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Featured Application: This algorithm may be applied to light-weight/personal security products
to provide adaptive intrusion detection capability with low latency.

Abstract: In the field of network intrusion, malware usually evades anomaly detection by disguising
malicious behavior as legitimate access. Therefore, detecting these attacks from network traffic
has become a challenge in this an adversarial setting. In this paper, an enhanced Hidden Markov
Model, called the Anti-Adversarial Hidden Markov Model (AA-HMM), is proposed to effectively
detect evasion pattern, using the Dynamic Window and Threshold techniques to achieve adaptive,
anti-adversarial, and online-learning abilities. In addition, a concept called Pattern Entropy is defined
and acts as the foundation of AA-HMM. We evaluate the effectiveness of our approach employing
two well-known benchmark data sets, NSL-KDD and CTU-13, in terms of the common performance
metrics and the algorithm’s adaptation and anti-adversary abilities.

Keywords: network intrusion detection; adversarial setting; Anti-Adversarial Hidden Markov
Model (AA-HMM); evasion patterns; dynamic window (DW); threshold (TH); pattern entropy
(PE); adaptability

1. Introduction

In the practical deployment of Network Intrusion Detection System (NIDS) in the industry, there
is an imbalance phenomenon—almost only signature-based detectors are being used, which scan
characteristic byte sequences of the network traffic [1]. This situation is somewhat striking, especially
when considering that Machine Learning (ML) has successfully been implemented in many other areas
of computer science, often resulting in large-scale deployments in the commercial world. Examples
from these domains include product recommendation systems (such as those used by Amazon [2]
and Netflix [3]), optical character recognition systems [4], natural language translation [5], and spam
detection [6], which is closer to the NIDS scenario [1].

One of the important reasons causing this imbalance phenomenon is that ML-based NIDS is
working in an adversarial environment, which makes detection tasks challenging due to the presence
of adaptive and intelligent adversaries who can carefully manipulate the attacking payload to evade
detection. These evasion attacks undermine the underlying assumption of ML—the stationarity
(the same distribution) of data for training and testing [7]. As a larger number of novel on-line
services are emerging, the patterns of legitimate behaviors have become diversified, which in turn
blur the boundary between normal and anomaly patterns [8]. Consequently, the existing ML-based
NIDS cannot attain the required the industry-level performance attributed to the aforementioned
two reasons.
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Technically, the ML algorithms currently being studied and created for NIDS can be classified
into four categories [9,10]: (1) ensemble-based, (2) clustering-based, (3) deep-learning, and (4) hybrid.
However, each one has its disadvantages. (1) The performance of ensemble-based classifiers is highly
unpredictable on unseen samples due to the high and non-eliminable correlations among the base
classifiers [11,12]. (2) Since clustering-based models are unsupervised classifiers, their performance
is not reliable as they classify samples without learning knowledge from the true labels. In many
cases, a clustering algorithm is usually used as a component of a newly proposed classifier instead
of being used as an individual classifier, such as in [13], who created a new model by combining the
advantages of a clustering and ensemble algorithms. In practice, a model that solely relies on the
ensemble or clustering technique should not be the best choice for NIDS, because deploying such a
model would have a higher possibility of causing unexpected and serious damage to an organization
due to its highly erratic generalization abilities on future packets. (3) Although deep-learning
classifiers outperform the aforementioned two types of classifiers in terms of detection rate and
stability, deploying a deep-learning model in practice may largely reduce network throughput because
it usually suffers from the issue of high latency [14]. The efficiency problem might be resolved by
quantum computers in the future [15], but deep-learning should not be considered the best choice
for NIDS in terms of efficiency based on the current circumstances. (4) There are many enhanced
models [16–23] classified as hybrid-type, which perform better by either combining the existing
approaches in other domains (e.g., fuzzy logic) or creating novel mechanisms (e.g., feedback variables)
specifically for NIDS (i.e., our AA-HMM), based on a specific shallow algorithm (e.g., decision tree) [14].
The temporary disadvantage of hybrid classifiers is that they need to be tested on various data sets to
verify their stability. However, this long-term evaluation process is necessary for all newly proposed
algorithms. In conclusion, it is necessary to design a new accurate and efficient hybrid-type algorithm
for anomaly-based NIDS in practice.

The remainder of this paper is structured as follows. Section 2 presents the motivation provided
by the four requirements for an applicable NIDS, based on the analysis of the disadvantages of the
existing algorithms in Section 1. Section 3 introduces five fundamental concepts and terminologies for
the designed AA-HMM feedback mechanism. Section 4 illustrates the AA-HMM architecture, as well
as the principles and approaches of achieving adaptive and anti-adversarial capabilities with the aid of
the five basic concepts in Section 3. Section 5 demonstrates AA-HMM at the implementation/coding
level: (1) variables, (2) ensemble procedure, (3) pseudocode, and (4) workflow. Section 6 discusses
some appropriate evaluation metrics and defines a new evaluation metric called Efficiency Matrix
(EM), specific for intrusion detection problems, which reflects the security level of a NIDS in
practice. Section 7 evaluates the AA-HMM on the NSL-KDD and CTU-13 data sets when adopting
default settings and setting the initial matrices (transition and emission) with balanced parameters
(Section 7.2.1), so our primary goal was to demonstrate the designed mechanisms of adaptive and
anti-adversarial through interpreting the trajectories of created variables such as Dynamic Window.

2. Motivation

According to the analysis of the disadvantages of the existing ML algorithms with respect to
practical deployment (see Section 1), we determined four requirements that are necessary for an
applicable NIDS: (1) high detection rate (or low bias) on the trained patterns, (2) online-learning ability
for tackling the unseen (including evasion) attacks and patterns, (3) high stability (or low variance)
for ensuring the expected performance can be achieved while avoiding the possible severe damage
(caused by the erratic performance) in practice, and (4) high efficiency for avoiding the NIDS to be the
bottleneck of the network throughput. Consequently, we thought that a qualified base algorithm for a
hybrid algorithm should not be a clustering or deep-learning algorithm, as they violate requirements
(1) and (4), respectively. Moreover, in order to enable a common algorithm (e.g., decision tree, support
vector machine (SVM), etc.) with online learning ability, we should rely on an unsupervised learning
procedure to learn knowledge from the features. Typically, there are three options: (1) creating a
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new unsupervised procedure and combining it with the base algorithm, (2) utilizing an existing
unsupervised algorithm (e.g., K-Means) and combining it with the base algorithm, and (3) invoking
the unsupervised learning procedure (i.e., Baum-Welch) that comes with the algorithm (i.e., the HMM)
in a novel approach. Option (3) is better than options (1) and (2) in terms of performance and reliability
because such procedures were specifically designed for the corresponding base classifiers and their
performance has been verified by researchers for many years.

Overall, the Hidden Markov Model (HMM) is one of the algorithms that perfectly meets all the
four aforementioned requirements for NIDS. Both theoretical and empirical results have shown that
the HMM is capable of representing probability distributions corresponding to complex real-world
phenomena in terms of simple and compact models [24]. The HMM is superior due to the strong online
learning ability, which is driven by a reliable unsupervised learning procedure called Baum-Welch
(BW) [25]. This has been verified by the success of HMM in various practical applications, where
it has become the predominant methodology for designing Automatic Speech Recognition systems
(ASR) [26]. Likewise, the HMM has been successfully applied to other fields, such as signature
verification, communication and control, bioinformatics, computer vision, and network security.
A growing number of HMM-based NIDS have been developed in recent years, which have been
applied either to misuse detection to model a predefined set of attacks, or in anomaly detection to
model normal behavior patterns, such as in [16]. Most importantly, the HMM-based applications in
anomaly and misuse detection have emerged in both the main categories of Intrusion Detection System
(IDS): (1) host-based IDS (HIDS) in [17] and (2) network-based IDS (NIDS) in [18,19,27]. The HMM
has recently begun to emerge in applications of Wireless IDS (WIDS) [20]. Given the most recent
investigation in [28], the HMM is the algorithm that requires the least time of adoption for building
NIDS. Therefore, adopting the HMM is not only a good choice in terms of the performance, but also a
major progress in the ML-based NIDS research due to its unique qualities.

The performance of HMM will not be improved unless we invoke the BW in a novel way,
so we needed to design a feedback mechanism as a metric (represented as a set of variables on the
implementation level) to determine the status of the underlying traffic pattern, so that we could update
the model to a local optimal state and enhance its performance through invoking the BW based on
the pattern status. Consequently, Sections 3–6 provide demonstrations of concrete solutions and the
corresponding deductions of designing such an effective feedback mechanism (a set of variables),
which can be divided into six challenges:

(1) What are the feedback variables (Section 3)?
(2) Why these feedback variables are selected (Sections 3 and 4)?
(3) How can these feedback variables be captured (Section 4)?
(4) How can these feedback variables be measured/quantified (Section 4)?
(5) How can these feedback variables be used (Sections 4 and 5)?
(6) How can the BW be invoked based on these feedback variables to improve the performance of

the algorithm (refer to Sections 4 and 5)?

3. Foundation

This section provides a detailed description of the AA-HMM in terms of foundational concepts.
It defines and introduces five principle concepts that are necessary to fully understand the underlying
approach of the AA-HMM: (1) Pattern Entropy (PE), (2) PE Reduction (PERD), (3) Window Width
(WW), (4) Local Optimal Window Width (LOWW), and (5) Dynamic Window (DW). Among these
concepts, (1) and (2) are the basis of (3) and (4). In addition, (5) is established based on (3) and (4),
which acts as the core feedback mechanism that enables the model to adaptively adjust according to
dynamic network patterns.
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3.1. Pattern Entropy

The fundamental concept of the proposed algorithm is the underlying PE. It is a metric for
quantifying the entropy/complexity of a sequence of network data samples (packets or flows).
Considering the dynamic and diverse nature of network traffic, an appropriate definition should
include the numbers of attacks and attackers, but also consider the sequential and diverse information
of samples.

Assuming a labeled intrusion data set, the total number of anomaly and normal samples (packets
or flows) are X and Y, respectively; the total number of attackers and legitimate users are A and B,
respectively; and the types of anomaly and normal samples are represented as P and Q, respectively.
Then, the entropy of this data set or its pattern PE can be defined as:

PE(entire data set) = (AP)X + (BQ)Y (1)

Since every anomaly sample might be launched by any attacker, A represents the entropy of every
malicious sample in terms of the possible attackers. Furthermore, every attacker may launch any type
of attack; hence, P represents the entropy of every attacker in terms of the possible attacks. Therefore,
the term AP should be interpreted as the total entropy of every malicious sample and the term (AP)X

is defined as the PE of malicious pattern due to the presence of X malicious samples. After applying
the same method to calculate the PE of normal pattern (BQ)Y, the total PE of the entire data set is
expressed by adding the two PEs together. Note, normalization should not be applied because the PE
is intended to reflect the complexity variation resulting from factors such as the length of sections, the
number of malicious samples, etc.

3.2. PE Reduction

Given the definition of PE, if we only calculated the entropy of a subset, the value would be much
lower than the original or entire samples. For instance, assume a data set with evenly distributed
normal and anomaly samples. If we only calculated the PE on any 1/n subset, the variables X, Y, A, B,
P, and Q would be reduced to X/n, Y/n, A/n, B/n, P/n, and Q/n, respectively. As a result, the PE of
this subset should be calculated as:
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Since the term (AP)X would considerably decrease after being divided by n2X and rooted by n,
the first term in Equation (2) would be much smaller than that in Equation (1). The same comparison
is also applicable to the second terms of the two equations. We concluded that, for any data set,
the shorter the subset, the lower the PE.

3.3. Window Width

Since an HMM can be employed to predict samples section-by-section (e.g., classifying the first
20 samples, then the next 20 samples, until predicting all the samples), Window Width (WW) is defined
as the number of samples in each section. Inferred from the definition of PE, shorter sections have
lower PE and are easier to accurately predict. Therefore, splitting the entire data set into shorter subsets
and then predicting them in order would effectively enhance the detection rate of sample sequences.

3.4. Local Optimal Window Width

To determine the correlation between the WW (length of section) and the corresponding accuracy,
we performed extensive experiments on a variety of data sets (e.g., NSL-KDD, CTU-13, etc.):
(1) building and testing nearly 20 HMMs (refer to [24,25] for the principle of HMM) with the same
initial configuration on the same data sets; (2) each model sets up a unique WW—if a model’s WW is
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25 and a data set has 1000 samples, then this model will split the data set into 40 sections, each one
containing 25 samples, and making predictions on the 40 sections (windows) in order. (3) The range
of the tested WWs was 25 to 450 (steps of 25). Figure 1 provides a representation of the relationship
between these models with different WWs and their corresponding accuracies.
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Figure 1. Correlation between Window Width (WW) and accuracy.

For the previous inference regarding the PE, longer WWs usually suffer from higher PEs and are
harder to accurately predict, so the models with wide WWs (from 275 to 450) have low accuracies.
Although the models with narrow WWs (from 10 to 100) are also inaccurate, this phenomenon does
not contradict the inference of PE, but results from another vital factor called Pattern Variation (PV),
which is understood as the samples’ differences in terms of type and distribution between different
windows. Since the HMMs interpret samples as hidden states and observations, the PV should be
expressed as the differences between hidden states, as well as the differences between observations,
in terms of type and distribution between adjacent windows. Therefore, a higher PV would produce
a lower detection rate because it is difficult for a model with a fixed configuration to perform well
on all windows (patterns). Consequently, the WWs that result in relatively high accuracies are called
Local Optimal Window Widths (LOWWs). As Figure 1 shows, the LOWWs for this experiment were
125, 150, 175, 200, 225, and 250 samples in length. So, the next task for improving performance was to
search for one of the LOWWs and set it as the model’s WW.

3.5. Dynamic Window

Continuing with the above experiment result and further searching for the best model
(WW = 125 samples, total number of windows = total number of samples divided by WW = 181,
overall accuracy = 72.88%), we discovered that its performance varies from one window to another,
as shown in Figure 2 (a similar result was found for all models). The windows (dots in clusters 1, 2,
and 3) with low accuracies may need to be combined with adjacent windows to form wider windows
or split into multiple windows, so that the patterns of newly created windows are more suitable for
the current model’s configuration. Furthermore, to maximize the performance, the WW should be
treated as a variable that is always and continuously subject to change. Therefore, we designed a
mechanism called the Dynamic Window (DW), which smartly searches and sets every WW as the
LOWW according to the underlying pattern.
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4. Methodology

The DW is the key component of the AA-HMM; it utilizes two pairs of variables for adjusting the
WW to LOWW based on the underlying pattern: (1) Model Difference (MD) and Difference Trend (DT);
(2) Threshold (TH) and Threshold Controller (THC). The first variable pair enables the adaptability of
the AA-HMM, whereas the second variable pair provides the model’s anti-adversarial capabilities.
We establish the overall conceptual and logical contribution of the previous concepts and these variable
pairs in the following section.

4.1. Architecture

The architecture of the AA-HHM is shown in Figure 3, which was constructed upon five basic
five: PE, PV, WW, LOWW, and DW. Given the study of [7], the detection ability or security level
of an anomaly-based NIDS can be divided into three levels (from lowest to highest): (1) strong
knowledge acquisition and decent generalization abilities, (2) strong generalization and decent
adaptive abilities, and (3) strong adaptive and anti-adversarial abilities. The AA-HMM consists
of three layers corresponding to these three security levels:

1. In order to achieve the lowest security level, the regular HMM was adopted as the base algorithm
to learn the traffic pattern and make predictions.

2. To attain the second security level, a pair of feedback variables, called Model Difference (MD)
and Difference Trend (DT), were designed to improve the adaptability of base HMM.

3. To achieve the top security level, the variable pair called Threshold (TH) and Threshold Controller
(THC) were integrated to realize the required anti-adversary ability.
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4.2. Adaptive Mechanism: MD and DT

It is important to comprehend the cause of rendering the low detection rate before designing
any enhancement mechanism. As the upper part of Figure 4 shows, if the accuracy decreases,
it indicates that the model’s parameters are not well tuned to fit the pattern being predicated. Since
the Baum-Welch (BW) procedure is responsible for updating the model, the decreased accuracy
demonstrates that BW is not capable of updating the transition and emission matrices appropriately,
which indicates that the underlying pattern is intensively fluctuating. An intensive fluctuating pattern
usually means a stronger randomness of all the samples, which causes two negative factors for a
window-based model (predict samples section-by-section, refer to Section 3.3.): (1) high PV where the
type and distribution of samples between windows are changing frequently and (2) high PE where
windows include more types of samples as the types of samples are changing frequently. As such,
the two negative factors, high PE and PV (refer to Section 1 Introduction and Section 2 Motivation) are
presented here as possible consequences of intensive pattern fluctuation.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 24 
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As stated, both negative factors are a result of the same phenomenon—an intensive pattern
fluctuation that would require the BW to significantly update the model’s parameters. Since BW is
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limited in its ability to update the model to a local optimal state against intensive fluctuated pattern,
the model’s accuracy is reduced and can be detected using the feedback variable MD, which is defined
as the quantitative model difference between adjacent windows:

MD( Mn, Mn+1) = Diff[ Mn(Wn), Mn+1(Wn+1) ] (3)

where Wx is the identity of a window and My represents a specific model y, then My(Wx) is model y’s
parameters (transition and emission matrices) after updating upon the pattern in window x. Therefore,
the entire term Diff[ Mn(Wn), Mn+1(Wn+1)] is the difference between the two models in terms of
parameters/configuration, which can be formally defined as, “a vector of differences calculated from
consecutive transition and emission matrices in each iteration of the Baum-Welch procedure, which
is calculated by summing the L2 − Norm distances between consecutive transition and emission
matrices” [29]. If the MD is larger than a certain pre-defined value E, it indicates that the predicted
pattern is intensively fluctuating and the updated model would not be in a good state, which produces
low accuracy. Therefore, in order to improve the accuracy, we needed to reduce the PE of the next
window through reducing the WW, so that the BW could update the model in a more accurate state
(Figure 4). If the MD is smaller than E, the accuracy is being maintained at a high level, indicating
that the PE must be at a very low level. So, slightly enlarging the WW would not only keep the WW
within the range of LOWWs (Figure 1), but also reduce the PV of the next window, which results in
improved accuracy (see Section 2 Motivation). Furthermore, the amount of WW adjustment is based
on the difference in magnitude between the MD and E, where the greater the difference, the greater
the adjustment. As such, to consider the tendency factor, the adaptive variable DT is defined as the
differences between adjacent MDs:

DTn( MDn, MDn+1 ) = Diff ( MDn, MDn+1 )

= Diff [ MDn( Mn, Mn+1 ), MDn+1( Mn+1, Mn+2 ) ]

= Diff

{
Diff [ Mn(Wn), Mn+1(Wn+1) ]

Diff [ Mn+1(Wn+1), Mn+2(Wn+2)]

} (4)

As Equation (4) shows, the DT is the difference between two MDs—the difference in the parameter’
(Figure 5), which reflects the changing trend of the model’s parameters between adjacent windows
and acts as a calibrating metric for the WW adjustment. We define four sets of operations derived from
the combinations of MD and DT:

• When MD > E, based on the difference magnitude between MD and E, the WW should be
decreased to reduce the PE, then:

# If DT > 0, based on the difference magnitude between the DT and 0, the WW should be
decreased again because the DT indicates that the PE of recent windows has continued
to increase.

# If DT < 0, based on the difference in magnitude between the DT and 0, the WW should be
increased because the DT indicates that the PE of recent windows has kept decreasing.

• When MD < E, based on the difference in magnitude between MD and E, the WW should be
increased to reduce the PV, then:

# If the DT > 0, based on the difference in magnitude between DT and 0, the WW should be
increased again because the DT indicates that the PV of recent windows has kept increasing.

# If DT < 0, based on the difference magnitude between the DT and 0, the WW should be
decreased because the DT indicates that the PV of recent windows has kept decreasing.
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The variables MD and DT are indicators and reveal the underlying pattern information (Figure 4),
which is used with the four operations to adjust the DW and WW based on the patterns, resulting in the
ability of the model to correlate with the pattern of the samples. The pattern information is successfully
extracted, stored, and utilized by the MD and DT. An overview of the architecture (assuming that there
are six windows in total) of the adaptability of the approach is depicted in Figure 5.

4.3. Anti-Adversarial (AA) Mechanism: TH and THC

The AA-HMM can resolve three types of evasion attacks. (1) For any kind of evasion technique
that is not specific to the ML-based NIDS, selecting a base algorithm with a strong generalization
ability is always a sensible decision because the evasion difficulty is improved once adopted. As a
probability-based algorithm, the HMM is inherently capable of identifying samples that have never
seen before. (2) Optimal Evasion (OE) is one of the most recent types of evasion attacks that specifically
targets ML-based NIDS. OE creates malicious samples by minimally manipulating the initial attack
until it successfully evades detection [30,31]. For example, OE may successfully evade detection
by only modifying the value of a numeric feature from 10,000 (can be detected) to 10,001 (cannot
be detected). Since this malicious sample is extremely close to its initial sample (normal version),
an anomaly-based model may misclassify it as normal. To counteract this type of evasion, we simply
discretized all the numeric features and aggregated nominal features into three to five bins, so that
any manipulation of a sample would be amplified to a level that could be detected by the model. In
addition, this pre-processing approach can improve the HMM’s general accuracy against all types of
samples (Section 7 Experiment). (3) Some sophisticated attackers may evade detection by sending
some manipulated samples to the feedback-enabled NIDS, which gradually train the detector to a
state that is not capable of identifying any attack launched later. If you defend against this type of
attack by disabling the feedback component, the accuracy would be largely decreased due to the
misclassifications of all other types of samples (including normal ones).

Accordingly, to enable the model to identify the intensions of attackers, we defined a variable
called Threshold (TH), which represents the range of DW. The logic chain of TH (the relationship
between DW and TH) is shown in Figure 6.
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From Figure 4, as an anti-adversarial variable, the TH acts as a switch that is responsible for
making the final DW adjustment. As Figure 6 shows, the DW is bounded by the lower and upper
bounds of TH. To understand the acceptable range of TH and the safeguards against improper values,
if the MD and DT contribute to enlarging the DW to a value that is higher than the current upper bound,
the TH would refuse this adjustment request and set the DW to the middle point of the current upper
and lower bounds, unless it consecutively receives the same request for F times (a threshold/counter
for increasing the upper bound; Table 1). Correspondingly, for the TH recall procedure, if the MD
and DT contribute to reducing the DW to a value that is lower than the current lower bound, the TH
would also refuse this adjustment request and set the DW to the middle point of the current upper and
lower bounds, unless it consecutively receives the same request for G times (a threshold/counter for
recall the increased upper bound; Table 1). There are two reasons for these operations. (1) Since the
network pattern is extremely irregular, “spurs” (normal, but temporary pattern fluctuation) can be
found anywhere. If we set the model response and adjusted the DW to any arbitrary value given these
spurs, the DW might be enlarged or reduced to either a too large or small a value. The model would
suffer from either high PE or PV and the accuracy would considerably decrease. Therefore, the values
of F and G were set as the metrics of TH to ignore these spurs and stabilize the accuracy. (2) Similar to
the spur activity, malicious traffic that intends to misleadingly train the NIDS would also be omitted
once an appropriate value of F and G are set based on the characteristics of the specific attack.

Furthermore, if the TH consecutively triggers the request to enlarge the DW for F times due to
the normal pattern change (necessary feedback operation), instead of directly adjusting the DW to
the intended WW, the DW would be adjusted to the average of the current upper bound plus the
average of the sum of the intended WWs during the past F consecutive windows. Correspondingly,
the upper bound would be “broken” and increased by the average of the sum of the intended WWs
during the past F consecutive windows. The lower bound would be increased by the same step as the
upper bound. The similar operations would also be applied to the DW recall procedure. As a result,
this series of operations further enhance the model’s adaptive abilities toward normal and intensive
pattern fluctuations.

Once the attackers successfully misleading the model, the next two things they would do are
to stop sending the malicious training traffic and launch the real attacks that cannot be detected by
the misled model. Notably, the pattern of malicious training traffic would be different from that of
the actual attacks. Most importantly, even if the AA-HMM is misled, it can automatically recover
itself to the normal state using the recall operation—the extended sections of upper and lower bounds
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would be recalled once the malicious training samples have not been consecutively received G times.
The values of F and G can be flexibly set based on the defensive strategy and the desired security level.

Table 1. Variables of AA-HMM.

Name Description Default Value

window width width of the dynamic window 10

window base line minimum width of the dynamic window 10

threshold lower bound lower bound of the dynamic window 10

threshold upper bound upper bound of the dynamic window 1000

threshold break a counter that records the number of consecutive
requests of increasing the threshold upper bound starts from 0

F threshold for increasing the upper bound 3

threshold recall a counter that records the number of consecutive times of
the increased section of threshold has not been used starts from 0

G threshold for recall the increased upper bound 3

threshold controller controlling the difficulty of threshold adjustment 0

MD vector levels of resizing the window based on the MD from 1.5 to 0.5 step by −0.1

DT vector_en he levels of enlarging the window based on the DT from 1 to 1.2 step by 0.02

DT vector_sh levels of reducing the window based on the DT from 1 to 0.8 step by −0.02

levels graininess of WW adjustment for MD and DT from 0 to 1 step by 0.1

Particularly, repeatedly enlarging or reducing the DW is not a wise strategy due to the high PE or
PV, even if the MD and DT trigger the DW adjustment because the DW cannot be rapidly decreased or
increased to common values once this extremely fluctuated pattern passes. Accordingly, to tackle this
kind of extreme case, another feedback variable called Threshold Controller (THC) was introduced
to control the difficulty of breaking the bounds of TH. THC is responsible for counting the times
of breaking bounds (Figure 6). The more breaking operations are accomplished, the more difficult
to break the current bounds again. For instance, if the model increases the upper bound two times
(THC = 2), the current upper bound would not be increased again unless the TH consecutively receives
F + THC times requests for increasing TH, which is triggered by the DW increasing operation.

5. Implementation

This section presents the AA-HMM on the lowest/coding level, which involves a comprehensive
set of descriptions and settings for all variables. Since most variables work well on common data sets
using their default settings, we employed the AA-HMM using these default configurations or adjusted
a few significant variables, such as the MD vector, for improved performance.

5.1. Variables

The AA-HMM was implemented using R Language and its essential procedures, such as
Forward-Backward (FB) and Baum-Welch (BW), were invoked from an existing package named
HMM [29]. Both the FB and BW do not suffer from the problem of floating-point underflow because
the package’s implementation avoids it by converting the probability values into logarithms during
the calculation and then converting them back at the end [32]. Table 1 presents the all variables and
their default values.

5.2. Ensemble

Although many pre-processing algorithms, such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), effectively reduce the dimensions of a data set, these approaches
typically result in information (pattern or knowledge) losses [25]. Therefore, we wanted to achieve the
same goal in an opposing manner: (1) keeping as many features as possible; (2) training a sub-model for
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each feature, separately; and (3) obtaining the final prediction results through ensemble. This approach
not only avoids the high-dimensional issue, but also has two extra advantages:

1. Even if the number of qualified sub-models is not enough for ensemble, we can build multiple
dummy sub-models with varied parameters (e.g., the WW) on the same feature. Since the
trajectories of different DWs would vary, the prediction results toward the same sample within
different windows would be distinctive, which can be used to ensemble the result.

2. Since the sub-models are working concurrently, and considering the time cost of ensemble
procedure remains constant, the total time cost is only bounded by the sub-model with the
highest time cost: TotalTimeCost(TTC) = Max[T(M1), T(M2), . . . T(Mn)], where the function
T(Mx) represents the time cost of each sub-model.

5.3. Pseudocode
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6. Measurement Metrics

6.1. Precision and Recall

General accuracy may not reveal NIDS performance in real settings because the cost of
misclassifying malicious samples is much higher than misclassifying benign samples. Therefore,
the evaluation of NIDS should focus on specific precision and recall for benign and malicious samples,
respectively. Although precision best reflects the model’s accuracy based on its definition, recall can
reveal the real losses caused by unidentified attacks in a practical setting. Other metrics, such as
Receiver Operating Characteristic (ROC) curve, are inappropriate for evaluating the NIDS, which has
been proven by a well-known review paper [33].

6.2. Efficiency Matrix

Cost matrix is a good metric for evaluating the NIDS because it can directly reflect the security
(protection) level established by the models deployed in an operational environment. However, the
common values, such as true positive, true negative, false positive, and false negative, have not been
published and cannot be calculated given the published metrics. Therefore, referring to the definition
of cost matrix, an alternative metric called Efficiency Matrix (EM) is defined as below, which evaluates
the security level by calculating the precisions and recalls of benign and malicious samples, separately.

In Table 2, the matrices E11, E12, E21, and E22 are the efficiency values of Precision (B), Recall
(B), Precision (M), and Recall(M), respectively. So, the efficiency of the evaluated model should be
calculated by:

Efficiency(Model) = Precision(B)× E11 + Recall(B)× E12 + Precision(M)× E21 + Recall(M)× E22 (5)

The EM should be interpreted in a different manner from the cost matrix: the higher the efficiency,
the better the performance. The pre-defined value Exy varies between scenarios (applications).
For evaluating NIDS, since misclassifying malicious samples is more costly than benign samples
and the recall is a better metric than the precision in terms of reflecting the protection level provided
by the model, the four efficiencies should maintain the following relationship:

E22 > E21 > E12 > E11 (6)

Table 2. Definition of Efficiency Matrix (EM).

Efficiency Matrix Precision Recall

Benign E11 E12
Malicious E21 E22

7. Experiments

7.1. Goal and Strategy

Overall, the goal of the following two experiments was to verify the effectiveness of the designed
feedback mechanism/variables, so the two AA-HMM models being tested adopted the default settings
and the initial matrices (transition and emission) were set with balanced parameters (Section 7.2.1.) for
better demonstrations. Therefore, considerable amounts of work needed to be completed to further
improve the performance of the specific data set.

In the first experiment, we employed NSL-KDD [34] as the benchmark data set. Given the
most recent evaluation of the NIDS data sets in [28], NSL-KDD is one of the two most frequently
used data sets for evaluating the NIDS and has no distinct disadvantage compared with the newest
data sets. Since numerous researchers have trusted the effectiveness and quality of and tested their
algorithms on the NSL-KDD, it is the best data set for a comprehensive performance comparison.
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In order to conduct a rigorous comparison, we selected the algorithms/papers for comparison based
on the following criteria: (1) the cited paper has to clearly state that it used the two-label version
of NSL-KDD instead of the five-label version; (2) the cited paper had to clearly state that it used
Test+ (includes all the difficult samples that do not contained in the other test set, test-21) as the test
set, because the NSL-KDD is valuable at providing researchers a great test set Test+ with distinct
patterns from the training sets, which better reveal the performance difference between the different
models; (3) the cited paper had to use Test+ as a separate test set, so that we could ensure that the
difficult patterns/samples would not leak to the model during training phase through other evaluation
approaches such as cross-validation; and (4) the cited paper had to publish enough metrics for a
comprehensive comparison. Therefore, we selected three deep-learning algorithms: (1) deep neural
network (DNN) [35], (2) soft-max regression (SMR), and (3) self-taught learning (STL) [36] as the
comparison algorithms based on the aforementioned four criteria, which were evaluated on NSL-KDD
in terms of accuracy, precision, recall, and efficiency.

In the second experiment, we verified the effectiveness of the designed mechanisms on a new
data set (patterns), CTU-13 [37]. Specifically, in order to evaluate the AA-HMM’s abilities to adapt
and act as an anti-adversary on the current and intensively changed traffic patterns, we employed the
no. 10 data set of CTU-13, which is composed of violently fluctuating traffic patterns caused by an
intensive distributed denial-of-service (DDoS) attack.

7.2. Evaluation Methodology

7.2.1. Balanced Initial Model

The enhanced versions of HMMs published in other papers [16–23] usually use some sort
of prior knowledge to initialize the transition and emission matrices, which enables the adopted
parameters’ distribution comply with the real data distribution to be evaluated. As a result, we could
not distinguish if the improvement in performance was due to the skewed initial model or the
enhancement mechanisms created by us. Accordingly, to eliminate biasing factors, the AA-HMM was
initialized as a Balance Model (BM)—the probabilities in the transition and emission matrices were
evenly distributed, as shown in Tables 3 and 4. Since the initial model was not biased to either one of
the two classes, any accuracy improvement would then be attributable to the actual mechanism of
the algorithm.

Table 3. Initial transition matrix.

Transition Benign Malicious

Benign 0.5 0.5
Malicious 0.5 0.5

Table 4. Initial emission matrix.

Emission Observation 1 Observation 2 . . . Observation n

Benign 0.5 0.5 . . . 0.5
Malicious 0.5 0.5 . . . 0.5

7.2.2. Preprocessing: Compact Matrices (CM)

As the method performance is determined by the transition and emission matrices, every row
would become very long if there were too many items (hidden states or observations) in the two
matrices. In practice, to maintain a valid model during evaluation, each state or observation would
occupy a portion of the total probability of one, even if it is not present in the current window, which
in turn complicates distinguishing the true hidden state harder during the FB procedure. Therefore,
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creating and maintaining a Compact Matrix (CM) would contribute to the model generating higher
accurate results, as indicated in [23].

To verify this conclusion, we performed an extensive experiment on a variety of data sets, as shown
in Figure 8. One of the experiments involved discretizing a feature into different bins (from 3 to 30 and
step of 1) as the observation sequences. Then, we ran the same AA-HMM (WW = 125) on each data set.
We concluded that the more bins (possible values) of a feature, the lower the accuracy. Therefore, we
verified that grouping the possible values into a small number of bins (CM) would be one of the best
pre-processing approaches for HMM-based algorithms, as similar results were obtained using other
data sets, because it not only improves the accuracy, but also thwarts the OE (Section 4 Methodology).
Consequently, due to the monotone decreasing characteristic of the accuracy trajectory (Figure 8),
we adopted a conservative pre-processing strategy that discretizes all the numeric features into only
three to five bins for all the following experiments, even if larger bins (e.g., 6, 7, 8, 9, 10, etc.) are also
appropriate (i.e., perform as good as 3–5 bins).
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7.2.3. Ensemble: Assigning Different Weights

Although a more accurate result can be obtained by only ensemble the models built upon the
top N features, the overall performance might be lower or not stable in the future because the top N
features would be replaced by others when the pattern changes. Therefore, to build a robust model,
we improved the accuracy by assigning additional two to four weights to the top N models.

7.3. Experiment about Accuracy and Adaptivity: NSL-KDD

7.3.1. Introduction to NSL-KDD

NSL-KDD [34] is an optimized version of the well-known data set KDD. It solves some of the
inherent problems of the original data set and has been frequently cited by researchers. The amount
of records in NSL-KDD training and testing sets are reasonable, enabling the affordable completion
experiments on the complete set without the need to randomly select a small portion. Consequently,
the evaluation results of different research work would be consistent and comparable. There are
41 features in NSL-KDD data sets and the samples are labeled into two classes: benign and malicious.
Furthermore, the attacks can be classified into four categories: (1) denial of service, (2) probing, (3) user
to root, and (4) remote to local. A detailed introduction can be found in [38].
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7.3.2. Evaluation on NSL-KDD

Data Pre-Processing

We eliminated 13 features before running the AA-HMM because all the samples were concentrated
on a single possible value of those features either before or after discretization, which should be treated
uninformative features. As a result, 28 of 41 features were adopted by the AA-HMM and only one
sub-was is assigned a greater weight during the ensemble procedure.

Performance: Precision and Recall

Tables 5–8 depict the performance of DNN, SMR, STL, and AA-HMM, respectively. Four points
can be gained from the results: (1) AA-HMM outperformed the DNN on all metrics. (2) SMR is
not a balanced model as its performance concentrates more on metrics precision (B) and recall (M).
Also, since the SMR’s precision (M) is very low, it achieves high recall (M) by predicting as many
malicious records as possible. Deploying a SMR model in the real setting would delay the service
(e.g., web service) response time, as it would block too many legitimate packets due to low recall
(B), which causes the blocked data to be re-transmitted to the end users. A balanced model should
control the differences in the four metrics within 10%, like AA-HMM (only 2.225%). (3) Although STL
is better than the DNN and SMR, its precision (B) and recall (M) were much lower than the AA-HMM.
Also, the metric recall (M) shows that the STL is not a reliable NIDS because it would miss too many
attacks due to the low recall (M). (4) AA-HMM is a balanced and most accurate model, and would
provide the highest security level to potential victims in the real settings.

Table 5. Performance of deep neural network (DNN).

DNN Precision Recall Accuracy

Benign 83.00% 75.00%
74.67%Malicious 65.80% 74.20%

Table 6. Performance of soft-max regression (SMR).

SMR Precision Recall Accuracy

Benign 96.56% 63.73%
78.06%Malicious 66.93% 97.00%

Table 7. Performance of self-taught learning (STL).

STL Precision Recall Accuracy

Benign 85.44% 95.95%
88.39%Malicious 93.62% 78.41%

Table 8. Performance of AA-HMM.

AA-HMM Precision Recall Accuracy

Benign 93.37% 95.31%
93.48%Malicious 93.63% 91.06%

Performance: Efficiency Matrix

Given the setting principle of efficiency matrix (see Equation (6)), the efficiency matrix for this
experiment is defined in Table 9.
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Table 9. Efficiency Matrix.

Efficiency Matrix Precision Recall

Benign 10 15
Malicious 100 150

As the calculated efficiencies result from Equations (7)–(10), AA-HMM also outperformed DNN,
SMR, and STL in terms of efficiency (security/protection level provided to users in practice).

Efficiency (DNN) = 0.8300 × 10 + 0.7500 × 15 + 0.6580 × 100 + 0.7420 × 150
= 8.3 + 11.25 + 65.8 + 111.3 = 196.6500

(7)

Efficiency (SMR) = 0.9656 × 10 + 0.6373 × 15 + 0.6693 × 100 + 0.9700 × 150
= 9.656 + 8.9373 + 66.93 + 145.5 = 231.0233

(8)

Efficiency (STL) = 0.8544 × 10 + 0.9595 × 15 + 0.9362 × 100 + 0.7841 × 150
= 8.544 + 14.3925 + 93.6 + 117.615 = 234.1715

(9)

Efficiency (AA-HMM) = 0.9337 × 10 + 0.9531 × 15 + 0.9363 × 100 + 0.9106 × 150
= 9.337 + 14.2965 + 93.63 + 136.59 = 253.8535

(10)

Verifications: MD and DT

After improving the performance, it was necessary to verify if the designed variables worked
as expected and the performance improvement resulted from these variables. Taking one of the
sub-models as an example (all the sub-models shared similar curves), its accuracy trajectory is shown
in Figure 9. In the first five windows, the accuracies are very low because the model is adapting to
the pattern from its initial state (BM). After fitting, the pattern starts to fluctuate, which lowers the
accuracy again. However, the model rapidly fits the fluctuated pattern and maintains the accuracy at a
high level until processing all the samples.
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Figure 10 shows the trajectories of MD and DT during evaluation; their values are very high
in the early windows. Since the MD and DT act as the indicators of the variation and trend of the
pattern in the current window, respectively, the two trajectories indicate that the accuracy would be
low (high) when the |MD| and |DT| are high (low). This is consistent with the accuracy trajectory in
Figure 9: the accuracy increases as the |MD| and |DT| gradually approach zero, which indicates that
the model successfully fitted the dynamic patterns and reached a local optimal state. In conclusion,
MD and DT are sound metrics and effective adaptive mechanisms for AA-HMM.
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Verification: DW and TH

Figure 11 shows the trajectory of DW during evaluation, which gradually increased from the
initial width of 10 and finally stabilized between 505 and 910. Referring to the accuracy trajectory
in Figure 9, the stage of DW stabilization overlapped the stable stage of the accuracy, which also
indicates that the model successfully fitted the dynamic pattern and reached a local optimal state.
In addition, the reason that the DW always reset to 505 is that TH indicates the pattern fluctuation is
temporary and not strong (Section 4 Methodology), so it was not necessary to enlarge the DW to a
value higher than the current upper bound of TH under this circumstance. The accuracy improved
and stabilized with the aid of the TH. In conclusion, both the DW and TH are effective mechanisms for
improving performance.
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Evaluation: Adapting Rate

Since the model fit the pattern after the fifth window (Figure 9) and referring to the DW trajectory
(Figure 11), the total number of samples in the first five windows (10, 11, 15, 18, and 21) was only
75. Compared with the total number of records (22,544) in the entire data set, the adaptive rate of
AA-HMM was very high.
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7.4. Anti-Adversarial Experiment: CTU-13

7.4.1. Introduction to CTU-13

CTU-13 is a set of botnet traffic, which captures a large amount of real botnet traffic mixed with
normal traffic and background traffic. The CTU-13 data set consists of 13 scenarios of different botnet
samples. In each scenario, the creators execute a specific malware that uses several protocols and
performs different actions. A detailed introduction can be found in [37].

7.4.2. Evaluation on CTU-13

Data Pre-Processing

The User Datagram Protocol (UDP) DDoS data set (no. 10) of CTU-13 was used as the evaluation
set and the samples were labeled as benign or malicious. To test the AA-HMM’s performance on
intensive malicious attacks, we extracted a subset with an intensive pattern change (from no. 440,000
to no. 520,000–80,001 records in total). The benign and malicious samples alternatively dominated the
first and second half of the subset, respectively. This subset contains intensive DDoS attacks that are
suddenly launched.

Anti-Adversary and Adaptivity Performance

As Figure 12 shows, the thicker blue line represents the percentage of benign samples within
each window. An intensive malicious attack (DDoS) occurs in this data set. However, the model
maintained very high precision toward the benign samples (the thinner red line) when being attacked
by an intensive DDoS attack.
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Performance: Imbalance Classes

In Figure 13, the thinner blue line represents the percentage of malicious instances in each window
and the thicker red line is the recall of malicious samples. Although the attacks occur only twice (the
magnified two dents in the plot), in the first half of the data set, the recall of malicious samples within
the two dents is 100%. AA-HMM is capable of identifying trivial malicious samples (one type of
sample), which were overwhelmed by the benign samples (the other sample types). In conclusion,
AA-HMM has a strong ability to resolve the imbalanced classes issue.



Appl. Sci. 2018, 8, 2421 21 of 25

Appl. Sci. 2018, 8, x FOR PEER REVIEW  20 of 24 

samples within the two dents is 100%. AA-HMM is capable of identifying trivial malicious samples 

(one type of sample), which were overwhelmed by the benign samples (the other sample types). In 

conclusion, AA-HMM has a strong ability to resolve the imbalanced classes issue. 

 

Figure 13. Correlation between recall toward malicious samples and ratio of benign samples. 

7.4.2.4. Attack Visualization 

Since different attacks have different patterns and result in varied WWs, the attacks can be 

visualized by the DW trajectory. As shown in Figure 14, the first half of the DW trajectory is 

significantly different from the second half, which is compliant with the actual scenario (the DDoS 

attacks were launched and dominated the traffic after the middle point). Therefore, AA-HMM can be 

applied as a novel attack visualization tool to detect if the NIDS is being attacked or to even identify 

the attack types via the DW trajectory. 

 

Figure 14. DW trajectory. 

7.4.2.5. Re-Verification: MD and DT 

From the perspective of attack distribution, there are two challenges in forming predications on 

this data set. As shown in Figure 15, (1) spur 1 adapts the model to the first half of traffic from the 

BM and (2) spur 2 adapts the model to the second half of the traffic (DDoS attacks) from the first half 

(normal traffic). Based on the trajectories of MD and DT, we concluded that both challenges and 

adaptation processes were resolved and completed rapidly because the MD and DT were reduced to 

a very low level within only three windows, which shows that the AA-HMM is responsive to 

intensive attacks. 

Figure 13. Correlation between recall toward malicious samples and ratio of benign samples.

Attack Visualization

Since different attacks have different patterns and result in varied WWs, the attacks can be
visualized by the DW trajectory. As shown in Figure 14, the first half of the DW trajectory is significantly
different from the second half, which is compliant with the actual scenario (the DDoS attacks were
launched and dominated the traffic after the middle point). Therefore, AA-HMM can be applied as
a novel attack visualization tool to detect if the NIDS is being attacked or to even identify the attack
types via the DW trajectory.
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Re-Verification: MD and DT

From the perspective of attack distribution, there are two challenges in forming predications on
this data set. As shown in Figure 15, (1) spur 1 adapts the model to the first half of traffic from the
BM and (2) spur 2 adapts the model to the second half of the traffic (DDoS attacks) from the first
half (normal traffic). Based on the trajectories of MD and DT, we concluded that both challenges and
adaptation processes were resolved and completed rapidly because the MD and DT were reduced
to a very low level within only three windows, which shows that the AA-HMM is responsive to
intensive attacks.
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7.5. Time Cost Experiment

An AA-HMM model running in RStudio (RStudio, Redmond, United States) on a regular laptop
can accomplish both the self-training and the evaluation processes on 10,000 samples within 2.5 s.
When compared with the three deep-learning algorithms in the previous experiment, which usually
require tens of seconds on the same amount of data, AA-HMM outperformed these algorithms in
execution cost and accuracy, rendering the AA-HMM an extremely viable solution as a NIDS.

8. Conclusions

Building an anti-adversarial model is one of the most innovative research topics in the
anomaly-based network intrusion detection field, including the software-defined network-based NIDS
model [39]. As a successful anti-adversarial prototype, AA-HMM quantifies the model difference (MD)
and difference trend (DT) between adjacent windows as indicators of accuracy and pattern fluctuation,
which transforms a regular HMM into an online algorithm with strong adaptability. The threshold
mechanism (TH and THC) is the core anti-adversarial technique adopted by AA-HMM, which further
enhances the adaptability and stability of the model. Particularly, the online architecture of DW,
which predicts samples section-by-section, used in AA-HMM may wrap other quantified algorithms
to largely improve the performance of the base models. In addition, AA-HMM could be used as a
novel visualization tool to indicate if the NIDS is being attacked and to even distinguish the attack
type based on the DW trajectory.
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DDoS Distributed Denial-Of-Service
DNN Deep neural network
DT Difference Trend
DW Dynamic Window
EM Efficiency Matrix
FB Forward-Backward
HMM Hidden Markov Model
LDA Linear Discriminant Analysis
LOWW Local Optimal Window Width
M Malicious (samples)
MD Model Difference
ML Machine Learning
NIDS Network Intrusion Detection System
OE Optimal Evasion
PCA Principal Component Analysis
PE Pattern Entropy
PERD PE ReDuction
PV Pattern Variation
ROC curve Receiver Operating Characteristic curve
SMR Soft-Max Regression
STL Self-Taught Learning
TH Threshold
THC Threshold Controller
TTC Total Time Cost
WW Window Width
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