been recently emerged, in which the THz absorbers exert an important role in the
THz systems, including the sensors, detectors and imaging instruments [4,5].

Metamaterials are widely known due to their unique physical properties not readily observed
in natural materials [6]. They are artificially composited to affect the energy of the electromagnetic
radiation to achieve abnormal properties such as negative permittivity and negative permeability [7,8].
Ever since Landy et al. presented the design for an absorbing metamaterial with near unity absorbance
in 2008 [9], the metamaterial absorbers (MAs) have attracted an extensive research attention.
Afterwards, various MAs were designed to fulfill different demands. Zhu et al. demonstrated an
ultra-broadband, polarization-insensitive, and wide-angle MA for THz regime [10]. Shen et al.
fabricated a MA that had three distinctive absorption peaks at 0.5, 1.03, and 1.71 THz with absorption
rates of 96.4%, 96.3%, and 96.7%, respectively [11]. However, most of them could only operate at a
single frequency or in a limited range of frequencies. To overcome this issue, the tunable absorbers were
presented by researchers [12,13]. Shrekenhamer et al. put forward the electronically-tunable MA by
incorporation of LC into strategic locations within the metamaterial unit cell [14]. Then, various tunable
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MAs based on LC, such as single-band MA [6], triple-band MA [15], and polarization-dependent
MA [16], have been reported.

LC, as a tunable material, is generally known that the rotation of the nematic LC embedded in
the absorber can be guided by the bias voltage, resulting in the shift of the resonant frequency [17].
However, the response time of the LC-based devices is quite slow, which hinders their potential
applications. The response time of the nematic LC depends on several factors, such as the cell gap,
viscoelastic coefficient, and applied voltage [18]. The rotation time can be greatly cut down by applying
a large bias voltage. However, the recovery time after removing the bias voltage may be diminished
by the larger restoring elastic torque. Then, the free recovery time may be reduced by introducing the
polymer network liquid crystal (PNLC) [19].

In this paper, we present a tunable MA based on the PNLC in terahertz band. Compared
to the previously reported LC-based Mas, the metal ground plane is replaced by a transparent
indium-tin-oxide (ITO) film so that the UV light can be transmitted through the ground electrode plate
to polymerize the internal network. The experimental results show that the PNLC-based MA not only
provides wideband tunability but also greatly accelerates the response time.

2. Structure Design and Absorption Mechanisms

The design of the MA begins with the frequency selective surface (FSS), which is a
two-dimensional periodic metal patch array on the dielectric surface and exhibits obvious band-pass
or band-stop filtering characteristics when interacting with electromagnetic waves. The common basic
units of FSS are dipoles, crosses, square rings, etc. In this paper, the circular patch array is adopted and
fabricated by lithography and etching. Figure 1 shows the fabricated patch array.
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Figure 1. Fabricated patch array.

The PNLC (also known as anisotropic LC gel) has been extensively studied in the field of
electrically tuned scattering devices [20]. In this paper, the mass ratio of 95% LC host SLC103014-200
(S200) (Shi jiazhuang Chenzhi Yonghua Display Material Co., Ltd., Shi jiazhuang, China) is first mixed
with a mass ratio of 5% photoreactive difunctional monomer RM257 (Jiangsu Hecheng Advanced
Materials Co., Ltd., Nanjing, China) and a small amount of photoinitiator Benzoin Methyl Ether
(TOKYO CHEMICAL INDUSTRY CO., LTD., Tokyo, Japan). Then, the photopolymerization precursor
is filled into the LC cell. After this, a UV curing process is performed to induce the crosslinking of the
polymer network [21]. Figure 2 sketches a schematic diagram of the PNLC manufacturing process.
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of the LC molecules may be redirected by an external electrical field excited by a bias voltage between 
the top metal pattern layer and the ITO ground. As a result, the permittivity of the LC layer 
continuously varies with the change of the bias voltage. Specially, when the LC molecules turn to the 
direction perpendicular to the surface of the electrode, permittivity reaches its peak value with the 
saturation state. Therefore, the LC permittivity may be electronically controlled between these two 
states. The resonant frequency of a MA depends on the dielectric permittivity of the LC layer so that 
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Figure 2. (a) Mixture of the liquid crystal (LC) host and photopolymer sable monomer filled into a LC
cell. (b) The form of the polymer network after the UV exposure.

Figure 3 presents the structure of the PNLC-based MA. This device is composed of a patterned
copper layer (FSS) and an ITO layer spaced apart by PNLC. The top copper layer is geometrically
patterned in order to strongly couple to a uniform incident electric field and serves as a top electrode.
By pairing the top layer with an ITO plane, it serves not only as a bottom electrode but also as a metal
ground. Besides, the inner surfaces of the copper layer and the ITO layer are coated by the polyimide
(PI) alignment layers to leave the orientation of the LC molecules parallel to the surface of the electrode
without the bias voltage. When the driving voltage is applied, the alignment of the liquid crystal
molecules is parallel to the excitation electric field.
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Figure 3. Schematic diagram of the polymer network liquid crystal (PNLC)-based metamaterial
absorber (MA).

The resonant structure may be considered as a circular patch, with high aspect ratios. According
to the antenna theory, the resonant mode within the structure is a cavity mode [22]. The orientation
of the LC molecules may be redirected by an external electrical field excited by a bias voltage
between the top metal pattern layer and the ITO ground. As a result, the permittivity of the LC
layer continuously varies with the change of the bias voltage. Specially, when the LC molecules turn to
the direction perpendicular to the surface of the electrode, permittivity reaches its peak value with the
saturation state. Therefore, the LC permittivity may be electronically controlled between these two
states. The resonant frequency of a MA depends on the dielectric permittivity of the LC layer so that it
may be shifted by changing the bias voltage.
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3. Experimental Results and Comparative Analysis

Figure 4 shows the fabricated prototype, with the glass substrate size of 2 cm × 2 cm and
60 × 50 unit cells with the dimensions of a = 300 µm, b = 15 µm, and r = 140 µm. A total of five sets
of experiments were carried out, in which the nematic LC (S200)-based MA was used as the contrast
experiment, representing the common LC-based THz devices. In addition, the PNLC-based MAs
were used as exploratory experiments with different exposure time. The absorptivity of MAs can
be determined by A = 1 − |s11|2 − |s21|2, where A, s11, and s21 denote the absorptivity, reflection
coefficient, and transmission coefficient, respectively. Since the transmission coefficient is equal to zero
due to the existence of the ITO plate, the absorptivity can be simplified as A = 1 − |s11|2.
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Figure 4. Fabricated metamaterial absorber.

The absorption spectra of the S200 LC-based MA is shown in Figure 5. It was observed that
the peak resonant frequency occurs at 411.0 GHz without the bias voltage (0 V). With the increase of
the driving voltage, the absorption peak frequency shows a red shift until it reaches a saturated bias
voltage of 5 V. The resonance peak frequency under fully biased voltage is 393.5 GHz
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Then, in Figure 6a–d, the tunabilities of the PNLC-based MAs in the case of UV exposure times of
0 min, 30 min, 60 min and 90 min, were experimentally demonstrated, and the resonant frequencies
were found to be 406.5 GHz, 416.5 GHz, 416.5 GHz, and 418.5 GHz, respectively, with a bias voltage
of 0 V. For each case, by increasing the bias voltage, the absorption peaks continuously shift to lower
frequencies until the LC molecules were fully rotated. As a result, the resonant frequencies were located
at 391.5 GHz, 402.5 GHz, 405.0 GHz, and 407.5 GHz, respectively, under the saturated bias voltage.
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From Figure 6, it can be seen that for PNLC-based MA, the saturated bias voltage (40 V) after
UV exposure is much higher than that (5 V) of the initial state. This may be attributed to the strong
anchoring of the polymer network after UV exposure as the LC molecules in the polymer network
require a greater voltage to spin. Moreover, with the increase of UV exposure time, the peak absorption
frequency in both the unbiased state and fully biased state shows a slightly blue shift. Hence, increasing
UV exposure time leads to a decrease of the effective permittivity of the PNLC.

The measured results have proved the tunability of the absorption peak of the designed MAs.
In practical applications, it is required that the absorption peak of the MAs can be quickly converted
under the driving voltage. As can be seen from the foregoing, the LC is treated as the tunable
electromagnetic material. Under the action of driving voltage, the molecular orientation changes,
leading to the change of dielectric constant so that the MAs are capable of tunable resonant frequency in
THz band. According to the electro-optic effect of the LC, under the driving of voltage, the reorientation
of LC molecules causes the optical axis to rotate so that the transmission intensity correspondingly
changes. So, we set up the experimental platform as shown in the Figure 7. The sample was placed
between polarizers whose polarization direction was perpendicular to each other. At this time,
the angle between the transmission axis of the sample and the transmission axis of the two polarizers
was 45◦, and the light source could pass through. When the driving voltage was applied to the sample,
the LC molecules rotated and kept parallel to the electric field. The sample could not polarize the
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incident light source, in this case, the light source could not pass through the polarizers perpendicular
to each other. Therefore, the response speed of the absorption peak is reflected by detecting the intensity
of the transmitted light during power-on and power-off. It should be noticed that we measured the
response speed here at visible frequencies instead of THz frequencies. Because the polarization state
of transmitted light, which is affected by birefringence effect of liquid crystal at visible frequencies,
is determined by molecular rotation of LC. However, the LC molecular rotation is also responsible
for the change of permittivity of LC layer in terahertz band. As the rotation speed of LC molecules is
mainly determined by driving voltages, it is independent on testing frequencies.
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Taking the nematic S200-based absorbor as an example, the experimental results show that the
absorption peak of the sample is at 411.0 GHz when no voltage is applied. Correspondingly, the
detected light intensity is the strongest. When a saturated voltage is applied, the absorption peak of
the sample is at 393.5 GHz and the detected light intensity is the weakest. Therefore, the time required
for the relative light intensity of the transmitted light from 90% to 10% is defined as the adjustment
time of the absorber. And the time consumed for the relative light intensity from 10% to 90% is defined
as the recovery time of the absorber when the power is off [23]. The adjustment time and recovery
time comprehensively reflect the response speed of the absorber to the driving voltage. The measured
results of response time of the LCand the PNLC-based MAs are illustrated in Figure 8.

From Figure 8a, it is clear that the adjustment time and recovery time of the nematic S200
LC-based MA are 47.5 ms and 1466.0 ms, respectively. However, as shown in Figure 8b, after the
UV photopolymerization of the PNLC for 30 min, the response time drastically reduces to 7.5 ms
and 206.9 ms by an order of magnitude. This is due to the strong anchoring of the polymer network,
corresponding to a larger splay elasticity, as the free relaxation time of the liquid crystal molecules
becomes much shorter.

Furthermore, Table 1 lists the response time of various samples. By increasing the UV exposure
time from 30 min to 90 min, the recovery time of the MA can be further decreased from 207.0 ms to
84.0 ms. This is due to the fact that for a shorter exposure time, the formed polymer network is sparser,
and the less liquid crystals are limited by the network, corresponding to a smaller elastic coefficient.
With the increase of the exposure time, the polymer network will be denser in the sample, so the
anchoring effect of the network on the liquid crystal will also increase, which corresponds to a larger
elastic coefficient. However, there is no obviously change of the response time when the UV exposure
time increases from 60 min to 90 min, which indicates that the photopolymerization precursor of the
polymer network has been thoroughly reacted by the UV light.
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Table 1. Results of measured response time of MAs.

MAs Adjustment Time (ms) Recovery Time (ms)

nematic LC (S200) 47.5 1466.0
PNLC (0 min) 51.5 2346.0

PNLC (30 min) 7.5 207.0
PNLC (60 min) 10.0 85.0
PNLC (90 min) 8.0 84.0

4. Conclusions

A tunable MA based on the polymer network liquid crystal is presented in this paper. Compared
with the conventional tunable nematic LC-based absorbers, the PNLC-based absorber offers a faster
response speed. In addition, by increasing the exposure time of the PNLC, the response time may
be further reduced until the photopolymerization precursor is completely reacted. The proposed
structure is expected to find many applications in tunable THz devices such as fast-response phase
shifters and sensors.
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