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Abstract: Unmanned aerial vehicle (UAV) cooperative control has been an important issue in
UAV-assisted sensor networks, thanks to the considerable benefit obtained from the cooperative
mechanism of UAVs being applied as a flying base station. In a coverage scenarios, the trade-off
between coverage and transmission performance often makes deployment of UAVs fall into a
dilemma, since both indexes are related to the distance between UAVs. To address this issue,
UAV coverage and data transmission mechanism is analyzed in this paper; then, an efficient
multi-UAV cooperative deployment model is proposed. The problem is modeled as a coalition
formation game (CFG). The CFG with Pareto order is proved to have a stable partition. Then,
an effective approach consisting of coverage deployment and coalition selection is designed,
wherein UAVs can decide strategies cooperatively to achieve better coverage performance.
Combining analysis of game approach, coalition selection and the position deployment algorithm
based on Pareto order (CSPDA-PO) is designed to execute coverage deployment and coalition
selection. Finally, simulation results are shown to validate the proposed approach based on an
efficient multi-UAV cooperative deployment model.

Keywords: UAV-assisted sensor network; UAV cooperative coverage; coalition formation game;
stable coalition partition; Nash equilibrium

1. Introduction

The past few decades have witnessed rapid development of application of unmanned aerial
vehicles (UAVs), popularly known as drones. Given the characteristics of small volume, high mobility
and low energy consumption, UAVs have been widely utilized in public, civil and military
applications [1–3]. In particular, with proper deployment and operation, UAVs can provide reliable and
efficient wireless communication solutions for various real-world scenarios. Furthermore, UAVs can
act like self-organizing sensor nodes, and efficiently carry out the pre-assigned tasks [4]. For instance, in
public safety scenarios (earthquake, volcano, military attack, etc.), UAVs can be utilized as flying base
stations, and replace damaged communication infrastructure and guarantee information dissemination
for UAV-assisted sensor networks [5,6].

Note that single UAV often fails to meet the need of complicated missions such as area coverage,
communication connectivity and relay deployment. To address this issue, the large scale of UAVs
are required to form groups (formations) to execute missions under different requirements. In [7],
a multi-UAV cooperative model was presented to work out search and surveillance issues. Authors
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in [8] considered the information consensus under multi-UAVs communication noise, and constructed
it as a signal-to-noise ratio model for UAV cooperative target tracking. The authors in [9] proposed a
cooperative detection model which consisted of target identification and time control.

UAV area coverage problems were studied in [10–14]. Under the circumstance of cooperative
multi-UAV coverage deployment, missions such as investigation, communication and mapping can
be accomplished well. The most important part of the UAV area coverage problem is the evaluation
of coverage ability. In [10], the authors described the ratio of coverage area and given area as
the evaluation of UAV coverage ability, which is one of the most common evaluations. Notably,
characteristics of mobility and line-of-sight (LOS) enable UAVs to support terrestrial networks for
information dissemination and connectivity enhancement [15–17]. Given the fact that the ground
communication infrastructure will be destroyed during natural disasters, it is critical for UAVs to
perform efficient coverage deployment and execute searching and rescue operations.

In the above scenarios, UAVs arrive at the designated position according to task demand and
perform coverage tasks such as data collection. Next, the information (data, etc.) will be forwarded
to the central UAV through the UAV-to-UAV link. Note that UAVs can carry limited energy, and the
energy consumed by information transmission must be minimized based on mission requirements.
Therefore, the data transmission mechanism should be well constructed in UAV communication.
In general terms, as the transmitting distance grows, the energy consumption of UAVs will increase
exponentially. To avoid high energy consumption, an effective technical solution is proposed in
[18], utilizing some UAVs as relays. However, it remains challenging to deploy UAVs and design
transmission mechanism due to the complex cooperative behaviors among UAVs.

Motivated by the design of the cooperative mechanism, with which authors significantly reduce
the overhead of spectrum acquisition in [19,20], we adopt the coalition formation game (CFG) to
describe the relationships between UAVs. Further work about data transmission mechanism design
is introduced in [21]. However, unlike the studies above, the coalition is constituted by considering
coverage reward and corresponding energy consumption among UAVs in this work. The object of
CFG is to study the network coalition structure to optimize performance [22], which can be the basis
for investigating cooperative behaviors of UAVs.

Research has been done to study CFG in UAV networks. The authors in [4] proposed a novel
CFG model in data collection and transmission, where UAVs are sent to serve randomly located
missions, collect data and transmit it to a central command through wireless communication. In [23],
the authors took the aerial back haul scheme among UAVs as the mechanism of network formation
game, and proposed a model that utilizes UAVs as an on-demand flying network, where UAVs seek
to form a multi-hop back haul network in the air. However, the current research of CFG has focused
on connectivity enhancement, data transmission improvement and routing, but without considering
the trade-off between the coverage reward and energy consumed by transmission in UAV networks.
In that situation, we jointly consider a communication coverage and data transmission scenario in the
UAV-assisted sensor network, and propose an efficient cooperative UAV deployment model based on
coalition formation. The key of coalition formation is to describe the relationships between coverage
reward and energy consumption.

The main contribution in this paper can be summarized as follows:

• An efficient cooperative multi-UAV deployment model based on coalition formation is proposed,
describing the trade-off between the coverage reward and energy consumption in UAV-assisted
network. Coverage utility function is characterized as a reference for coalition formation to
accurately depict the transmission model.

• Through game analysis, the stable solution of the proposed system model is proved to exist.
The proposed UAV coverage and data transmission approach can achieve at least one stable
coverage deployment and coalition formation scheme to maximize the coverage utility of the
whole UAV network.
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• Coalition selection and position deployment algorithm based on Pareto order (CSPDA-PO) is
designed to perform coalition selection and position deployment. The CSPDA-PO algorithm is
able to achieve the stable state of our system model. Meanwhile, convergence of the proposed
algorithm is also shown in the simulation.

Note that authors in [7,24] did some works that are relevant to our work, especially in constructing
the UAV coverage model, including evaluation of coverage ability and deployment mechanism.
The main differences can be summed up to: (i) the UAV deployment is not only concerned with the
coverage ability, but also the coalition formation under the comprehensive coverage reward and energy
consumption; and (ii) the energy consumption model for transmitting and receiving through radio
frequency (RF) signals is introduced into coalition formation mechanism, which is associated with
coverage reward under current deployment.

The rest of the paper is organized as follows: Section 2 shows the system model of multi-UAV
cooperative deployment and problem formulation. In Section 3, a coalition formation game approach
for the system model is analyzed, and the learning algorithm is designed to converge the proposed
problem to the stable state. Simulation results and analysis are presented in Section 4. Finally,
the concluding remarks are given in Section 5.

2. System Model and Problem Formulation

We consider a UAV-assisted sensor network employing N distributed UAVs and one central
control UAV, where UAV groups perform reconnaissance and data collection tasks under disaster
scenarios. UAVs communicate with each other through radio frequency (RF) signals of wireless sensors.
The sensor devices are equipped on UAV’s fuselage. Sensor devices have limited battery power and
data processing capabilities. They can also acquire the location of other sensor nodes (UAV). The UAV
groups need to collect data information by covering the ground. Here, UAV’s coverage capability is
determined by observation thresholds. Then, the data traffic collected by distributed UAVs is sent
to the central UAV for processing. Due to the huge energy consumption caused by long distance
transmission, it requires forming groups and utilizes some UAV sensor nodes as relays to carry out
data transmission.

For the cooperative multi-UAV deployment example showed in Figure 1, there are seven UAVs
performing coverage mission and uploading the collected information data to the upper central UAV.
Due to the limited energy of sensor devices, UAVs need to form groups to cooperate. In this case,
some UAVs are used as relays to optimize the energy consumption of data transmission. In particular,
the high transmission energy consumption between UAVs that are too far apart (such as UAV 1 and
UAV 7) prevents the formation of the grand coalition. Therefore, it makes sense to consider the
coalition formation by optimizing the coverage utility of the UAV network.

To facilitate computation, we discretize the continuous area I ∈ R2, which is uniformly meshed
and divided into cells, and each cell i’s width is lw and is identified by the position of its center
g∗i = {xi, yi, hi}. Denote the number of available coalitions as M, 1 ≤ M ≤ N, and the set of UAVs as
N , i.e., N = {1, 2, . . . , N}, and the set of available coalition asM, i.e.,M = {1, 2, . . . , M}. The serial
number of the central UAV is set to 0. For each n ∈ N , let cn denote UAV n’s coalition selections,
gn = {xn, yn, hn} denotes UAV n’s three-dimensional position. Hence, the UAV n’s state is defined
as sn = {gn, cn}. For each m ∈ M, let COm denote the set of UAVs which select coalition m for data
transmission, i.e, COm = {n ∈ N : cn = m}. In addition, the central UAV’s position is denoted as
g0 = {x∗, y∗, h∗, h∗ > h}.

For each i ∈ I, suppose that σ(i) is the importance (traffic, etc.) of mission cell i, and is denoted
by the form of a normalized density function. For simplicity, we set Uξ as the reward for UAV set ξ

completing the coverage of mission area I successfully, which is given as follows [1]:

Uξ =
∫
I

h
(

min
n∈ξ
‖gn − g∗i ‖

)
σ(i)di, (1)
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where

h(‖gn − g∗i )‖) =
{

1, ‖gn − g∗i )‖ ≤ Rn,
0, otherwise.

(2)

Equation (2) indicates that, as long as area i is within the detection range of UAV n in the network,
it will be considered successfully covered by UAV n with all data traffic collected. Hence, Uξ represents
the coverage performance (says reward) of mission area I under UAV set ξ. In particular, the overall
coverage reward of UAV network is UN .

Central 

controller Mission area

i

UAV communication

Data traffic

Figure 1. A diagram of unmanned aerial vehicle (UAV) coverage in a mission area.

From the above description, data traffic collected by distributed UAVs will be transmitted through
the UAV-to-UAV link to the central control UAV for processing. In the UAV-assisted sensor network,
most of the power energy consumed by wireless sensors is derived extensively from a transmission
operation that consists of sending and receiving. Therefore, motivated by the work in [25], we adopt
expressions to estimate the energy consumption for transmitting and receiving of each sensor node
through RF signals, which are given by:

Receiving :Er = E0,

Transmitting :Et(di,j) =

{
E0 + εs · d2

i,j, di,j < d0,
E0 + ε l · d4

i,j, di,j ≥ d0,

(3)

where di,j represents the distance between UAV i and j, E0 is the energy consumed by radio when
performing transmitting and receiving. εs and εt represents the energy consumed by transmitting one
bit of data at a shorter distance and at a longer distance, respectively.

Thus, consider the data transmission through link of UAV i and UAV j, the overall energy
consumption per bit of data is derived as follows:

E(di,j) = Er + Et(di,j). (4)
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In a coalition, cluster head UAV plays an important role in connecting coalition members and the
upper central UAV, so as to achieve data transmission. Suppose that the overall energy consumption
function of the whole network is defined as follows:

E0 =
M

∑
m=1

(
∑

n∈COm

(E(dn,clm) ·UN ) + E(d0,clm) ·UCOm

)
, (5)

where clm represents the coalition m’s cluster head UAV, Un and UCOm is UAV n and UAV set COm’s
mission reward, indicating the data traffic they collect. Equation (5) contains two items: the first item
represents the energy consumption of data transmission, which is collected from coalition m’s cluster
member UAV to m’s cluster head UAV. The second item represents the energy consumption of data
transmission, which is transmitted from coalition m’s cluster head UAV to the upper central UAV.
Therefore, Equation (5) reflects the overall energy consumption of the whole UAV network when all
data are transmitted to the central UAV.

From the above formulation, it can be concluded that UAV deployment is affected by the
importance of ground data traffic distribution, while the energy consumption of the path is also
limited by the communication distance between UAVs. When the battery can’t support long distance
UAV communication, the deployment of UAV coverage can be severely affected, making our proposed
problem fall into a dilemma. It is meaningful to accurately characterize the relationships between
coverage reward and energy consumption. Therefore, according to Equations (1) and (5), we have the
whole UAV network’s coverage utility:

U1 = UN − ρ · E0, (6)

where ρ represents the weight coefficient, indicating the importance of reward and transmission energy
consumption. Here, ρ is calculated and measured from parameters of UAVs and mission requirements
environment. Therefore, the setting of ρ decides the mission requirements and has a strong reference
value of weighing the gain and cost. It should be pointed out that some constraints for both variables
can be set under the condition of driven mission, such as a guarantee of minimal reward and limitation
of maximal energy consumption. For intuitive comparison, the object of this model is maximizing the
whole UAV network’s coverage utility through adjusting UAVs’ state:

G : sopt
n = arg max U1, n ∈ N . (7)

Here, solving G can obtain an efficient multi-UAV deployment and coalition transmission
mechanism, which makes UAVs achieve better coverage reward without producing much energy
consumed by data transmitting and receiving.

3. A Coalition Formation Game Approach for Coverage Utility Maximization

Notably, solving G is challenging due to the enormous strategies (positions and coalitions), an
effective method is required to simplify the process: Step 1 (Reward optimization): Carry out coverage
optimization deployment under current coalition formation. Step 2 (Coverage utility maximization):
Under the fixed deployment of UAVs, the coalition selection method is considered to maximize U1.
Step 3: Repeat the above steps until U1 reaches maximization. This approach can not only avoid the
computing complexity caused by multi-strategies, but also be able to work out the optimal solution
of G.

In distributed multi-agent control system, players interact with each other and make
self-determined strategies. Motivated by that, the proposed UAV efficient deployment problem can be
formulated as a game. According to Equation (6), the utility function consists of two items, and we
focus on achieving global optimization. Formally, the game is denoted by G = (N , {Sn}n∈N , {un}n∈N ),
where N = {1, 2, . . . , N} is a set of UAVs, Sn = Gn ⊗ Cn (⊗ is Cartesian product) represents a set of
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available joint state profiles, where Gn and Cn = {1, 2, . . . , M} represent a set of the available positions
and coalitions for each UAV n, respectively. Denote an element of Gn and Cn as gn and cn. un represents
the utility function and can be expressed as un(sn, s−n), where sn ∈ Sn represents the state selection of
UAV n and s−n ∈ S1⊗ S2⊗ · · · ⊗ Sn−1⊗ Sn+1⊗ · · · ⊗ SN is the state profiles of all the UAVs excluding
n, the same is true with g−n and c−n.

Definitions are given in the following to analyze the properties of the coalition formation game.

Definition 1 (Coalition formation game, CFG [22]). A (hedonic) coalition formation game is given by a
pair (N , P), where P = (�1,�2, . . . ,�n) denotes the preferences profile, specifying for each player i ∈ N its
preference relation �i.

It should be noted that a coalition partition is denoted as a set Π = {COm}M
m=1 which partitions

N, where the subsets COm are called coalitions and are disjoint. Let COΠ(i) denote the set COm i.e., if

∀i ∈ N : COm ∈ Π, i ∈ COm. (8)

Apparently, G is a typical CFG. UAVs in G make decisions through different preference relations,
and form different coalition partitions. However, first of all, the UAV deployment should be discussed
first given the coalition partition Π.

3.1. Analysis of the Mission Reward Maximization

(1) Utility Function: As discussed before, each UAV prefers a higher coverage performance and
less energy consumption of transmission. Accordingly, we consider the UAV n’s marginal coverage
contribution and measure the coverage utility of mission area I of UAV n as follows:

u∗n(gn, g−n) =
∫
I

h
(

min
k∈N

(‖gk − g∗i ‖
)

σ(i)di−
∫
I

h
(

min
k∈N\n

(‖gk − g∗i ‖
)

σ(i)di− ρ · E0(COn). (9)

In Step 1, given the method that coverage optimization deployment should be done before
coalition selection each loop, we have the following equation:

P1 : max u∗n(gn, g−n). (10)

(2) Analysis of G1: Considering that the cooperative behaviours among UAVs should be well
depicted, a potential game is adopted, which applies to a distributed multi-agent system and can
associate with the local utility and global utility of each participant [26]. Hence, combining with the
distributed self-organizing characteristics of UAVs, the whole system can make decisions to achieve
more efficient performance. Here, the definition of Nash equilibrium (NE) is shown in the following,
indicating the steady state of a noncooperative game.

Definition 2 (Nash equilibrium (NE) [27]). A position selection profile g∗ = (g∗n, . . . , g∗−n) is a pure
strategy NE of game G1 = (N , {Sn}n∈N , {u∗n}n∈N ) if and only if no player n can improve its utility by
changing its states, i.e.,

u∗n(g∗n, g∗−n) ≥ u∗n(gn, g∗−n), ∀n ∈ N , ∀gn ∈ Gn, gn 6= g∗n. (11)

Definition 3 (Exact potential game (EPG) [28]). For utility function u∗n(gn, g−n) in a game G1 =

(N , {Sn}n∈N , {u∗n}n∈N ), if there exists a potential function φ : Gn → R, for arbitrary position strategy
selection changes from gn to g′n, the following equation is true:

u∗n(gn, g−n)− u∗n(g′n, g−n) = φ(gn, g−n)− φ(g′n, g−n), ∀n ∈ N , ∀Gn, g′n ∈ Gn. (12)
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Then, this game is called exact potential game and has at least one NE point.

Lemma 1. Given that the current coalition partition Π, G1 is an EPG and has at least one NE point.

Proof. Here, we construct the potential function as follows:

φ(gn, g−n) =
∫
I

h
(

min
k∈N
‖gk − g∗i )‖

)
σ(i)di− ρ · E0(CO), (13)

which also represents the global coverage utility of UAV network. Assume that an arbitrary UAV n
changes its position profile from gn to g′n; then, we have the following formulation:

u∗n(gn, g−n)− u∗n(g′n, g−n) =
∫
I

h
(

min
k∈N

(‖gk − g∗i ‖
)

σ(i)di−
∫
I

h
(

min
k∈N ,gn=g′n

(‖gk − g∗i ‖
)

σ(i)di

−
∫
I

h
(

min
k∈N\n

(‖gk − g∗i ‖
)

σ(i)di +
∫
I

h
(

min
k∈N\n,gn=g′n

(‖gk − g∗i ‖
)

σ(i)di + ρ · (E0(CO′n)− E0(COn)).
(14)

Intuitively, for each UAV k ∈ N\n, its individual coverage performance is completely unaffected
by the above action changes, in addition to the energy consumption of UAV set COk, k ∈ N \ cn. Thus,
the results of the last four items from Equation (14) are identical: zero. Then, we derive the following
equation according to Equations (13) and (14):

u∗n(gn, g−n)− u∗n(g′n, g−n) = φ(gn, g−n)− φ(g′n, g−n). (15)

The work for the proof has been done in [7]. Therefore, according to Definition 3, G1 is an EPG with
coverage utility UI serving as the potential function. It can be concluded that P1 has at least one NE
point. Note that the designed potential function refers to overall coverage utility. Hence, the NE
solution of P1 turns to be the pure strategy NE point of G1. which can be effectively helpful for the
proof of the stability in the proposed model G.

Motivated by the learning algorithm design in [7], we introduce a coverage optimization
deployment algorithm based on binary log-linear learning (CODA-BLL) (Algorithm 1) to execute
coverage maximization deployment. The proposed algorithm is mainly based on the binary log-linear
learning, which was proved to guarantee convergence of Nash equilibrium [7,29]. Given the current
coalition selection profiles, the algorithm is executed one time to explore an optimal deployment for
coverage utility per loop. Here, we design Equation (16) as the UAVs’ position selection probability
function, where β is the learning parameter (β > 0):

qg
n =

exp{βu∗n(gn, g−n)}
exp{βu∗n(gn, g−n)}+ exp{βu∗n(g′n, g−n)}

. (16)
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Algorithm 1. One time coverage optimization deployment algorithm based on Binary log-linear
learning (CODA-BLL).

Initialization: Input UAVs’ current state profiles {sn}n∈N .
Step 1: Randomly select UAV n, calculate its coverage performance u∗n(gn, g−n) of current UAV
deployment state according to Equation (9).
Step 2: For selected UAV n, choose an expected action g′n from the Gn. The selected UAV n computes
its current coverage performance u∗n(gn, g−n) and the expected utility u∗n(g′n, g−n) according to
Equation (6).
Step 3: UAV n choose a position deployment according to Equation (16) and update its state gn.
Step 4: Output UAVs’ state {sn}n∈N .

3.2. Analysis of the Stable Coalition Partition

(1) Utility Function: In Step 2, under fixed deployment, UAV n’s individual energy consumption
can be expressed as follows:

T1(cn) = ∑
k∈COΠ(n)

(E(dk,clcn
) ·Uk) + E(d0,clcn

) ·UCOΠ(n), (17)

where gcl
cn represents the three-dimensional position of coalition cn’s cluster head UAV. T1(cn)

represents the coalition cn’s data traffic energy consumption from the terrestrial to the central controller.
Then, for each UAV n ∈ N , it makes coalition selection through its individual coverage utility,

which can be derived as follows:

un(cn, c−n) = u∗n(gn, g−n)− ρ · E0(cn). (18)

In Definition 1, the preference relation is introduced, which decides whether a player prefers to
join or leave the coalition. Notably, the preference relation can affect the convergence and the stable
state of the final structure of CFG [30]. Next, an ordinary preference order called Pareto order is
adopted to analyze the property of the proposed game model.

Definition 4 (Pareto order). In CFG, its preference relation �n satisfies Pareto order if for each player n ∈ N
and all coalition partition CO′, CO ∈ Π, there exists the following formula:

CO �n CO′ ⇐⇒un(CO) > un(CO′) ∧ ui(CO) > ui(CO \ n), ∀i ∈ CO \ {n},
ui(CO′) < ui(CO′ \ n), ∀i ∈ CO′ \ {n}.

(19)

In Pareto order, each player n obeys the principle that they won’t make strategy damage the utility
of other players i in the original or new coalition. Hence, the profit of all coalition partition will not
decrease. Due to the limited profit players can get, Pareto order can be a very strong proof of stable
coalition partition.

The UAVs’ coalition selection satisfies the definition of preference profiles, which also indicates
that G2 is a typical CFG according to Definition 1. Typically, in a CFG, the most important part is
the formation criteria, which determines the structure of coalitions. Here, we consider the Pareto
order [31], which rests with the preference on the individual payoffs of the players rather than the
coalition value [22]. Afterwards, the coalition formation rule is required when the preference order is
determined.

Authors in [32] introduced a merge and split rule, which is used for forming or breaking coalition.
Both rules focus on the profits of all the players in the coalition. For example, any pair of coalition
CO and CO′ can be merged into one coalition when all the players have an increased profit. On the



Appl. Sci. 2018, 8, 2427 9 of 16

contrary, a coalition can be split into coalition CO and CO′ since each players in their new coalition
can achieve a better profit. It is noted that, according to Equation (18), for each UAV n, the first item of
its individual coverage utility function is fixed due to the stability of G1.

(2) Analysis of CFG: In this part, we analyze the stability of the proposed CFG through the given
preferences and rules, and then solve the problem.

Definition 5 (Stable coalition partition [19]). A partition Π is said to be stable if no player can improve its
utility by arbitrarily change its strategy, i.e., if

un(cn, c−n) ≥ un(cn, c′−n), ∀n ∈ N , ∀cn, c′n ∈ Cn, cn 6= c′n, (20)

then Π is thought to have a stable coalition partition.

Theorem 1. With the preference relation of Pareto order, the CFG G2 can be converged to the stable
coalition partition.

Proof. (1) Note that, given the coalition selection profiles {cn}n∈N of UAVs in Step 1, the reward
maximization model G1 is proved to be an EPG and has at least one NE point through Lemma 1.
According to Definition 2, there exists at least one position selection profile for UAVs if and only if no
UAV n can improve its utility by changing its state under the current coalition selection.

(2) In the coverage utility maximization step, the utility function can be derived as un(cn, c−n)

since UAVs’ deployment is determined. Based on the above description, Pareto order is used for
coalition selection while each UAV n take un(cn, c−n) as its payoff. In the above description, the sets of
players (UAVs) and strategies ({Cn}n∈N ) are limited, and Pareto order can improve current coalition’s
utility without damage any other UAVs, so that the profit of all coalitions can finally converge to a
peak. Denote CO∗ as the final coalition partition. If CO∗ is not stable, then there exists a UAV, says n,
whose arbitrary change will improve un(CO∗), which contradicts the previous argument of limited
profit. Finally, we can conclude from Definition 5 that there exists a stable coalition partition Π in CFG
G2 with Pareto order.

3.3. Algorithm Design of CFG Model

Based on the existence of the stable state in the above section, next we are going to solve the stable
stable of G by designing an algorithm. However, due to the diversity of UAV set and strategy sets
(position and coalition), the kind of optimal selection approach often falls into a trap loop, that is,
local optimum.

In that case, learning algorithms need to be applied to explore the stable state of game. Motivated
by the exploring mechanism of a distributed learning algorithm called spatial adaptive play (SAP)
in [27], we designed a coalition selection and position deployment algorithm based on Pareto order
(CSPDA-PO) to converge the proposed model to the stable coalition state. In each iteration of the
algorithm, the chosen UAV updates its coalition selection and makes a comparative update under
Pareto order, while all the other UAVs maintain their current selection strategy. Learning from Theorem
1, the stable solution of P1 can be solved out. In the following table, Algorithm 2 demonstrates
procedures of CSPDA-PO. In Equation (16), qg

n(t) represents the coalition selection probability function
of UAV n. β is the learning parameter (β > 0).

Combining the existence of NE in G1 with the existence of stable coalition partition in G2,
our proposed method can converge the problem P1 to a stable state solution.
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Algorithm 2. Coalition selection and position deployment algorithm based on Pareto order
(CSPDA-PO).

Initialization: Set j = 1 and the position of central UAV gcen, initialize UAVs’ state sn = {gn, cn, n ∈ N}
and mission area I’s state σ(i), i ∈ I. Specially, each UAV n ∈ N chooses different coalition from Cn.
Loop:
Step 1: All UAVs in the network exchange information (coverage deployment and coalition selection)
with each other.
Step 2: Randomly select one UAV at each iteration, says n. Input UAVs’ current position profiles
{sn}n∈N to Algorithm 1 and obtain optimal coverage deployment {sopt

n }n∈N under given coalition
selections of UAVs. {sn}n∈N ←− {s

opt
n }n∈N .

Step 3: All the other UAVs repeat the previous coalition selection, i.e., ck(j + 1) = ck(j), k ∈ N\n. For
the choosing UAV n, it changes its coalition selection to c′n ∈ Cn\cn. Update s′n = {gopt

n , c′n} and input
{s′n}n∈N to Algorithm 1, obtain optimal coverage deployment sopt

n under a given coalition selection
for UAV n. {s′n}n∈N ←− {s

opt
n }n∈N .

Step 4: Set CO = COcn , CO′ = COc′n ; then, UAV n calculates its coverage utility un(j) on the original
and expected coalition and updates its strategy according to Definition 4 (Pareto order), where the
relationships of utility are explored using probability formula according to Equation (21):

qc
n(j) =

exp{βun(cn, c−n)(j)}
exp{βun(cn, c−n)(j)}+ exp{βun(c′n, c−n)(j)} , (21)

where β is the learning parameter (β > 0) and can be used to adjust convergence performance and
speed.
Step 5: j = j + 1. If the stop criterion* is satisfied, output UAVs’ state {sn}n∈N ; otherwise, go to Step 1.

* Stop criterion can be described as the following rules: qc
n(j) is more than a certain value like 0.98 or j

reaches a predefined maximum number of iteration steps.

4. Simulation Results and Discussion

In this section, we carry out simulations to verify the convergence and effectiveness of our
proposed approach. Given the simulation parameters in [25], we set E0 = 50 nJ/bit, εs =

10 (nJ/bit/m2), ε l = 10 (nJ/bit/m4). The mission area is uniformly divided into 50 × 50 cells
(each cell’s width is 10 m). We consider a UAV network consisting of one central control UAV(

gcen = (15, 15, 40)(×10 m)
)

and a certain number of UAVs for data collecting and transmission,
whose flying altitudes are all set to 30 (×10 m). All UAVs’ detection ranges are set to be 50m.
The amount of data traffic per unit coverage reward is denoted as 1000 MB.

4.1. Diagram Form

Assume that the prior information of the mission area is known. In particular, a probability
density function (PDF) which obeys the normal distribution is intended to describe the importance
(data traffic) in the mission area. Figure 2a shows the color-coded display of the density map for the
mission area, where the length of each mission cell is 10 m, and σi is denoted as the normalized density
of overall data traffic.

Figure 2b–d illustrates deployment and coalition formation diagram of 10 UAVs under different
values of weight coefficient ρ. The coloured circles represent the UAVs’ detection range, that is,
coverage ability. These figures depict the formation of UAV coalitions and the way data are transmitted.
Coalition member UAVs (black dots) send their data to the coalition head UAVs (green triangles),
which upload the data to the central UAV (red star). It can be seen that, as ρ increases, the UAVs’ state
is more inclined to forming a coalition to minimize the energy consumption, while a mission reward
becomes lower. We analyze that, in Equation (18), UAVs’ whole coverage utility is determined by
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mission reward and energy consumption. After taking the partial derivative of Equation (18), ρ is the
indicator that determines the marginal utility of mission reward and energy consumption.
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Figure 2. The diagram of 10 UAV deployment and coalition formations under the proposed algorithm:
(a) Color-coded display of the density map for the mission area; (b) UAV deployment and coalition
formations with ρ = 0.1× 10−5; (c) UAV deployment and coalition formations with ρ = 1× 10−5; (d)
UAV deployment and coalition formations with ρ = 2.5× 10−5.

4.2. Basic Performance

In order to better reflect the performance of the proposed approach in UAVs’ coverage deployment
and coalition formation, we introduce the coverage reward based deployment approach for comparison.
In the comparison approach, the coverage utility only depends on the mission reward and there is
no coalition formation mechanism. In order to achieve better contrast, we assume that the coverage
reward under the comparison approach converges to that of the proposed approach. Under this
premise, we evaluate the overall energy consumption and coverage utility for the specific mission
area showed in Figure 2a. As mentioned above, the weight coefficient ρ is the parameter that needs to
be calculated and measured from parameters of UAVs and mission environment. For convenience,
performance comparisons considering different weight coefficients are paid as reference. To prevent
contingency, both algorithms are performed on 100 independent trials; then, the mean results are
acquired. Here, we observe some important results from the figures and draw conclusions from the
analysis.

Figure 3a,b demonstrates the comparison results. In Figure 3a, as the weight coefficient ρ scales
up in the beginning, the overall coverage reward UN of the proposed approach decreases due to the
increased importance of energy consumption. Meanwhile, the overall reward of comparison approach
tends to be the same as UN , as can be expected. In particular, in the late stage (ρ = 3.5× 10−5 ∼
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4.5× 10−5), UAVs are no longer keen to cover high-yielding areas since the importance of energy
consumption is extremely high, which makes UAVs form a stable deployment state.

In Figure 3b, the comparison result shows that the proposed approach can achieve a lower energy
consumption E0. We analyse that the existence of coalition formation mechanism makes the energy
consumption of the proposed approach much less than that of the comparison approach. As the weight
coefficient scales up, E0 decreases rapidly at first. It suggests that the whole UAV network has a bigger
tendency to form coalitions when the weight coefficient increases. Another discovery is that, as weight
coefficient ρ scales up, energy consumption under the coalition formation mechanism tends to be
steady due to the limited data traffic UAV collection.
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Figure 3. Performance comparison of algorithms based on weight coefficients (10 UAVs).

According to the above results and Equation (6), the comparison of coverage utility is shown
in Figure 4, which is an important indicator of the whole UAV network. This figure shows that
coverage utility under all approaches decreases as the weighting coefficient increases in the beginning,
while the proposed approach can achieve higher coverage utility under the same weight coefficient.
This suggests that, without a guarantee of coalition formation mechanism, the system will obtain a
fair reward, but, at the same time, needs more energy consumption, so that the coverage utility is less.
Likewise, in the late stage (ρ = 3.5× 10−5 ∼ 4.5× 10−5), the coverage utility of the proposed approach
tends to be stable since the coverage reward and energy consumption is in a stable state.

Figure 5a,b shows changes in overall coverage reward and overall coverage utility for different
numbers of UAVs, respectively. From the figure, we observe that the coverage performance improves
as the number of UAVs increases, which are consistent with the fact that more UAVs are able to collect
more data information from the ground. However, when the number of UAVs reaches a certain number,
the increase in coverage utility will slow down until eventually declining. The main reason says that
there is an upper bound for coverage reward due to the limited data information. Meanwhile, in the
coalition structure, more UAVs mean more transmission paths, and the high-energy consumption
of the increasing transmission paths will make it worthless. Note that the model with the increase
of weighting coefficients will also make the model focus more on energy consumption, so coverage
utility will decrease with the increase of the weighting coefficient, even reaching the “saturated” state
in advance (e.g., eleven UAVs with ρ = 1.3× 10−5 and twelve UAVs with ρ = 1× 10−5). Therefore,
the performance shows such a fluctuant shape.
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Figure 4. Overall coverage utility U1 in UAV network.
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Figure 5. Coverage performance considers the number of UAVs and weighting coefficient.

4.3. Convergence Performance

In order to deeply investigate convergence performance, we choose ρ = 1× 10−5 as a contrastive
index of both approaches. Figure 6a shows the diagram which shows the diagram of the convergence
state of UAV deployment and coalition formation. Convergence performance of different algorithms is
shown in Figure 6b–d. We observe that all the indicators converge after a certain number of iterations,
which indicates that our proposed method can achieve a stable state solution of the system model.
The coverage reward of the comparison algorithm converges to the same value. However, since there
is no coalition formation mechanism for a comparison approach, its energy consumption and coverage
utility converge to a worse level, which is consistent with the model analysis. It is an issue when facing
complex environment, such as disaster, which requires UAVs to make accurate and fast self-decision for
rapidly changing scenario parameters. Authors in [33] utilized reinforcement learning (RL) to solve the
problem of anti-jamming communications in dynamic jamming environment. The application of RL
can significantly help UAVs adapting to dynamic environment and make deployment and parameters
adjustment accordingly. This gives us inspiration and will be our next step of the work outlook.
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To summarize, the simulation results illustrate that the proposed cooperative multi-UAV
deployment model based on coalition formation can describe UAVs’ cooperative behaviors well.
Moreover, the setting of the weight coefficients can provide a theoretical reference for different task
requirements. Finally, the proposed approach can achieve higher coverage utility compared with a
comparison approach, reflecting the good performance of coalition formation mechanism and efficiency
of the proposed model.
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Figure 6. The performance convergence graph of the proposed model (ρ = 1× 10−5). (a) Diagram of
UAV deployment and coalition formations; (b) Convergence performance of overall coverage reward;
(c) Convergence performance of overall energy consumption; (d) Convergence performance of overall
coverage utility.

5. Conclusions

In this paper, we proposed an efficient cooperative UAV deployment model in the UAV-assisted
sensor network. A multi-UAV coverage deployment and transmission mechanism was established,
and the coverage utility and corresponding energy consumptions under the network structure
were studied based on cooperation. The system model was transformed into a coalition formation
game (CFG). The CFG with Pareto order was proved to have at least a stable coalition partition.
Then, coalition selection and a position deployment algorithm based on Pareto order (CSPDA-PO)
were designed to perform coalition selection. Finally, simulations were performed to validate the
effectiveness of our proposed approach, indicating that the proposed model can describe UAVs’
cooperative behavior well and has better performance compared with other approaches in UAV
networks.
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