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Abstract: The main aim of this paper was to find the correct method of calculating equations of
heat and mass transfer for the adsorption process and to calculate it numerically in reasonable
time and with proper accuracy. An adsorption heat pump with a silica gel adsorbent and water
adsorbate is discussed. We developed a mathematical model of temperature and uptake changes
in the adsorber/desorber comprising the set of heat and mass balance partial differential equations
(PDEs), together with the initial and boundary conditions and solved it by the numerical method of
lines (NMOL). Spatial discretization was performed with equally spaced axial nodes and the PDEs
were reduced to a set of ordinary differential equations (ODEs). We focused on the comparison of
results obtained when the set of heat and mass balance ODEs for an adsorber was solved using:
(1) the Runge—Kutta fixed step size fourth-order method (RKfixed), (2) the Runge-Kutta—Fehlberg
4.5th-order method with a variable step size (RK45), and (3) the Gear Backward Differentiation
Formulae numerical (Gear BDF) methods. In our experience, all three types of ODE numerical
methods (RKfixed, RK45, and Gear BDF) can be applied in simple models to model an adsorber with
attention on their limitations. The Gear BDF method usually requires much fewer steps than the
RK45 method for almost the same calculating time. RK methods require many more steps to obtain
results, and the calculating time depends on accuracy or defined time step. Moreover, one should
pay attention to the number of nodes or possible oscillations.

Keywords: adsorption; adsorption heat pump; numerical method; discretization

1. Introduction

In the face of the growing need to search for ecologically safe sources of energy, research on
increasing the use of available low-temperature heat sources by means of various physical processes
has intensified. One of them is the adsorption process used, among others, in sorption heat pumps.
During the past two decades, adsorption heat pumps have been exploited in theory and in practice to
generate cooling [1] and heating [2,3].

Adsorption heat pump applications in cooling refer to useful cooling [4]; chilled water circuits [5,6];
electric vehicle air conditioners [7]; heat rejection systems, such as dry or wet cooling towers or ground
coupled heat exchangers [8]; and solar systems as the driving heat source [9,10]. Heating applications
of adsorption heat pumps are found in heating systems, waste heat utilization [3,5], low-temperature
heat sources (e.g., ground heat exchangers and geothermal water installations [11]) and driving heat
sources (e.g., gas furnace) [12]. Adsorptive storage of CO, can be an interesting example of another
application [13].
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Adsorption heat pumps have, aside from environmental benefits, several advantages compared
to conventional vapor compression systems, such as: simplicity, no moving parts, low maintenance
requirements, and the use of stable, nontoxic reactants as adsorbents and adsorbates. They also have
disadvantages: discontinuous operation, high design requirements for maintaining the vacuum,
large size, and a relatively low coefficient of performance [4,12]. The performance of an adsorption
heat pump is controlled by many parameters, such as adsorbent and adsorbate properties, system
design, and operating conditions.

Recently, much research has been done on various types of adsorption heat pumps as an
alternative to vapor compression systems [14]. Transient modeling of a two-bed silica gel-water
adsorption chiller [15] and an adsorbent bed of a zeolite/water cooling system and its numerical
modeling of combined heat and mass transfer [16] are examples of one- or two-bed single-stage heat
pump modeling. Second law analysis of adsorption cycles with thermal regeneration [17] cannot be
overestimated. In order to improve efficiency, more advanced four-bed [18] or even multibed [19] heat
pumps have been studied.

Different numerical methods to solve mathematical equations describing adsorption beds or
adsorption heat pumps can be found in the literature. For example, a nonuniform temperature,
nonuniform pressure dynamic model of heat and mass transfer in compact adsorbent beds was
presented by Marletta et al. [20]. The model was described by a set of second-order partial
differential equations (PDEs) and solved. Further steps and methods to obtain a numerical solution
together with a discussion on parameters affecting the numerical resolution were carefully presented.
Dimensionless equations were discretized using a forward difference scheme for time derivatives and
boundary conditions for a spatial first-order derivatives quickest upstream difference scheme and
a spatial second-order derivatives central difference scheme. To obtain the solution, the alternating
direction implicit method was used.

In Restuccia et al. [21], information of the implicit finite difference method of Crank—Nicholson
was used to solve the differential equations of the developed model. In a numerical study of a novel
cascading adsorption cycle [22], equations representing the model were solved concurrently using the
finite difference method. The next example [23] discussed heat transfer in the adsorbent of a waste
heat adsorption cooling system, in which the model calculating domain was first discretized in angle,
radial, and axial directions, and the three dimensional equations of the adsorbent were calculated by
the alternating direction implicit method. The quadratic upstream differencing scheme was used to
approximate the convection terms in the equations. Diffusion terms were replaced by the centered
difference analogs.

Issues of stability and stiffness of the numerical method were considered in [24]. Integration of
partial differential equations with the numerical method of lines is described widely in the literature
by Finlayson [25,26] and Schiesser [27]. For many problems described by nonstiff differential system
equations, just about any reasonable method is basically stable, for example, the Runge-Kutta
fourth-order method, even called the “workhorse” method in MATLAB®. It is a very robust method
and the best function to apply as a “first try” for most problems where computational efficiency is of
no concern. For convenience or for low precision, adaptive step size Runge-Kutta dominates [28,29].

In many problems, certain parameters change quickly and others change more slowly.
For example, in packed-bed chemical reactors, the concentration varies quickly in time, but the
temperature does not change rapidly because of the large heat capacity of the solid. Due to the high
values of temperature and uptake gradients in an adsorption column (bed), equations describing the
heat and mass balance operation of adsorption heat pumps are often described as “stiff” [25]. For stiff
problems, many time steps would need to be taken with a small time step, and the calculations would
be very slow. The Gear Backward Differentiation Formulae (BDF) method has been developed to
overcome this problem [28,29]. Crucial to the success of a stiff integration scheme is an automatic step
size adjustment algorithm [30,31].
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In this paper, a single-stage adsorption heat pump with a silica gel adsorbent and water
adsorbate was considered. The adsorption heat pump consisted of two adsorber/desorber columns,
an evaporator, and a condenser.

The mathematical model, developed to calculate temperature and uptake changes in the
adsorber /desorber, was established comprising a set of heat and mass balance PDEs together with the
initial and boundary conditions and was solved by the numerical method of lines (NMOL). The spatial
discretization was performed with equally spaced axial nodes and the PDEs were reduced to a set of
ordinary differential equations (ODEs).

Although models of adsorption heat pumps and an adsorber/desorber have been extensively
studied in the literature (examples above), very few studies have analyzed the selection of the numerical
method and its influence on the calculated results as well as the error of the method. In addition, most of
the studies refer to one numerical method, with only a general description. Therefore, a comparison of
three numerical methods and their limitations in calculations of the adsorption model is presented in
this paper.

In the present paper, the authors focused on the comparison of results obtained when the set
of heat and mass balance ODEs was solved using: (1) the Runge—Kutta fixed step size fourth-order
method (RKfixed); (2) the Runge-Kutta—Fehlberg 4.5th-order method (RK45) with a variable step
size; and (3) the Gear BDF numerical method. The set of balance equations of the adsorber was
solved by the previously mentioned numerical ODE subroutines available in the MATLAB® platform.
Obtained simulation results from numerical methods were compared with the results from the
experiment in [21].

The rest of the paper is organized as follows. The heat and mass balance model of adsorption
heat pump performance is established in Section 2. The numerical method for the PDEs of the model
is described in Section 3. Comparison of the three numerical methods for the obtained set of ODEs is
presented in Section 4. Section 5 presents the numerical calculation results. For the validation of the
numerical model, a comparison with the experimental data of Restuccia et al. [21] was made. The main
conclusions are summarized in Section 6.

2. Heat and Mass Balance Equations for Adsorber of Adsorption Heat Pump

The ability of a porous solid medium to adsorb volumes of vapor is called adsorption. That process
is caused by a mass separation agent (adsorbent) and determined by the quality of the sorbent. At low
temperatures, the porous adsorbent adsorbs vapor (adsorbate), while at high temperatures, it desorbs
it. This is the basis of the adsorption heat pump with silica gel operation. Vapour molecules (adsorbate)
come into contact with adsorbent and are captured by the surfaces’ pores. The use of a porous solid
is relatively simple and provides high adsorptive capacity (domain of equilibria of the process).
Small pores in a porous medium give rise to diffusional resistance (domain of kinetics of the process).
Usually, adsorption in a porous solid medium is performed in columns packed with sorbent particles
or fixed bed adsorbers; however, it is primarily a surface rather than a bulk process [32,33].

An adsorption heat pump with silica gel adsorbent and water adsorbate was considered. A silica
gel/water pair was used because it is considered suitable for utilizing low-temperature heat sources
less than 100 °C (waste heat, geothermal water) due to silica gel’s high capacity at low temperatures and
moderate pressures as well as due to temperature for activation and regeneration of this sorbent [32-34].
The Dubinin—Astakhov (D-A) adsorption equilibria of the selected adsorbent/adsorbate pair were
sourced from the available literature [35-37]. The adsorption heat pump under consideration consists
of an evaporator, an adsorber/desorber, and a condenser. The configuration of the single stage
adsorption heat pump under consideration is presented in Figure 1.
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Figure 1. Configuration of the adsorption heat pump under consideration.

The adsorber/desorber column was encapsulated and contained tubes with deposited adsorbent
(silica gel). The design of the adsorber/desorber tube arrangement is presented in Figure 2.
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Figure 2. Design of the adsorber/desorber element (tube with deposited silica gel bed).

The adsorption heat pump’s operation mechanism included a series of cyclic transient processes.
These processes ran at different temperatures and pressure levels. The adsorption process was followed
by a preheating process to raise the temperature and pressure of the sorption reactor to the condenser
pressure. The desorption process began afterwards. Next, the precooling process started, which cooled
down the adsorber/desorber so that it would have a low pressure equal to the evaporator pressure.
When the refrigerant from the evaporator was transported to the condenser and returned back to
the evaporator, one cycle was completed and the circuit was restarted. A one-dimensional numerical
model was created to describe the temperature and uptake changes in the adsorber/desorber and
consequently to describe the performance of the adsorption heat pump. Only heat and mass transfer
were taken into account during operation of the assumed adsorption heat pump.

Noting that although the advanced models of these components are more accurate in simulation,
they are too time-consuming in the research process, which may reduce the possibility of finding better
solutions in a limited time. Thus, the following main simplifying assumptions were made:
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1. Pressure losses of vapor at the adsorbate flows both from the evaporator to the silica gel grains
and from the grains to the condenser are negligibly small.

2. During the adsorption process, pressure inside the adsorber/desorber equals that inside the
evaporator. During the desorption process, pressure inside the adsorber/desorber equals that
inside the condenser.

3.  The average temperature of reactor’s cooling and hot water as well as the average specific heat of
the adsorbent and water are constant.

4. Thermal conductivity of the adsorbent is constant.

5. The temperature inside evaporator as well as inside condenser is constant.

6. Vapor temperature and pressure during the adsorption process are equal to the evaporator
temperature and pressure.

7. Vapor temperature during desorption process is related to the heat balance of the bed, and the
vapor pressure during desorption process is equal to the condenser pressure.

8.  Switching between adsorption and desorption cycles (cooling water is switched to hot water)
takes place in an instant.

9. Desorption kinetics is described and modeled as the adsorption kinetics.

The heat and mass balance PDEs were formulated for calculation element dx (Figure 2).
Those equations took into account: heat flow supplied to the process, the heat flow generated, the heat
flow discharged from the process, and the heat flow accumulated.

In this article, the authors focused on describing methods for solving the set of partial differential
equations and other assumptions. A detailed description of the developed model can be found in
articles [38,39], where the performance of two-bed as well as six-bed single-stage adsorption heat
pumps were considered. The set of heat and mass balance equations for the adsorber subelement dx
(Figure 2) of the considered adsorption heat pump can be described by

aT o7 27
Tonfmon)eaEictt o
2
2
aaltu :aAa%—'—Ba(Ta_Tm)—i—Cuaa% (3)
7? = km(Tﬂ)(aeq(Ta) — ll) (4)

where constant parameters A, B, and C from the above set are listed in Table 1. Equation (1) is the
fluid (water) energy balance equation, where ay,f is the fluid/metal tube heat transfer coefficient,
Ay is the fluid thermal conductivity, and R is the tube internal radius. Equation (2) is the heat energy
balance for the metal tube, where «, f is the adsorbent/fluid heat transfer coefficient, A, is the metal
tube thermal conductivity, and R, is the tube outer radius. Equation (3) is the heat and mass balance
equation for the adsorbent, where A, is the adsorbent thermal conductivity and AH is the isosteric
heat of adsorption. Equation (4) is an adsorption and desorption process dynamics described by the

application of the linear driving force model (LDF), where k;, = 15r2D ¢ is the mass transport equation

and D, = Dy exp {f %} [16]. This equation calculates the time dependent change in concentration

(uptake) for the working bed (silica gel) subelement. The heat of adsorption for both the adsorption
and desorption processes was determined by the Clausius—Clapeyron equation [33].
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Table 1. Constant parameters from the set of heat and mass balance partial differential equations of the
adsorbent model.

Parameters in fluid heat 2a,, . i A
) Ap = f Bf = — Cp= L
balance Equation (1) Ripyeys nRips f = brenr
Parameters in metal tube heat A, = 2R) & B, — ___ 2Rituy Co = M
balance Equation (2) (R3—R3)omCpm " (R3—RY) oumCpm " pmCpm
Parameters in adsorbent heat _ AH _ 2Rotam A
; Aa= T Bs = 2_R2 Cp = %
and mass balance Equation (3) Cpa (R3—R3)PaCpe PaCpa

All components were assumed at an initial temperature of Ty, while initial uptake was considered
for initial pressure Pp:

(Tf) =0 - <Tm)t:() = (Tﬂ)t:O =Ty, (5)
(a)t:() = aeq(Po, T()). ©)

For adsorption and desorption pressures, it was assumed
Pads = Pevﬂp and Pdes = Leond- (7)

The boundary conditions for the fluid, considering the temperature of the process water supplied
to the column, were equal to the driving heat temperature:

(Tf ) =0 T ads (adsorption), ®)
(Tf >x:0 = T¥ des (desorption). )
The model assumed perfect insulation. Therefore, the heat transfer to and from the ambient was
equal to zero:
<8Tf > . "
ox )| ’

(an) ~omnd <aTt> = (11)

ox .o ¥ ).

9x ) .o ¥ ).

3. Numerical Method for the PDEs

The NMOL is a well-established technique (or rather a semianalytical method) for solving partial
differential equations by typically using a finite difference relationship for the spatial derivatives
and ordinary differential equations for the time derivative [27,40]. This is essentially a two-step
process: the spatial (boundary value) derivatives are approximated algebraically, for example, by finite
difference or a flux limiter, on a spatial grid. The resulting system of ODEs in the initial value variable
(typically time) is then integrated by an initial value ODE integrator (e.g., Euler’s method, RK45,
Backward Differentiation Formulae method). All of the major classes of PDEs can be accommodated
(elliptic, hyperbolic, and parabolic) [27].

The semianalytical character of the formulation leads to a simple and compact algorithm,
which yields accurate results with less computational effort than other techniques. In NMOL,
by separating discretization of space and time, it is easy to establish stability and convergence for a
wide range of problems [27,41].
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The mathematical model was established comprising the set of heat and mass balance PDEs
(Equations (1)—(4)), together with the initial and boundary conditions (Equations (5)-(12)). The model
was solved by the NMOL. The first step was discretization of the x-variable (Figure 3).

ADSORBENT
e | TUBE
WATER

Y

1 2 3 4 -1 i i+1 N-1 N N+1
x=0 x=L X

Figure 3. Illustration of adsorber discretization in the x-direction (numerical method of lines, NMOL).

The region was divided into strips by N sections with N + 1 nodes, where dx was the spacing
between the discretized line:

dx = N (13)

To avoid meaningless results (characteristic in adsorption equation oscillation) or numerical
diffusion, especially with respect to convection segments [27], in this work, first- and second-order
derivatives (1-4) used the five-point difference scheme of four-order truncation error discretization.

Let F be any of the functions Ty, Ty, Ty, 4, and F(i) means here F(x;). Replacing the first- and
second-order derivatives at nodes i = 3 to N — 1 with respect to x using a central five-point difference
formula becomes [27]

dF(i) 2F(i—2)—16F(i—1)+16F(i+1) —2F(i +2)

x 24dx ’ (14)

d?F(i)  —2F(i —2)+32F(i — 1) — 60F (i) + 32F (i + 1) — 2F (i + 2)
dx2 24dx?
Replacing the first- and second-order derivatives at nodes i = 1 and i = 2 using a forward five-point
difference formula becomes, respectively,

: (15)

dF(1) _ —50F(1) +96F(2) — 72F(3) + 32F(4) — 6F(5)

dx 24dx ' (16)
PE(1)  —45F(1) + 192F(2) — 72F(3) + $F(4) — 3F(5) — 100%E L gy a7
dx 24dx? ’
dF(2) _ —6F(1) — 20F(2) 4 36F(3) — 12F(4) +2F(5) 18)
dx 24dx !
d’F(2) _ 20F(1) —30F(2) — 8F(3) +28F(4) — 12F(5) +2F(6) 19)

dx2 24dx?
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The first- and second-order derivatives at nodes N and N + 1, using a backward five-point
difference formula, can be rewritten, respectively, as follows:

dF(N)  —2F(N —3)+12F(N —2) — 36F(N — 1) + 20F(N) 4 6F(N + 1)

dx 24dx ! (20)
d2F(N)  2F(N —4) — 12F(N — 3) + 28F(N —2) — 8F(N — 1) — 30F(N) + 20F(N + 1) 21
dx2 24dx? ’
dF(N +1) _ 6F(N —3) —32F(N —2) +72F(N — 1) — 96F(N) 4+ 50F(N + 1) )
dx N 24dx ’
LF(N+1) _ —3F(N—3)+8 F(N—2)—72F(N—1)+192F(N)— 43 F(N+1)+100EE) g )
dx? - 24dx? S C)

Equations (14)—(23) are characterized by a four-order truncation error O(dx*) of approximation.
The boundary conditions represented by Equations (10)-(12) at nodes I =1 and N + 1 can be generally
written for function F, respectively, as follows:

dF(1) _ —50F(1) +96F(2) — 72F(3) + 32F(4) — 6F(5)

dx 24dx =0 (24)

hence: 96F(2) — 72F(3) + 32F(4) — 6F(5
(1) — J6F(2) ~ T2F(3) +-52F(4) —6F(5) )

50
dF(N+1) 6F(N —3)—32F(N —2)+72F(N—1) —96F(N)+50F(N +1)
— =0, (26)
dx 24dx
hence:

96F(N) —72F(N —1) +32F(N —2) — 6F(N —3)
50
The functions T, Ty, Ts, a (from Equations (1)—(4)) were stored as an array of indexes (k, 1),
where k refers to the time and i to the spatial node. To summarize, the spatial discretization was
performed with equally spaced axial nodes and the PDEs were reduced to a set of ODEs.

F(N+1) = . 27)

4. Numerical Method for the ODEs

There are many mathematical types of software that have built-in functions to perform
numerical integration of ODEs. The obtained set of ODEs was solved numerically in the MATLAB
R2018b (MathWorks®, Massachusetts, USA) platform using two different in problem nature solvers:
the Runge-Kutta fourth-order algorithm (RKfixed classical fixed step size and RK45 adaptive step size)
and the Gear BDF algorithm.

4.1. Runge—Kutta Fourth-Order Method (Classical)

Runge-Kutta methods propagate a solution over an interval by combining the information from
several Euler-style steps and then using the information obtained to match a Taylor series expansion
up to some higher order. The common opinion of Runge—Kutta is that it is the best function to apply
as a first try for most problems or for trivial problems where computational efficiency is of no concern
and succeeds virtually very often. However, it is not usually the fastest method, except when moderate
accuracy le-5is required [30].

The classical Runge-Kutta method is based on the Simpson quadrature rule and uses four
explicit stages, hence four function evaluations per step, to achieve O(dt*) accuracy. Local truncation
error is fourth order if F(t) has five continuous derivatives. In general, the classical fourth-order
Runge-Kutta method requires four evaluations K of the right-hand side of the differential equation per
time step [25-27].
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The Runge-Kutta classical fixed time step size method for the discussed set of ODE balance
equations was written as

K (Ty) = drdTy Ty, T (28)
Ki(Ty) = dt Ty (T, T, To ), (29)
Ki(T,) = dt dT,(Ty, To, a) (30)
Ki(a) = dt da(Ty, a) (31)

Ko (Ty) = dt dTy (T + 05K (Tf ), T + 05K (Tr) ) (

Ko(Tp) = dt dT,, (Tf +0.5K, (Tf), Ty + 05K, (Ty), To + 0.5I<1(Tﬂ)) , (33
(
(

Ky(T,) = dt dT (T 4 0.5K1 (Ty), Ty + 05K (T,), a + 0.5Kq (a))
Ky(a) = dt da(T, + 0.5K;(T,),a + 0.5K; (a))

[63]
Q1

K3 (Ty) = dt dTy (Ty + 05Kz (Ty ), T + 0.5Ka (o))
Ka(T) = dt ATy (Ty + 05Ky (Tf ), T + 0.5Ks (Tyn), Ta +05K2(T,) ),

(36)

(37)

K3(Ty) = dt dTy(Ty + 0.5Ks(Tp), Ts + 0.5K(Ty), a + 0.5K»(a)) (38)
Ks(a) = dt da(T, + 0.5Kx(T,), a + 0.5K(a)) (39)

Ka(Ty) = dt dTy (Ty + Ks (Ty ), T + Ks(Tor)) (40)
Ka(Tw) = dt dTyu (Ty + Ks (T ), T+ Ka(T), Ta+ Ka(T2)) (41)
Ka(Ty) = dt dTy(Tyu + Ks(T), To + K3(Ta), a + Ks(a)) (42)
Ky(a) = dt da(T, + K3(Ty),a + Kz(a)) (43)

Tyiuin) = Ty + (Kz(Tf) +2K2(Tf) +2I<3(Tf) + K4(Tf))/6 (44)
Toutnsn) = T + (Ka(T) + 2Ka(Tou) + 2K3(T) + Ka(Tin)) /6, (45)
Tynen) = To+ (Ka(Ta) + 2Ka(Ta) + 2K3(Ta) + Ka(T0)) /6 (46)
A(ns1) = a+ (Ka(a) +2Ka(a) +2K3(a) + Ke(a))/6 (47)

where dt is the increase of the independent variable ¢, and d Tf, dT,,, dT,, da are time derivatives of
searched functions implicitly dependent on time and where # is the time point of the known values of
the function and # + 1 is the next time point. The resulting equations were implemented manually as a
code and solved in MATLAB® platform.

4.2. Runge—Kutta—Fehlberg 4.5th-Order Method

A popular method for integrating equations in time is the Runge-Kutta—Fehlberg (RK45 order)
method. This is a fourth-order method but achieves fifth-order accuracy. Adaptive step size methods
allow changing the step size during the integration. The time step is changed to guarantee the accuracy
of the calculation. The accuracy is estimated at each step, and the step size is reduced to meet the
specified accuracy. The method has a stability limitation. The variable step size overcomes two of the
problems—knowing what step size to use and using a small enough step size to guarantee a specified
accuracy [25-27].

The general form of a Runge-Kutta—Fehlberg 4.5th-order method with adaptive step size is widely
described in the literature, for example, in the extra materials described by Finlayson in [25]. For the
results, a MATLAB® subroutine called “ode45” was implemented.

4.3. Gear Method (Backward Differentiation Formulae)

The BDF implicit method is one of many linear multistep methods (LMM). It is called BDF
because it differentiates the solution using past (backward) values. The simplest BDF method (BDF1)
is Backward Euler (BE), but the Gear method is well known and has been validated especially for stiff
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differential equations systems. The disadvantage of that method is the fact that it requires at each time
step the solution of a nonlinear system of equations [28,29,42].

The general form of the Gear fourth-order method with variable step size is described in the
literature, for example, in the extra materials in [25,28]. Methods like this are also implemented in
MATLAB® (i.e., “odel5s”, a subroutine that adjusts the step size to maintain a specified accuracy).

The set of equations mentioned earlier was implemented and solved by the fourth-order Gear
BDF method in the “ode15s” subroutine of the MATLAB® platform.

5. Results

The fixed as well as the adaptive step size fourth-order methods were successfully implemented
and tested on the experimental results [43]. For validation of the numerical model, a comparison with
the experimental data of Restuccia et al. [21] was made. There, the experimental setup consisted of a
lab-scale single-bed module using a pack of finned stainless-steel tubes and the composite sorbent
SWS-1L. The geometrical specifications and the operating conditions of the numerical model were
adjusted to their counterparts in the tested lab-scale chilling module with the adsorption/desorption
bed. Inlet water heating and cooling temperatures were adjusted to 95 and 40 °C. Other settings,
such as time control for isobaric and isosteric phases, that were the same as those in Restuccia et al. [21]
were also considered.

The comparison between the time variations of the presented numerical methods and the
experimental averaged bed temperatures is shown in Figure 4. To achieve results, the implemented
Runge-Kutta fourth-order method, with the fixed time step dt = 0.2 s, required 132,952 steps; RK45,
with (1e-5) accuracy, required 206,423 steps; and the Gear BDF method (accuracy le-2) required only
132 steps (for N = 20). The accuracy was adapted to the method to make it possible to obtain results,
which is associated with stability, stiffness, and other characteristic limitations of each of the presented
numerical methods’ calculating results based on the one-dimensional model of adsorber described
above. Runge-Kutta fourth-order methods (fixed time step as well adaptive step) obtained results that
were very similar, while the results based on the Gear BDF method were slightly different in several
points from the Runge-Kutta results but even closer to experimental points.

The reasons for the differences between the results of the experiment and the results of the
numerical methods of the described model can be divided into three categories.

First, the differences were related to the simplifying assumptions adopted in the model
(described in point 2) regarding the constancy of some parameters, such as density, thermal conductivity,
or specific heat, at variable temperatures and pressures. A simplified description of the adsorption
and desorption pressures and temperatures was also assumed. The assumption of rapidly switching
between adsorption and desorption cycles (cooling water is switched to hot water) also had an
impact. Another aspect was the assumption of the desorption kinetics modeled as the adsorption
kinetics (Equation (4)), which was a significant simplification. Second, the experimental data for
validation of the model was reconstructed based on the literature and on the description of the
test stand and measurement results given by the authors of [21]. According to Restuccia et al. [21],
the typical experimental error in the various tests was about 5%. Third, the discretization methods were
characterized by fourth-order truncation error of approximation.

In conclusion, in order to reduce the difference, a model describing the more complex heat
and mass transfer could be prepared. However, the presented difference between the results of the
experiment and the numerical model was at an acceptable level. Reasonable agreement between the
results is an indication of proper mathematical modeling and the accuracy of the numerical schemes.
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Figure 4. Comparison between the time variations of the presented numerical methods and
experimental averaged bed temperatures. (Restuccia et al. [21]).

For the considered one-dimensional model of the adsorber in the adsorption heat pump, one
calculation case of driving parameters was chosen to investigate limitations in use of the presented
numerical methods.

The variables studied were: temperature of desorption, which was equal to the hot driving
water temperature Ty, = 363 K; temperature of the adsorption process, equal to the cooling
water temperature T 3, = 313 K; temperature of evaporation Tevap = 288K; and temperature of
condensation Ty,,y = 313 K. Cycle duration in the examined case was Toycje = Tugs + Tges = 360's,
as well as heating/cooling medium (water) flow rate m,;; = mgys = 0.01kg/s. Parameters of
adsorption equilibrium described by the Dubinin-Astakhov (D-A) equation used for the calculations
were: limiting adsorption amount ap = 0.35kg kg ™!, characteristic energy of the adsorbent
B Eo = 3780.8 mol !, constant in the D-A Equation 1 = 1.016, process constant Dy = 0.000254 m? s~ !,
and activation energy E; = 42,000 ] mol ! [15,34]. Other parameter values used for the calculations
are given in Table 2. Due to the initial starter cycles and the characteristics of the adsorption
devices, the calculations were carried out for 10 adsorber/desorber cycles. To compare the results
of the numerical methods in the last two cycles, stable operation of the modeled adsorption column
(adsorber/desorber) was used.

Table 2. Parameters used in the calculation (sourced from [15,34,44,45]).

Description Symbol Unit Value
Particle radius Ta mm 0.1
Bulk density of the bed particles Oa kgm~3 600
Bulk density of the tube material Om kg m3 8936
Average specific heat of the bed Cpa Jkg LK1 924
Average specific heat of the tube Cpm Tkg 1K1 383
Average specific heat of the water Cpf Jkg 1K1 4182
Thermal conductivity of the bed Aa Wm™K™! 0.175
Thermal conductivity of the tube Am Wm 1K 401
Heat transfer coefficient (fluid-metal tube) Uy f Wm2K! 1000
Heat transfer coefficient (metal tube—adsorbent) Qam Wm2K! 1000
Length of the tube Lt m 15
Duration of the cycle (T,4s + Tdes) Teycle s 180 + 180
Tube internal radius R1 R1 mm 10
Tube outer radius R2 R2 mm 11

Adsorber outer radius R3 R3 mm 26
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Figure 5 shows the results comparison of the calculated temperatures of the modeled fluid (water)
Ty, metal tube T};;, and adsorbent T, in function of time based on the ODE numerical methods RKfixed,
RK45, and Gear BDF for the described one-dimensional model of the adsorber. Temperatures at the
beginning of the adsorption column are presented in Figure 5a, while temperatures in the middle
and at the end of the adsorption column are presented in Figure 5b,c, respectively. The graphs in
Figure 5 show the temperatures curves in the following order (as viewed in desorption—the upper
part of the graph): the highest curves are fluid temperatures, the middle curves shows the metal tube
temperatures, and the bottom curves show the adsorbent temperatures. It can be observed that when
the change of Tf for x =0, i = 1 takes place, the oscillations of Tf, Ty, and T, appear. Such oscillations
are characteristic of numerical solutions of so-called stiff problems. Stiffness is a property of a system
of differential equations rather than its solution. For such problems, an implicit multistep method
(e.g., Gear BDF) rather than explicit multistep methods (e.g., RKfixed or RK45) should be used.

Figure 6 shows calculated uptake for the nodes i = 1 (lowest curve), i = 11 (in the middle),
and 7 = 21 (highest curve) of the adsorber column.

T Y P : T P
200 = = RK45, Tf for i1 = = RKfixed, Tf for i1 = = Gear BDF, Tfforil |, 300 |7 RKA5, T for i11 — —RKfixed, Tffori1l = — Gear BDF, Tf fori11
——RK45, Tmforil  ——RKfixed, Tm fori1 Gear BDF, Tm fori1 |/ —RK45, Tmforill ~ ——RKfixed, Tm fori11 Gear BDF, Tm fori11
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Figure 5. Results comparison of the Runge-Kutta fixed step size fourth-order (RKfixed),
the Runge-Kutta—Fehlberg 4.5th-order method with a variable step size (RK45), and the Gear Backward
Differentiation Formulae (Gear BDF) methods, calculated temperatures of the modeled fluid (water)
Ty, metal tube Ty, and adsorbent T;, N = 20: (a) node i =1, (b) node i = 11, and (c) node i = 21.

For the above-introduced calculation case of the adsorption heat pump, there was no significant
difference in results based on the discussed fixed RK method as well as adaptive step size numerical
fourth-order methods. The absolute temperature difference was smaller than 1% and was irrelevant
from the perspective of engineering applications. In our experience, the Runge-Kutta and Gear
routines give adequate results for relatively simple one-dimensional adsorption models.
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Figure 6. Results comparison of RKfixed, RK45, and Gear BDF methods, calculated uptake a in nodes

i=1,i=11,and i =21 (N = 20).

Table 3 presents additional comparisons of discretization, accuracy, CPU (Central Processing
Unit) process time, and number of steps for the RKfixed, RK45, Gear BDF numerical methods as well
as some of limitations. The Gear BDF routine “odel5s” (BDF “on”) integrated a set of equations in
the smallest number of steps and had the shortest processing time. For example, for the 20 sections
in MOL (N = 20) and accuracy (1le-7), it takes 9525 steps in 10 s of CPU time. By contrast, the RK45
routine “ode45” requires 16,776 steps, while RKfixed time step size (dt = 0.1 s) takes 36,010 steps in

122 s of CPU time.

Table 3. Comparison of discretization, accuracy, process time, and numbers of steps for the following
numerical methods: RKfixed, RK45, and Gear BDF (Processor Intel, Xeon (R) X5690, 3.46 GHz, 8 GB

RAM, 64-bits System).
Description RKfixed (Classical) RK45 Gear BDF

accuracy time step 0.5 s le-5 le-4
N=20 CPU time 1265 565 47s
steps 7201 9537 3633

accuracy time step 0.5 s le-5 le-4
N=30 CPU time 1415 655 6.65
steps 7201 10,953 5207

accuracy time step 0.1 s le-7 le-7
N=20 CPU time 12225 10.1s 10.7s
steps 36,001 16,776 9525

accuracy time step 1 s 1e_f£2§;61 Its le-2

N=20

CPU time 6.1s 6.6s 23s

steps 3601 9345 782

N < 5no results,
accuracy < (le-4) no results,
5 < N < 10 significant oscillations,
time step >1 s no results

Examples of limitations

N < 5 no results,
N =20 (1le-1) results without oscillation,
N =20 (1e-8) results obtained in CPU
time 14 s

N < 18 no results,
niy > 038
no results
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Additionally, the research identified restrictions on the use of all these numerical methods.
Examples of limitations are presented in Table 3. In the Runge—Kutta fourth-order fixed time step
method, for the above-introduced calculation case of adsorption, it was not possible to obtain results for
discretization N <5, fixed time step > 1 s or accuracy < (le-4). In the range of 5 < N < 10, there was no
realistic result. In the Runge-Kutta—Fehlberg 4.5th-order adaptive step method, there were no results
for N <18 orms > 0.3 k—f Since this method is mainly used for nonstiff systems of equations—and
apparently for listed parameters, the stiffness of solving systems of equations is growing—there is a
decreasing possibility of obtaining real results with this method.

For use in a wider operating range, there is the Gear BDF method. With that method, results
could be obtained for the accuracy range from (le-1) to (1le-8) or even higher, and for discretization,
from N > 5 to N > 40, but the advantage is to take into account reasonable processing time.

The results comparison of the RKfixed, RK45, and Gear BDF methods in different accuracies and
discretizations for the calculated averaged temperatures of the modeled fluid (water) Ty (Figure 7),
calculated averaged adsorption bed temperatures T, (Figure 8), as well as averaged water vapor uptake
a on the silica gel adsorbent (Figure 9) shows small differences in the course of the curves, particularly in
the area of undesired oscillations. There was one main exception; the results obtained from RKfixed
(N20, time step 1 s) differed from the other results by about 10 K for adsorbent temperature and about
9% absolute difference for the uptake. This means that the time step 1 s is overly large and the results
are overly rough.

T S — ;
— = RK45N20 1e 5 ; ;
390 ——RK45 N30 1e-5 R |
X, RK45 N20 1e-7 | !
g 380 1 - —RkfixedN200.5s |
= ——Rkfixed N30 0.5s i i
@ 370 e !
g Rkfixed N200.1s i i
£ 360 - — Rkfixed N20 1s
3 — — Gear BDF N20 1e-4
s 350 7% Gear BDF N30 1le-4
‘g " Gear BDF N20 1e-7
£ 340 4 — Gear BDF N20 1e-2 i i
- ! !
50330 4 N |
- g !
e : v !
g 320 4 AP —— e |
c ! !
g 310 - --------------------------------------------
300 | |
3240 3420 3600
Time [s]

Figure 7. Results comparison of the RKfixed, RK45, and Gear BDF methods in different accuracies and
discretizations, calculated averaged temperatures of the modeled fluid (water) T¥.
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Figure 8. Results comparison of the RKfixed, RK45, and Gear BDF methods in different accuracies and

discretizations, calculated averaged adsorption bed temperatures Tj.
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Figure 9. Results comparison of the RKfixed, RK45, and Gear BDF methods in different accuracies and

discretizations, calculated averaged uptake a.

6. Conclusions

The main aim of this work was to find the correct method of calculating equations of heat and

mass transfer for the adsorption process and to calculate it numerically in a reasonable amount of
time and with proper accuracy. The calculation of the coefficient of performance is a secondary effect
to the one presented in the article, but it is widely described in previous papers [38,39], where the
performance of two-bed as well six-bed single-stage adsorption heat pumps was considered in detail.
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The obtained results allowed us to calculate the COP for the abovementioned case of parameters.
Based on the RKfixed method, for cooling applications, the results was COP 01 = Qevap/ Qges = 0.33;
so, for heating applications, COPpeat = (Qeong + Quds)/ Qaes = 1.11. The set of balance equations of
the adsorber was solved by the previously mentioned numerical ODE subroutines available in the
MATLAB® platform. For the Runge-Kutta fixed step size fourth-order method, the resulting equations
were implemented as code and solved in MATLAB®. For the Runge-Kutta method with a variable
step size (Runge-Kutta—Fehlberg 4.5th-order method), the MATLAB® subroutine called “ode45” was
implemented. The fourth-order Gear BDF method was implemented in the “odel5s” (BDF “on”
subroutine of MATLAB®. The fixed as well as the adaptive time step fourth-order methods were
implemented and compared successfully with the experimental data.

It can be observed that, when the change of water temperature for adsorption (or for
desorption) starts, oscillations of adsorbent, tube, and vapor temperatures appear. Such oscillations
are characteristic for numerical solutions of so-called stiff problems. Stiffness is a property of a system
of differential equations rather than its solution. For such problems, an implicit multistep method
(e.g., Gear BDF) rather than explicit multistep methods (e.g., RKfixed or RK45) should be used.

It is possible to use Runge—Kutta methods to solve systems of equations for an adsorber in
adsorption heat pumps, which are characterized by growing stiffness with different parameters.
However, taking into account the limited scope of these methods, this decreases the possibility of
obtaining real results in an acceptable processing time. For use in a wider operating range and in
reasonable operating time (less time steps), the Gear BDF method is better. For example, the Gear
BDF routine integrated the presented set of equations in only 3633 steps (N = 20, 1le-4). By contrast,
the Runge-Kutta—Fehlberg 4.5th routine required 9537 steps, while Runge-Kutta fixed time step size
(dt = 0.5 s) took 7201 steps. The error of the methods depends on the step size. A small step size leads
to better precision, but requires greater CPU time.

For use in a wider operating range, the Gear BDF method is preferred. With that method, results
could be obtained for the accuracy range from (le-1) to (1e-8) or even higher, and for discretization,
from N > 5to N > 40. However, the advantage is to take into account reasonable processing time.

The results comparison of the RKfixed, RK45, and Gear BDF methods in different accuracies
and discretizations for calculated averaged temperatures of the modeled fluid (water) Ty (Figure 7),
calculated averaged adsorption bed temperatures T, (Figure 8), as well as averaged water vapor uptake
a on silica gel adsorbent (Figure 9) shows small differences in the course of the curves, particularly in
the area of undesired oscillations. There is one main exception; the results obtained from the RKfixed
(N20, time step 1 s) differ from the other results by about 10 K for adsorbent temperature and about 9%
absolute difference for the uptake. This means that the time step 1 s is overly large and the results are
overly rough.

In our experience, the Runge-Kutta and Gear routines give adequate results for relatively simple
one-dimensional models of an adsorber in an adsorption heat pump. In general, all three types of ODE
numerical methods (RKfixed, RK45, and Gear BDF) can be applied in simple models (one-dimensional)
to model an adsorption column in an adsorption heat pump, with attention on their limitations.
The Gear BDF method usually requires much fewer steps than the RK45 method for almost the same
CPU time, and the results are without oscillations for low accuracy. RK methods require many more
steps to obtain results, but the CPU time depends on the accuracy or defined time step. Moreover,
one should pay attention to the number of nodes or possible oscillations.

For the introduced above calculation case of the adsorption heat pump, there is no significant
difference in results based on the discussed fixed as well as adaptive step size numerical fourth-order
methods. The absolute temperature difference is smaller than 1%, and is irrelevant from the perspective
of engineering applications. In our experience, the Runge-Kutta and Gear routines give adequate
results for relatively simple one-dimensional adsorption model.
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Since the appropriate numerical method has been developed for modeling the adsorption process,
future research should focus on developing multibed adsorption systems. It could be advantageous in
respect to its power output control and its efficiency optimization.
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Nomenclature

a mass/amount adsorbed /desorbed on adsorbent at time T, kg kgf1 (uptake)
ag limiting adsorption amount, kg kg ™!
B Eo characteristic energy of the adsorbent, mol !
Ccp specific heat, J kg1 K1

Do process constant,

dx calculation element (spatial), m

dt calculation element (time), s

E, activation energy,

F function, -

AH, isosteric heat of adsorption, J mol !
i node,

L length, m

m mass flow rate, kg s !

N sections,

n constant in the D-A equation,

O truncation error of approximation

P pressure, Pa

Q heat, |

R gas constant, ] mol 1 K1

R1 tube internal radius, mm

R2 tube outer radius, mm

R3 adsorber outer radius, mm

Ta particle radius, mm

T temperature, K

Greek letters

o heat transfer coefficient, W m—2 K~}
A thermal conductivity, W m 1K!

p density, kg m 3

T, t time, s

Subscripts

a adsorbent

ads adsorption

cond condenser

des desorption

eq equilibrium

evap evaporator

f fluid (water)

m metal tube/pipe
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Abbreviations

BDF Backward Differentiation Formulae

BE Backward Euler Method

CPU Central Processing Unit

D-A Dubinin-Astakhov

LMM Linear Multistep Method

NMOL Numerical Method of Lines

ODEs Ordinary Differential Equations

PDEs Partial Differential Equations

RKfixed Runge-Kutta fixed step size fourth-order Method

RK45 Runge-Kutta—Fehlberg 4.5th-order Method
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