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Abstract: Technological evolution in the remote sensing domain has allowed the acquisition of large
archives of satellite image time series (SITS) for Earth Observation. In this context, the need to interpret
Earth Observation image time series is continuously increasing and the extraction of information
from these archives has become difficult without adequate tools. In this paper, we propose a fast and
effective two-step technique for the retrieval of spatio-temporal patterns that are similar to a given
query. The method is based on a query-by-example procedure whose inputs are evolution patterns
provided by the end-user and outputs are other similar spatio-temporal patterns. The comparison
between the temporal sequences and the queries is performed using the Dynamic Time Warping
alignment method, whereas the separation between similar and non-similar patterns is determined via
Expectation-Maximization. The experiments, which are assessed on both short and long SITS, prove
the effectiveness of the proposed SITS retrieval method for different application scenarios. For the
short SITS, we considered two application scenarios, namely the construction of two accumulation
lakes and flooding caused by heavy rain. For the long SITS, we used a database formed of 88 Landsat
images, and we showed that the proposed method is able to retrieve similar patterns of land cover
and land use.

Keywords: pattern recognition; dynamic time warping; maximum likelihood criterion; similarity
measure; multitemporal data; multispectral information

1. Introduction

Over the years, the remote sensing domain has been characterized by numerous technological
improvements (e.g., increased spatial resolution, shorter revisit time, increased number of spectral
bands). These improvements were made possible through several Earth Observation missions, e.g.,
the Landsat program sustained by NASA and the United Stated Geological Survey (USGS), the Sentinel
program financed by European Space Agency, Envisat’s ASAR mission. In addition, many of the recent
missions have functioned under an open data access policy for research purposes. This fact has a direct
impact on the interest manifested in using this type of data in many realms, such as agriculture, land
cover and land use planning, resource management, urbanization, and sustainable development.

One possible method for the analysis of satellite image time series (SITS) is to compare two satellite
images captured at two successive moments of time, over the same area of interest [1-4]. These methods
are generally called change detection methods. However, although they can successfully detect abrupt
changes (e.g., deforestation, natural disasters, building construction), these methods are not able to
identify complex spatio-temporal structures that evolve in a defined time-frame (e.g., measuring the
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effects of floods, urban expansion, land cover and land use modifications). In the later cases, SITS
analysis methods that involve information extraction from multi-temporal data are usually preferred.

The main difficulties when dealing with SITS are the irregular time sampling, the missing samples
(e.g., due to cloud cluttering and haze that affect images captured by optical sensors, technical artifacts)
and, also, the high spatial and temporal data dimensionality. In general, multi-temporal approaches
require the processing of large amounts of data characterized by a high degree of variability in terms
of temporal, spatial and multi-spectral information.

The spatio-temporal evolution patterns may span different periods of time and may affect small to
large regions. For example, urban transformations affect small regions and have multiple construction
phases spanning several years. In contrast, flood events may affect larger areas then in the previous
case, but, depending on their intensity, the consequences may be observed over shorter or longer
periods of time (e.g., land slides are irreversible). In this context, the characterization of temporal
evolutions is strictly related to the fact that the processes that occur in dynamic scenes have different
time scales and affect small to large areas.

Therefore, the requirements that SITS analysis methods must fulfill are: (1) the ability to capture
complex spatio-temporal changes and (2) the potential to emphasize both short-term and long-term
modifications. Developing an algorithm that can deal with the spatial, temporal and spectral diversity
of Earth Observation data is a challenging task to accomplish and more so when the amount of
knowledge that a human expert transfers to the system is limited.

Many multi-temporal analysis techniques use a SITS classification that incorporates various
dissimilarity measures to compare two temporal sequences. In SITS, by similar evolution,
we understand a group of scene points that share the same behavior for the entire period of time or
for most of it. Each point in a SITS is characterized by a spectro-temporal signature. An example of
a spectro-temporal signature is provided in Figure 1 for a SITS acquired by the Landsat sensor with
six spectral bands.
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Figure 1. Spectro-temporal signature in a Landsat satellite image time series (SITS).

Some of the methods used to assess the degree of similarity between temporal sequences have
emerged directly from text classification, speech recognition, or genomic data classification [5,6].
Dynamic Time Warping (DTW) has proved to be an essential tool not only for spoken-word recognition,
but also for understanding similarities between evolution profiles in SITS [7,8]. DTW is able of handling
comparisons between sequences characterized by irregular time sampling or missing data issues [7].
In this regard, K-means with DTW as the distance measure the yield land cover and land use maps of
SITS [7]. However, performing an unsupervised clustering over an entire multi-spectral SITS data is
time-consuming, and the temporal characteristics of the data may be missed. Other versions of DTW
include a weighting procedure to mark the seasonality characteristics of temporal evolutions [9,10].
This weighting procedure works well for cropland mapping, but it may not be helpful for other
applications that do not account for a periodicity effect (e.g., construction of buildings). In addition,
recently, a tree-based structure formed of multiple K-means clustering algorithms that use the DTW
distance measure was developed in [11] for the indexing and classification of SITS.

The methodology described in [12] for time series analysis is based on computing change maps
between pairs of consecutive images using different similarity measures (e.g., correlation coefficient,
first order Kullback-Liebler Divergence, Conditional Information, Normalized Compression Distance).
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The change maps are transformed into a collection of words through the K-means clustering algorithm.
All the words form a dictionary. The transformed change maps are processed afterwards using
the Latent Dirichlet Allocation (LDA) model to discover classes (or evolution-topics) based on the
latent information from the scene. Thus, the final results of the analysis provide an unsupervised
classification of the spatio-temporal evolutions into classes.

A study of several general purpose supervised classifiers, like Random Forest and Support Vector
Machine (SVM), was presented in [13] as a solution for land cover mapping. The features extracted from
the images were spectral features (e.g., color, normalized difference vegetation, water and build-up
indexes, brightness, greenness, wetness, brilliance) and temporal features (e.g., statistical values from
normalized difference vegetation index profile, phenological parameters marking important events
in a season like sowing, threshing, cropping). However, SVM and Random Forest classifiers are
known for having large training times, which may last even several days [13]. In this sense, this type
of classification system cannot be used for online retrieval of spatio-temporal evolutions, where
a fast response is needed. In addition, supervised classifiers need large amounts of training data.
This requirement is not easy to fulfill in SITS classification tasks.

Frequent sequential pattern analysis was introduced in [14,15] for unsupervised SITS mining.
This approach performs a quantization of the images in the SITS using a fixed number of gray levels
(or, labels) and forms a sequence of T labels for each pixel location, where T is the number of images in
the SITS. In this context, an ordered list of labels is called a frequent sequential pattern if the number
of its occurrences in the SITS is greater than a fixed threshold. Inferring spatial connectivity constraints
when determining the frequent sequential patterns proved to be efficient in monitoring crop or ground
deformations [14]. However, the determination of the frequency of sequential patterns in SITS is
sensitive to the number of levels used for image quantization. In addition, the method extracts a large
number of patterns which may be difficult to interpret in terms of changes that appear in an area.
Moreover, missing data may raise difficulties when interpreting the results for SITS analysis.

Apart from the irregular time sampling, missing data, and high data variability in the spatial,
temporal, and spectral domains that were mentioned above, another difficult challenge that is met
in SITS analysis is the assignment of semantic meaning to patterns of spatio-temporal evolution.
This challenge is most frequently met when unsupervised techniques are used for SITS analysis.
In these cases, a method to determine the optimal number of evolution classes is usually used [16].
A query-by-example retrieval method would alleviate this issue by associating semantic meaning
to each query that a user addresses to the retrieval system. In this regard, we hereby present a
query-by-example retrieval method whose goal is to separate spatio-temporal evolutions that are
similar to a given query from non-similar ones. After the user performs a specific query, the retrieval
method consists of two main steps. Firstly, the system performs the computation of distance measures
between the query and the rest of spatio-temporal evolutions. Secondly, an optimal threshold
is determined through the Expectation-Maximization technique in order to obtain a binary map
displaying similar patterns with respect to the given query. The rest of the paper is structured
as follows. The two-step retrieval method is presented in Section 2. Sections 3 and 4 present the
experiments conducted over several SITS datasets, discuss the results obtained for different application
scenarios, and compare the proposed method to other SITS analysis methods. Finally, the last section
concludes the paper.

2. Materials and Methods

In this paper, the SITS analysis is approached through time series information retrieval, which
is the process of searching inside a collection of data. The proposed search process starts with a
query provided by the end-user, whose aim is to identify evolutions that are similar (i.e., have similar
behavior) to the selected query. Firstly, the proposed method determines the degree of similarity
between a specific query and the rest of the spatio-temporal evolutions. This step is performed by
computing the DTW measure between the query and the rest of the evolutions. The DTW score is
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expected to be small for similar evolutions and large for non-similar ones. The retrieval process consists
of deciding whether a certain evolution is similar to the given query or not. In this sense, the retrieval
process can be seen as a problem of separating the spatio-temporal evolutions into two classes (i.e.,
similar versus non-similar with respect to a given query). The class identification is performed via
Bayesian decision theory and it is based on determining the optimal threshold that separates relevant
from irrelevant evolution patterns with respect to a given query.

Specifically, the proposed approach is a two-step process: (1) compute DTW distances and (2) find
the optimal threshold. The process is summarized in Figure 2 and starts by computing a DTW distance
image containing all the DTW dissimilarity scores with respect to a fixed query. After applying
the optimal threshold over the DTW distance image, the final result is a binary map which aids in
delimiting similar spatio-temporal evolutions.

; DTW distance :
User g image i Result
l .J image
: 5 (%ueli’y »| Compute DTW »| Find optimal > a3 '
selection ; distance threshold i R
SITS
archive

A

Figure 2. The flowchart of the proposed retrieval of similar patterns in SITS.

2.1. Dynamic Time Warping (DTW)

The first step in retrieving spatio-temporal patterns that are similar to a given query is to measure
the degree of similarity between the query sequence and the rest of the sequences. This can be achieved
through Dynamic Time Warping, which has been widely used in many applications related to speech
recognition [5] and DNA analysis [6]. The method is usually applied to find the optimal alignment
path between two sequences, Ul = (uy,...,ur) and VlTl = (vy,..., vy ), which may have different
lengths (i.e., T # T') [17]. This is a frequently met situation in SITS analysis due to technological
artifacts or cloud cluttering problems that may occur in images captured by optical remote sensing
sensors. Mathematically, the DTW distance measure between two sequences, Ul = (uy, ..., u;) and

Vlj = (vi,..., v]-), can be recurrently defined as
D;j = 6(u;,vj) + min(D;_q; 1,D; 1,5, Dij1) 1)

where J is the Euclidean distance between two current elements u; and v; of the sequences, Dy is the
partial similarity score between Uf and V/ for any k < T and I < T'. As can be observed from the
above equation, the optimization problem aims at finding the best alignment between subsequences of
uf and VlT/.

In the above formulation, the following initial conditions are considered:

D11 = d(ug, vq) ()
j
Dl,j = Z (5(u1,vp) (3)
p=1
Di1 =Y 6(ug,vy). 4)

=1
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The overall DTW similarity between U} and VlTl is given by the score Dt 7. Computing the
overall score is equivalent to determining the elements of a T x T’ distance matrix where the element
on row i and column j is D; ;.

The recurrence relation used in the computation of the DTW similarity score implies the
computation of a T x T’ matrix, whose elements are the distances Di,]- 1<i<T1<j<T).
Each distance D;; uses the smallest value between the closest previous neighbors in the matrix.
The DTW matrix is computed from left to right and top to bottom. The last element Dt 17 represents
the overall DTW score of similarity, whilst the path that is followed to compute the score of similarity
provides the optimal alignment. An example of DTW-based optimal alignment together with the
DTW distance matrix D is shown in Table 1 for two sequences of one-dimensional elements. In this
example, we considered that ¢ is the difference in absolute values of the elements. The element on the
lower-right of the matrix is the total score of the similarity between the two sequences.

Table 1. Example of computation of the Dynamic Time Warping (DTW) distance matrix for two
sequences, ‘5463545 and 0102130’

0 1 0 2 1 3 0

14 17 21 23 28
9 8§ 12 14 17 18 22
15 13 14 16 19 20 24
18 15 16 15 16 16 19
23 19 20 18 20 18 21
27 22 23 20 21 19 22
32 26 27 23 24 21 24

Ul = U1 W O = U

If the similarity scores are computed between spatio-temporal sequences in a multispectral SITS,
the sequences are formed by the vector elements u; and v; whose dimensions are given by the number
of frequency bands used by the remote sensing sensors. Let us denote by ¢ the number of spectral
bands. Then, J is the Euclidean distance between two vector elements in a space with ¢ dimensions:

6(u;, v ] Z Uik — ®)

where w; = [u;1,...,u;;|! and vi=[vj1,.. ,U]"C]T.

The DTW similarity score is computed between the query provided by the user and each
spatio-temporal sequence in the SITS. The result is a DTW distance image DI that assesses the scores
of similarity between the given query and the evolutions for each pixel location.

As already mentioned, the DTW distance is expected to be small for evolutions that are similar
to the query and large for non-similar evolutions. This is due to the fact that, if the spatio-temporal
evolutions are similar, the DTW algorithm finds an alignment with a smaller cost between the
corresponding temporal sequences and the given query than in the case of non-similar evolutions.
Therefore, the separation of similar from non-similar evolution patterns is equivalent to finding an
optimal threshold that can be applied over DTW distances in order to retrieve the specific pattern
queried by the end-user.

2.2. Determining the Optimal Threshold Using Expectation-Maximization

In the previous subsection, we described the process of determining the DTW distance image DI
containing DTW similarity scores with respect to a query selected by an end-user. The following step
in the automatic extraction of evolutions that have similar behavior to a given query is the optimal
thresholding step. More precisely, we aim to separate the DTW distance scores between two classes,
a class of similar evolutions and a class of non-similar spatio-temporal evolutions. Separating these two
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classes of evolutions translates into finding the optimal threshold to be applied on the DTW similarity
scores. In this sense, we formulate the problem of query-by-example SITS retrieval in terms of the
Bayesian decision theory.

The DTW similarity scores computed for a given query follow a multimodal distribution. This can
be observed from Figure 3, where the query selected for retrieval is from an agricultural area in a
long SITS (88 temporal samples). As expected, the first lobe corresponds to similar evolutions. This is
argued by the fact that DTW similarity scores are smaller for similar evolutions than for non-similar
evolutions. Furthermore, the histogram profile shown in Figure 3 confirms the idea of separating
similar from non-similar evolutions using the Maximum Likelihood (ML) technique.

0.045

I data
0.041 model [

0.035
0.03
0.025
0.02

Probability density

0.015
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0.005

0 0.05 0.1 0.15
DTW distance values

Figure 3. Histogram over DTW similarity scores and a mixture of two Gaussian distributions fitted to

these scores.

In the following text, we denote the random variable associated to the computed DTW similarity
scores by X, whilst x represents a particular DTW score. Following the formalism initially presented
in [18], let us assume that the scores are drawn from a mixture of two Gaussian distributions, N (s, %)
and N (pn, 04). The first Gaussian distribution corresponds to evolutions that are similar to the given
query, whereas the second component refers to non-similar evolutions.

The Maximum Likelihood Estimation (MLE) framework determines the parameter values that
make the observed data most likely, i.e., that maximize the likelihood function and fit the model to the
data. Following the above considerations, the overall posterior probability can be decomposed as

po(x) = N (x| ps, 05) + 7TuN (x| pin, o) (6)

where 0 = {7, Us, 05, Ty, Yn, 0n } is the set of model parameters, whilst 77; and 71, are the mixture
probabilities [19] such that 7r5 + 71, = 1. The mixture components are modeled as Gaussian densities:

1 X — Uk 2
N (xlu, 0x) = —=—=exp [—(};)] @)
2 20

270y k

with k € {s,n}, whilst (ys, 05) and (py, ) are the mean and standard deviation pairs corresponding
to similar and non-similar evolutions, respectively. The set of parameters 6 is determined iteratively
using the Expectation-Maximization (EM) algorithm. Specifically, each iteration j is decomposed in
two basic steps:
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1. Expectation step (E-step). Compute the log-likelihood (i.e., the logarithm of the posterior probability)
with respect to the current values of the parameters 6(*):

L(OW) =Inpye (x) ®)

2. Maximization step (M-step). Update the model parameters such that the log-likelihood approaches
its maximum, i.e., the convergence of the EM algorithm guarantees that the log-likelihood value
is increased with each iteration [19]. It is usually convenient to introduce a mapping between
the new model parameters 0(!+1) and the previous ones 6(*). According to [18] and following the
notations in [19], the means, squared standard deviations, and mixture probabilities for each class
k € {s,n} can be re-estimated using the following set of relations:

vt (x)
7T]Et+1) _ X I;\, (9)
(t) (o
141(:“) Lk e (10)
£g ()
Oy (v (D)2 :
UIEHU _ §€k (%) (x Hi ) a1

where N = W x H is the total number of pixels in the distance image (i.e., the number of

spatio-temporal evolutions) and ¢ ,((t) (x) values are derived as

(t) ) (1)
N (x|, 00 )
gz(ct)(x) _ % Hi %

= . (12)
T N (x|, o))

The initialization of the EM algorithm is done by separating the similarity scores into two subsets,
S,(lo) and SC(O). Any unsupervised clustering method can be applied, but we chose the K-means (K = 2)
clustering method due to its fast response time when the number of clusters is small. However,
being an unsupervised clustering method, a constraint must still be fulfilled. Namely, the cluster of
similar evolutions must be characterized by DTW similarity scores that are smaller than the DTW
similarity scores obtained for the temporal sequences pertaining to the cluster of non-similar evolutions
with respect to the query. The initial values for the prior probabilities, means, and squared standard
deviations can be easily computed as statistics over the two subsets, S,SO) and SC(O). Compared to
the initialization proposed in [1], the K-means initialization speeds up the convergence of the EM
algorithm [19], and thus, the speed of the whole algorithm.

After the estimation of the 6 model parameters, the optimal threshold T, that separates the two
classes (i.e., similar and non-similar) is determined from the equality

nsN(Toms/Us) = nnN(To“lnr Un) (13)

that naturally follows from the Maximum Likelihood rule

S

s N (x|ps, 05) 2 70N (x| ptn, o). (14)
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Taking the logarithm of both sides of Equation (13) yields a quadratic equation in T,

(63 AT} +2 (juo? — o) Ty 4o o ~2033n | 27| 0 )
s/tn
that has two possible solutions. However, only one of these solutions lies between 5 and p,; and this
solution represents the optimal threshold value.
After determining the optimal threshold value T, the DTW distance image DI is transformed
into a binary image S, delimiting the locations of evolutions that are similar to the given query:

1, DI(w,h) <T,

(16)
0, otherwise

S(w, h) = {

wherel <w < Wand1 <h < H, W and H being the width and height of the images in SITS.

3. Experiments

The proposed method for the retrieval of specific spatio-temporal patterns in SITS was tested
on series of Landsat images captured at different periods of time and over different locations.
In all application scenarios described hereafter, all of the available spectral bands were taken into
consideration, namely green, red, blue, Near Infrared and two Short-Wave Infrared bands. Moreover,
the spatial resolution of the Landsat sensor was 30 m.

The first series consists of a short time series of 10 images acquired between 1984 and 1993
(i.e., an image is acquired each year), over Bucharest, Romania, and regions surrounding the city.
The size of the images is 1702 x 1975 pixels and the captures were taken in different seasons of
the years. Several samples of the time series, along with their acquisition moments, are shown in
Figure 4. In this case, the task was to determine similar changes that occurred during the formation
of three accumulation lakes near Bucharest, namely Dridu, Mihailesti, and Morii. Two of these lakes
evolved similarly, whereas the third one went through several modifications over the time period
mentioned above.

The second dataset is formed of 13 Landsat images of 1250 x 400 pixels capturing the Dobrogea
region, Romania, between 6 May 2000 and 9 September 2001. Some images from the dataset, together
with the corresponding timespan, are shown in Figure 5. In May 2000, the heavy rain led to the
swelling of Danube river which caused floods in this region (Figure 5a). A rapid assessment of the
area affected by floods is necessary in this type of situation. Therefore, the application considered in
this case was oriented towards the delimitation of areas affected by floods.

The third time series spans a longer period of time than the previous time series, almost
28 years between 14 September 1984 and 27 October 2011, and contains 88 multispectral images
of 700 x 700 pixels. The location is still Bucharest, Romania and surrounding regions, but the
area captured by the SITS is smaller than in the previous case. The first and last images from the
long-term SITS, along with the corresponding temporal distribution of the acquisitions, are shown
in Figure 6. In general, long-term SITS acquisition is characterized by irregular temporal sampling
with data captured under different meteorological (e.g., precipitation, clouds, season) and illumination
conditions. These issues make the query-by-example retrieval in long-term SITS a challenging task
to accomplish if other types of distance measure (e.g., Euclidean distance) are used to assess the
degree of similarity between the temporal sequences. There are two main applications where the
information extracted from long-term SITS shows its potential, namely land cover and land use
mapping. These two applications impact the sustainable management of the natural resources, urban
planning, and agriculture.
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Data acquisition moments

| | | | | |
Aug.12,1983  Dec.24,1984 May.08,1986 Sep.20,1987  Feb.01,1989  Jun.16,1990  Oct.29,1991  Mar.12,1993  Jul.25,1994

(e)

Figure 4. Short Landsat SITS comprised of 10 images captured between 1984-1993. Only four
representative images (i.e., containing specific changes) of the series are shown: (a) 1984, (b) 1987,
(c) 1988, (d) 1992. The distribution of the acquisition moments is shown in (e).
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(a)

(b)

(d

Data acquisition moments
T

| | | | |
Apr.24,2000 Aug.02,2000 Nov.10,2000 Feb.18,2001 May.29,2001 Sep.06,2001 Dec.15,2001

(e) Capture moments of the Dobrogea Landsat SITS

Figure 5. Dobrogea Landsat SITS comprised of 13 images captured between 6 May 2000 and 14
September 2001, in the Dobrogea region. Four images of the series are shown, namely: (a) 6 May 2000,
(b) 22 May 2000, (c) 9 July 2000, and (d) 29 October 2000. The distribution of the acquisition moments
is shown in (e).
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(a)

Data acquisition moments

‘ [0

| | | |
Mar.30,1982 Sep.20,1987 Mar.12,1993 Sep.02,1998 Feb.23,2004 Aug.15,2009 Feb.05,2015

(c)

Figure 6. Long Landsat SITS comprised of 88 images captured in 1984-2011. Only the first and the
last images of the series are shown, namely (a) 1984 and (b) 2011. The distribution of the acquisition
moments is shown in (c).

In all cases, the user was asked to select a single evolution in the area of interest and then
the proposed algorithm was applied to identify other spatio-temporal evolutions with similar
spectro-temporal signatures.

4. Discussion

4.1. Discovery of Similar Patterns in SITS

In the first setup, we aimed to discover two types of spatio-temporal evolution related to
the formation of three accumulation lakes in the Bucharest region, namely Morii, Dridu and
Mihailesti. If compared to the Morii and Dridu lakes, Lake Mihailesti has a distinct spatio-temporal
evolution because this accumulation lake was emptied several times (in 1987 and in 1992) during its
construction. The spectro-temporal differences between the two queries can also be observed from
the spectro-temporal signatures shown in Figure 7. In this sense, the user performs two independent
queries, each selected from the regions of interest. The analyzed period of time was between 1984
and 1993 and the dataset considered for retrieval was the short Landsat SITS composed of 10 images
captured in the mentioned period (i.e., one image per year).

The results of the proposed query-by-example retrieval method are shown in Figure 8, whereas
the ground truth is presented in Figure 9. The first row of Figure 8 represents all the DTW distances
measured between the query and the rest of the spatio-temporal sequences, whereas the second row
shows the output of the retrieval system (i.e., after applying the optimal threshold over the DTW
distance image). For a numerical evaluation of the performances reached by the system, we measured
the overall accuracy (OA), the missed alarm rate (MAR) and the false alarm rate (FAR), which are
defined as



Appl. Sci. 2018, 8, 2435 12 of 21
TP+ TN
04 = TP+ TN +FP+FN (17)
FN
MAR = 75=FN (18)
EFP
FAR = o5 Fp (19)

where TP indicates the number of similar spatio-temporal evolutions that were correctly identified,
TN indicates the number of non-similar spatio-temporal evolutions that were correctly identified,
FP is the number of non-similar spatio-temporal evolutions that were determined as similar, and FN
is the number of similar spatio-temporal evolutions that were determined to be non-similar to the
given query.

The results, reported in Table 2, show that the system is able to accurately determine similar
spatio-temporal patterns with respect to the given queries in term of overall accuracy and false
alarm rate. The missed alarm rate can still be decreased if spatial constraints are imposed (i.e., similar
sequences are more likely to be close to the query location, and, conversely, non-similar spatio-temporal
evolutions are likely to be surrounded by other non-similar spatio-temporal evolutions). In this case,
Markov Random Fields models can be employed [1], but they are difficult to use in SITS analysis due
to their computational complexity. In addition, if the searched spatio-temporal evolutions are not
compact (e.g., construction of new buildings), the solution may not achieve satisfactory results.

Table 2. Performance evaluation on short SITS.

OQue Overall Missed False
4 Accuracy Alarm Rate Alarm Rate

Morii and Dridu  99.68% 26.84% 0.23%

Mihailesti 99.36% 30.36% 0.56%

Morii & Dridu lakes

300 :
=
7 200+ =
5
2 100- 4
- 0 J N My SV NSk —— Blue
Mar.30,1982  Sep.20,1987  Mar.12,1993  Sep.02,1998  Feb.23,2004  Aug.152009  Feb.05,2015 Green
Mihailesti lake Red

300 ‘ ‘ ~NR
> — SWIRI
7z 2001 / i ) SWIR2
2 1000 W .

0 B\ i} — q : —

Mar.30,1982  Sep.20,1987  Mar.12,1993  Sep.02,1998  Feb.23,2004  Augl152009  Feb.05,2015

Figure 7. Spectro-temporal signatures during the construction of the accumulation lakes. The two
spectro-temporal signatures are characterized by different temporal evolutions in the period that
corresponds to their construction, namely 1984-1993.
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Figure 8. Pattern discovery in short Landsat SITS. (a) DTW distance image for a query marked inside
the Morii & Dridu accumulation lakes. (b) DTW distance image for a query marked inside Mihailesti
accumulation lake. (c) Pattern discovery using the proposed method for Morii & Dridu accumulation
lakes. (d) Pattern discovery using the proposed method for Mihailesti accumulation lake. In the case
of DTW distance images presented in (a,b), dark color represents similar evolutions and bright color
represents non-similar evolutions, whereas in (c,d), white pixels correspond to spatio-temporal patterns
that are similar to the query, which was selected from the region of interest.
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(@ (b)

Figure 9. Ground truth for short Landsat SITS. White pixels delimit (a) Morii & Dridu accumulation
lakes and (b) Mihailesti accumulation lake.

4.2. Damage Assessment

Undoubtedly, the retrieval of spatio-temporal patterns is extremely important when assessing the
spatial and temporal extent of the transformations suffered by an area. In this experiment, we aimed
to identify the area affected by the floods that occurred in 2000 in the Dobrogea region, Romania, and
to identify their harmful effects over several months. As shown in Figure 5, the first image of the
series was captured immediately after the Danube river swelled, whereas the rest of the images were
acquired after the river began to retreat. The result of the query-by-example retrieval proposed method
is shown Figure 10, along with the corresponding ground truth. The numerical evaluation of the
performance achieved by the proposed algorithm is presented in Table 3 and confirms the effectiveness
of the method for delimiting specific areas, e.g., flooded areas in this particular case. An interesting
aspect is the fact that DTW managed to bypass the problem of distorted data—the region of interest is
partially occluded by clouds in the last image from the series, but the proposed algorithm was still
able to correctly retrieve the spatio-temporal evolutions in the flooded area.

Table 3. Performance evaluation for delimitation of flooded areas in Dobrogea.

Overall Missed False

Query Accuracy Alarm Rate Alarm Rate

Flooded area  99.96% 2.36% 0.13%
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(b)

(c)

Figure 10. Delimitation of areas affected by floods in Dobrogea. (a) DTW distance image for a query in
the flooded area. (b) Delimitation of the affected area using the proposed algorithm. (¢) Ground truth
marking the flooded areas. In the case of DTW distance image presented in (a), dark color represents
similar evolutions and bright color represents non-similar evolutions, whereas in (b) white pixels
correspond to spatio-temporal patterns that are similar to the query, which was selected from the region
of interest.

4.3. Land Cover and Land Use Mapping over Long Time Series

In the third setup, the application scenarios were related to the land cover and land use mapping
using archives of SITS. Among the queries that we experimented with, we recalled the identification of
extra-urban expansion, the demarcation of the urban area, the delimitation of forest areas, the discovery
of agricultural areas, and the search for water bodies that remained unmodified over the years.
However, due to the complexity of the SITS (i.e., containing 88 images captured over 27 years) and of
the queries, the performance of the retrieval algorithm was assessed by visual inspection. The results
shown in Figures 11 and 12 with Figure 6 show that the retrieval system was able to discover the queried
spatio-temporal patterns for land cover and land use mapping even when the data was irregularly
sampled and images were captured under different meteorological and illumination conditions.
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(b)

(c)

Figure 11. Land cover mapping in long Landsat SITS. (a) DTW distance image for a query made inside
the forestry area. (b) Forestry area delimitation using the proposed query-by-example retrieval method.
(c) DTW distance image for a query made in an area covered by water. (d) Water delimitation using the
proposed query-by-example retrieval method. In the case of DTW distance images presented in (a,c),
dark color represents similar evolutions and bright color represents non-similar evolutions, whereas
in (b,d), white pixels correspond to spatio-temporal patterns that are similar to the query, which was
selected from the region of interest.

Figure 12. Cont.
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Figure 12. Land use mapping in long Landsat SITS. (a) DTW distance image for a query made in
the urban area. (b) Urban area delimitation using the proposed query-by-example retrieval method.
(c) DTW distance image for a query made in the extra-urban area. (d) Extra-urban area delimitation
using the proposed query-by-example retrieval method. (d) DTW distance image for a query made
inside the agricultural area. (e) Agricultural area delimitation using the proposed query-by-example
retrieval method. In the case of DTW distance images presented in (a,c,e), dark color represents
similar evolutions and bright color represents non-similar evolutions, whereas in (b,d,f), white pixels
correspond to spatio-temporal patterns that are similar to the query, which was selected from the region
of interest.

4.4. Comparison with Other State-of-the-Art SITS Analysis Methods

As mentioned in the Introduction, the DTW-based K-means algorithm [7] and the LDA-based
method described in [12] are unsupervised clustering methods for SITS analysis. We show a series
of results obtained by applying the above mentioned methods over the experimental datasets in
Figures 13-15. Following the recommendations in [12], the number of clusters considered was 15 and
the dictionary was formed of 150 words. In the case of the DTW-based K-means method, we used the
same number of clusters as for the LDA-based method.

As it can be observed in Figure 15, both algorithms produce land use and land cover maps,
for which the assignation of a temporal meaning (i.e., action name or evolution name) to the clusters
is a difficult task to accomplish. Moreover, the extraction of particular temporal evolutions is not
easy, since, most often, the spectral and spatial characteristics inhibit the temporal properties of
spatio-temporal evolutions. This happens mostly when the number of clusters, K, is small. However,
in both cases, using a greater K leads to inconsistent results and to oversegmentation of the images
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caused by nonhomogeneus spatio-temporal evolutions, cloud cluttering, noise, different illumination
conditions, or seasonal changes. Our proposed approach aims to overcome these drawbacks by

retrieving specific spatio-temporal evolutions that, at the end of the retrieval process, will receive the
semantic label of the query.

(a)

Figure 13. Analysis of short Landsat SITS: (a) DTW-based K-means clustering [7], (b) LDA-based
clustering [12].

(a)

Figure 14. Analysis of Dobrogea SITS: (a) DTW-based K-means clustering [7], (b) Latent Dirichlet
Allocation (LDA)-based clustering [12].
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(a) (b)

Figure 15. Analysis of long Landsat SITS: (a) DTW-based K-means clustering [7], (b) LDA-based
clustering [12].

The LDA-based method performs an analysis of change map time series that is determined by
applying different similarity measures. However, these similarity measures do not take the temporal
extent of a transformation into account. This explains the insertion of the two different evolutions
related to the building of accumulation lakes Morii & Dridu and Mihailesti into the same cluster as
can be observed in Figure 13b. The DTW-based clustering divides the evolution of Mihailesti lake
into two classes, one that corresponds to Morii & Dridu evolution and one that captures the evolution
of Bucharest city. The SITS analysis method proposed in this paper is able to determine an optimal
threshold that separates the two types of evolution related to the construction of the accumulation
lakes to separate them from other types of evolutions. In contrast, the proposed query-by-example
distinguishes between the two different spatio-temporal patterns, whose dissimilar evolutions can be
observed in the corresponding spatio-temporal signatures shown in Figure 7.

In the second use-case scenario, the DTW-based K-means method includes the flooded region in a
category containing a portion of the Black Sea captured on the right hand side of Figure 14a, whereas
the LDA-based analysis does not distinguish this particular evolution from the rest of evolution
patterns. Therefore, this event is not marked as a separate cluster of spatio-temporal evolutions on the
resulting maps shown in Figure 14. On the contrary, the proposed query-by-example retrieval method
also shows its potential in this use-case scenario by clearly delimiting the affected area and allowing
estimation of the damaged surface.

4.5. Final Remarks

Finally, the running time for performing a query-by-example retrieval over the short Landsat
SITS is 1 min 18 s/query, whereas over the long Landsat SITS, the running time is 10 min/query.
The running times are considerably smaller than those required to perform unsupervised clustering
of the spatio-temporal evolutions using the DTW-based K-means algorithm with K = 15 classes,
as presented in [7] (i.e., 38 min 17 s for the short SITS and approximately 16 h for the long SITS).
A shorter running time was registered for the LDA-based method—almost 25 min for short SITS and
approximately 2 h for the long SITS.

5. Conclusions

In this paper, we described an effective query-by-example retrieval system that can be used for
the exploitation of Earth Observation SITS. The strategy is based on a two-step procedure. The first
step consists of measuring the degree of similarity between a query provided by the user and other
spatio-temporal evolutions in SITS. The second step consists of separating similar and non-similar
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patterns via an optimal thresholding technique applied over the DTW distance image obtained in the
first step.

The experiments showed that, even if the SITS is irregularly sampled, affected by clouds or haze,
or if the acquisitions are performed in different seasons and under different illumination conditions,
the method is able to recognize specific patterns in SITS. In order to show the effectiveness and
applicability of our proposed retrieval method, we considered several application scenarios. First, we
considered the problem of retrieving similar spatio-temporal patterns from the SITS by analyzing a
specific case, namely the construction of two accumulation lakes with different histories. In the second
scenario, we exploited the proposed method to assess the damage that floods produce over a region.
This is a typical scenario in emergency situations when a fast and effective evaluation of the affected
areas is mandatory. In the last scenario, we considered long SITS and aimed to build land cover and
land use maps that provide fundamental information for many applications, including change analysis,
crop estimation, sustainable management of natural resources, and urbanization planning.

Being characterized by a low computational complexity, the proposed method for retrieving
similar spatio-temporal evolutions based on a specific query represents a good candidate for the online
analysis and annotation of SITS. Moreover, the method is designed to use the entire information
provided by a multispectral remote sensing sensor, regardless of the number of spectral bands.
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Abbreviations

The following abbreviations are used in this manuscript:

SITS Satellite Image Time Series
USGS  United States Geological Survey
DTW  Dynamic Time Warping

LDA  Latent Dirichlet Allocation
SVM  Support Vector Machine

ML Maximum Likelihood

MLE Maximum Likelihood Estimation
EM Expectation-Maximization

OA Overall Accuracy

MAR  Missed Alarm Rate

FAR False Alarm Rate
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