
applied  
sciences

Article

A New Rotor Position Measurement Method for
Permanent Magnet Spherical Motors

Yin Lu 1,2, Cungang Hu 2,3,*, Qunjing Wang 2,3, Yi Hong 1,4, Weixiang Shen 5 and
Chengquan Zhou 1

1 School of Electronics and Information Engineering, Anhui University, Hefei 230601, China;
wwwluyinlove@163.com (Y.L.); hongyi@163.com (Y.H.); chengquanzhouahu@163.com (C.Z.)

2 Power Quality Engineering Research Center of Ministry of Education, Hefei 230601, China;
wqunjing@sina.com

3 National Engineering Laboratory of Energy-Saving Motor and Control Technology, Hefei 230601, China
4 China Electronics Technology Group No.38 Research Institute, Hefei 230601, China
5 Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne 3122,

Australia; wshen@swin.edu.au
* Correspondence: hcg@ahu.edu.cn; Tel.: +86-158-5511-5115

Received: 24 October 2018; Accepted: 25 November 2018; Published: 28 November 2018 ����������
�������

Abstract: This paper proposes a new high-precision rotor position measurement (RPM) method for
permanent magnet spherical motors (PMSMs). In the proposed method, a LED light spot generation
module (LSGM) was installed at the top of the rotor shaft. In the LSGM, three LEDs were arranged
in a straight line with different distances between them, which were formed as three optical feature
points (OFPs). The images of the three OFPs acquired by a high-speed camera were used to calculate
the rotor position of PMSMs in the world coordinate frame. An experimental platform was built to
verify the effectiveness of the proposed RPM method.

Keywords: permanent magnet spherical motor; rotor position measurement; optical feature point;
image processing

1. Introduction

A spherical motor can make complex motions of three degree-of-freedom (DOF) with its simple
structure, which can be applied to many applications, such as robotics, aerospace and military.
It has advantages over traditional three DOF motors, which are composed of several single-DOF [1,2],
such as low manufacturing cost and high efficiency. Many researchers have studied and developed
different kinds of spherical motors. For example, a spherical induction motor was developed by
Williams and Laithwaite as early as 1959 [3]. Lee et al. developed a spherical stepper wrist motor
based on the principle of variable reluctance spherical motor [4]. Son et al. studied the control
methods and working characteristics of a spherical wheel motor [5]. A permanent magnet spherical
motor (PMSM), with variable pole pitch and 96 stator poles, was proposed by Kahlen et al. [6].
Chirikjian et al. studied the kinematic design and commutation of a spherical stepper motor [7].
A three-DOF cylindrical spherical ultrasonic motor was developed by Takefumi et al. [8]. The research
topics that encompass the field of spherical motors include structural design, magnetic field analysis,
rotor position measurement, control strategy, and drive circuit design. Rotor position measurement is
a necessary precondition that must be taken into account when attempting to achieve precise control of
spherical motors.
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Rotor position measurement (RPM) in spherical motors is necessary when considering rotation
angles in three directions. It is much more complicated than the RPM in traditional single-DOF motors
when only one rotation angle needs to be calculated. Many multi-DOF RPM methods have been
proposed, which are generally divided into contact type and non-contact type methods. The contact
type method adds a mechanical detection mechanism to the rotor [9–14]. This type of the RPM can
achieve high-precision results, but the heavy structure of the RPM system increases the moment of
inertia to the rotor and brings huge friction resistance to the bearings. In order to avoid extra
moment of inertia and friction resistance, the non-contact type method has been put forward to
measure rotor position. A non-contact RPM method based on a photoelectric sensor has been proposed
by Lee et al. [14–17]. Garner et al. have proposed a non-contact RPM method based on machine
vision [18]. Both mothods provide high-precision results by increasing the density of the grid pattern,
but it is difficult to ensure clear grid pattern on the spherical shell when the spherical motor is moving.
A non-contact laser-based orientation RPM method has been proposed by Yan et al. [19]. This method
is capable of achieving high-precision results, but the bulky structure makes it difficult to be installed
in spherical motors. Hall-effect sensors have been used to measure the rotor position for spherical
motors [20–28], however the magnetic field varies so slowly that the signal induced in the Hall-effect
sensor cannot be used to differentiate different rotor positions with high precision. In addition,
the terrestrial magnetic field may influence the Hall-effect sensor, leading to a large error in the RPM.

Given the limitations and trade-offs observed from the existing techniques, a novel high-precision
non-contact RPM method based on machine vision is proposed for PMSMs in this paper. A LED light
spot generation module (LSGM) was installed at the top of the rotor shaft in a spherical motor to form
three optical feature points (OFPs). A high-speed camera was used to obtain the images of these three
OFPs to compute rotation angles in three directions through image processing, obtaining the rotor
position of PMSMs. Compared with other non-contact RPM methods, the proposed method provided
reliable and accurate RPM with a simple structure. It was not affected by the environmental field or
the moving surface of spherical rotors and, as such, is suitable for other types of spherical motors.

The remaining content of this paper is organized as follows. Section 2 presents the structure of
a PMSM. Section 3 introduces the composition of the measurement device, and the principle of the
proposed RPM method. Section 4 shows the experimental results for validation of the proposed RPM
method. Conclusions are summarized in Section 5.

2. Structure of a PMSM

The structure of a PMSM used in this paper [29] is shown in Figure 1. The PMSM consists of
two parts: A spherical rotor and a spherical-shell stator. The radius of the rotor is 65 mm, and the
length of the rotor shaft is 40 mm. There are 40 NdFeB permanent magnets on the spherical rotor,
which are divided into four layers symmetrically distributed around the equatorial plane of a rotor.
24 air-core coils are assembled on the spherical-shell stator, which are divided into two layers and
evenly distributed on both sides of the equator.

Figure 2 shows three-DOF motion of a PMSM. Figure 2a shows the motion range of three-DOF
PMSM’s rotor shaft. A stator coordinate frame (SCF) and a rotor coordinate frame (RCF) are used in a
PMSM to describe the motion of a spherical rotor. The SCF is stationary relative to the earth, and the
center of sphere is defined as the origin (O). The RCF also defines the center of sphere as the origin (o).
The centers of the SCF and RCF are completely coincided at the initial position. Figure 2b,c shows the
spinning motion and tilting motion of a PMSM, respectively.
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Figure 2. Three degree-of-freedom (DOF) motion of a permanent magnet spherical motor (PMSM): 
(a) Rotor shaft motion and the coordinate frames; (b) spinning motion; (c) tilting motion. 
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3.1. The Structure of the Measurement Device 

Figure 3 shows the structure of the RPM device for the PMSM, which consists of two parts: A 
high-speed camera and a LED LSGM. The LSGM was installed at the top of the rotor shaft. The 
distance between the bottom of the rotor shaft and the top surface of the LSGM is 90 mm, and the 
distance between the lens of the high-speed camera and the top of the LSGM is l . 
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Figure 2. Three degree-of-freedom (DOF) motion of a permanent magnet spherical motor (PMSM):
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3. Rotor Position Measurement for a PMSM

3.1. The Structure of the Measurement Device

Figure 3 shows the structure of the RPM device for the PMSM, which consists of two parts:
A high-speed camera and a LED LSGM. The LSGM was installed at the top of the rotor shaft.
The distance between the bottom of the rotor shaft and the top surface of the LSGM is 90 mm,
and the distance between the lens of the high-speed camera and the top of the LSGM is l.
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Figure 3. Schematic diagram of rotor position measurement.

Three LEDs were installed at the top surface of the LSGM, which were arranged in a straight line,
as shown in Figure 4. The LED Lc is located at the center, the distance between Lc and Ls was 7 mm
and the distance between Lc and Ll was 10 mm. The three optical feature points (OFPs) were identified
through the different distances between them. The three LEDs are represented by L∗c , L∗s , and L∗l in the
image coordinate frame (ICF), respectively.
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The parameters of the high-speed camera are shown in Table 1.
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Table 1. Parameters of the high-speed camera

Maximum Resolution 2320× 1720
Pixel Size 7 µm× 7 µm

Frame rate
(USB3.0 Interfaces)

Frame Rate Resolution
96 2320× 1720

180 1920× 1080
360 1024× 1024
490 1080× 720

1000 640× 480
1400 512× 512

Dynamic Range 60 dB
Accuracy 8 bit
Sensitivity 5200 DN/Lux.S, 550 nm

Exposure time >2 µS
Size 82 mm× 77 mm× 57.5 mm

Figure 5 shows the images of three OFPs photographed by the high-speed camera at different
exposure times. It can be seen that, when the exposure time of the high-speed camera was 5000 µs,
only three OFPs in the image could be identified, which brought great convenience to the subsequent
image processing and could be used to extract the coordinates from the three light spots in the ICF.

Figure 5. Images taken by a high-speed camera at different exposure times.

3.2. The Principle of Camera Imaging Based on Pin-Hole Model

A pin-hole model is often used to establish the mathematical model of images in machine vision,
which is shown in Figure 6.



Appl. Sci. 2018, 8, 2415 6 of 21
Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 21 

 

 

 

(a) (b) 

Figure 6. Pin-hole model in machine vision: (a) Camera pin-hole model; (b) Image coordinate system. 

In Figure 6, the point co  represents the optical center of the camera, and co , CX , CY , and CZ  
form the camera coordinate system (CCF). The ICF includes an imaging plane I , the horizontal 
ordinates CX , and α , which are parallel and the vertical ordinates CY  and β , which are parallel 
too, and the optical axis of camera CZ , which is vertical to the imaging plane. The intersection of the 
optical axis and the imaging plane is the origin of the ICF, which is expressed as αβO . The distance 

between co  and αβO  is f , which is the focal length of the camera. A point ),( vu in the imaging 
plane can be expressed as: 









































=
















1100

10

01

1
0

0

β
α

β

α

v
d

u
d

v
u

 (1)

Where ),( 00 vu is the coordinate values of αβO , αd  and βd
 

is the pixel size of the camera. 
We define a world coordinate frame (WCF) which constitutes WX , WY , and WZ to describe 

the position of the camera in the CCF. The transformation relationship between the WCF and CCF 
can be expressed as: 



















=



























=



















11
10

1
W

W

W

b
W

W

W

T
C

C

C

Z
Y
X

Z
Y
X

t
Z
Y
X

M
R



 (2)

Where: R is a rotation matrix of 33× ; t


is a translation vector of 13× ; bM is a external parameter 
matrix of 44× . 

As observed from triangulation in Figure 6, we can get 










=

=

C

C

C

C

Z
fY
Z
fX

β

α
 (3)

equation (3) can be expressed in the form of matrix as: 

Figure 6. Pin-hole model in machine vision: (a) Camera pin-hole model; (b) Image coordinate system.

In Figure 6, the point oc represents the optical center of the camera, and oc, XC, YC, and ZC form
the camera coordinate system (CCF). The ICF includes an imaging plane I, the horizontal ordinates XC,
and α, which are parallel and the vertical ordinates YC and β, which are parallel too, and the optical
axis of camera ZC, which is vertical to the imaging plane. The intersection of the optical axis and the
imaging plane is the origin of the ICF, which is expressed as Oαβ. The distance between oc and Oαβ is f ,
which is the focal length of the camera. A point (u, v) in the imaging plane can be expressed as: u

v
1
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where (u0, v0) is the coordinate values of Oαβ, dα and dβ is the pixel size of the camera.
We define a world coordinate frame (WCF) which constitutes XW , YW , and ZW to describe the

position of the camera in the CCF. The transformation relationship between the WCF and CCF can be
expressed as: 
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where: R is a rotation matrix of 3× 3;
→
t is a translation vector of 3× 1; Mb is a external parameter

matrix of 4× 4.
As observed from triangulation in Figure 6, we can get{

α = f XC
ZC

β = f YC
ZC

(3)
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Equation (3) can be expressed in the form of matrix as:

ZC

 α

β

1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




XC
YC
ZC
1

 (4)

Substituting Equations (1) and (2) into Equation (4) leads to

ZC

 u
v
1

 =

 aα 0 u0 0
0 aβ v0 0
0 0 1 0

( R
→
t

0T 1

)
XW
YW
ZW
1

 = MaMbpW (5)

where: aα = f
dα

, aβ = f
dβ

; Ma is the intrinsic parameters matrix of a camera, which is determined
by aα, aβ, u0 and v0; Mb is the extrinsic parameters matrix of a camera, which is determined by the
relationship between the CCF and WCF. Equation (5) can be used to calculate the position of objects,
such as rotor position in this study. In the following analysis and experiments, the high-speed camera
was fixed on a tripod and its distance to the top of LSGM was l ∈ Mb, which was the main parameter
in the experiments.

3.3. Analysis of Rotor Motion in a PMSM

When the PMSM was working in the maximum motion range of three-DOF with the maximum
tilting angle of 37.5◦, the output shaft tip of the rotor produced a spherical trajectory (gray color) and
the midpoint LED in the LSGM also produced another spherical trajectory (red color), as shown in
Figure 7. The sphere centers of the two trajectories were the same, the two tilting angles were also
the same, but the radii of them were different. Therefore, the spherical trajectory generated by the
midpoint LED could be used to determine the position of the rotor shaft.
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3.3.1. Calculation of the Rotor Position in a PMSM

The rotor position in a PMSM can be represented by three rotation angles: The tilting angle_θ,
the yaw angle_ϕ, and the spinning angle_ω. Three rotation angels can be calculated by computing
the coordinate values of three OFPs in the ICF, which are captured by a high-speed camera. Figure 8
shows the procedure to calculate the three rotation angles.
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3.3.2. Calculation of the Tilting angle_θ

When the tilting angle of the rotor shaft is θ, Figure 9 shows the relationship between the camera
and the midpoint LED, where R is the distance between the sphere center and the midpoint LED.
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When θ = 0◦, i.e., the rotor shaft is perpendicular to the horizontal plane, the distance between the
lens of high-speed camera and the midpoint LED is l. When θ varies between 0◦ and 37.5◦, the angle δ

can be computed by
d = R× sin θ (6)

∆r = R(1− cos θ) (7)

tan δ =
d

l + ∆r
=

Num
f

(8)

Num =

√
[(u− u0)× dx]

2 +
[
(v− v0)× dy

]2 (9)

where d and ∆r are the deflection distances in the horizontal and vertical directions, respectively,
Num is the pixel coordinate distance in the ICF.

Substituting Equations (6) and (7) into Equation (8) yields

tan δ =
R× sin θ

l + R(1− cos θ)
=

Num
f

(10)

Then, the tilting angle is

θ = arcsin
Num(l + R)

R
√

f 2 + Num2
− arctan

Num
f

(11)

3.3.3. Calculation of the Yaw angle_ϕ

When the rotor moves within the maximum angle, the high-speed camera captures the image of
the three OFPs, which are located within a circle at the radius of VRmax (the value of VRmax is
correlation with the experimental parameters), as indicated in Figure 10.
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correlation with the experimental parameters), as indicated in Figure 10. 
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Similarly, the angle ϕ′ can be computed by

ϕ′ = arctan
dv

du
(12)

where: du and dv are the distances between the midpoint LED and the origin in the ICF.
With the calculated ϕ′, the tilting angle_ϕ in the range of 0~2π can be expressed as:

ϕ = ϕ′ The first quadrant
ϕ = π − ϕ′ The second quadrant
ϕ = π + ϕ′ The third quadrant
ϕ = 2π − ϕ′ The fourth quadrant

(13)

Thus, the rotor position expressed by the tilting angle_θ and yaw_ϕ in a spherical coordinate
frame can be converted to a position [x, y, z] in a rectangular coordinate frame as x

y
z

 = Rs

 sin θ cos ϕ

sin θ sin ϕ

cos θ

 (14)

where Rs is the distance between the tip of the rotor shaft and sphere center.

3.3.4. Calculation of the Spinning angle_ω

While the rotor shaft moved within the maximum angle, the rotor was spinning around z axis in
the RCF as shown in Figure 11 and the spinning angle ω is needed to determine the rotor position.
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Appl. Sci. 2018, 8, 2415 11 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 21 

 

Where: ud  and vd  are the distances between the midpoint LED and the origin in the ICF.  
With the calculated 'ϕ , the tilting angle_ϕ  in the range of 0~2π can be expressed as: 

'
'
'

2 '

     
  
  

ϕ ϕ
ϕ π ϕ
ϕ π ϕ
ϕ π ϕ

=
 = −
 = +
 = −

The  first  quadrant     
The  second  quadrant
The  third  quadrant   
The  fourth  quadrant 

 (13)

Thus, the rotor position expressed by the tilting angle_θ  and yaw_ϕ  in a spherical coordinate 
frame can be converted to a position [ x , y , z ] in a rectangular coordinate frame as  
















=

















θ
ϕθ
ϕθ

cos
sinsin
cossin

sR
z
y
x

 (14)

Where sR is the distance between the tip of the rotor shaft and sphere center. 

3.3.4. Calculation of the Spinning angle_ ω  

While the rotor shaft moved within the maximum angle, the rotor was spinning around z axis 
in the RCF as shown in Figure 11 and the spinning angle ω  is needed to determine the rotor position. 

 

Figure 11. Spinning motion of the rotor. 

Figure 12 shows the images of the three OFPs taken by the high-speed camera when the rotor 
shaft was spinning. 

 
Figure 12. Images of three optical feature points (OFPs) for calculation of spinning angle_ω.

The angle ω′ can be computed by

ω′ = arctan
Ov

Ou
(15)

where Ov is the distance between L∗l and L∗s in the direction of v axis, and Ou is the distance between
L∗l and L∗s in the direction of u axis.

With the rotation angle ω′, the spinning angle_ω in the range of 0~2π can be expressed in the four
quadrants as: 

ω = ω′ The first quadrant
ω = π −ω′ The second quadrant
ω = π + ω′ The third quadrant
ω = 2π −ω′ The fourth quadrant

(16)

4. Experimental Results

According to the proposed method, the tilting angle_θ, the yaw angle_ϕ, and the spinning angle_ω

can be calculated to determine a rotor position of the PMSMs. In order to verify the RPM method
for PMSMs, an experimental platform, as shown in Figure 13a, was constructed, which consisted of
a PMSM and its control circuit, a LSGM and its driver circuit, a high-speed camera (Revealer, Hefei,
Anhui, China) and tripod, a power supply (Tradex, Beijing, China), and a computer (Lenovo, Beijing,
China). Figure 13b shows the block diagram of the control system. The block diagram of the rotor
position measurement system is shown in Figure 13c.
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Figure 13. Experimental platform for measuring the position of the PMSM rotor: (a) Experimental
prototype; (b) Block diagram of the control system; (c) Block diagram of rotor position measurement
system, micro-electro-mechanical system(MEMS): MPU6050.

Table 2 shows the parameters of the spherical motor driver circuit.

Table 2. Parameters of the spherical motor driver circuit.

Working voltage 24 V
Maximum input voltage 55 V
Total driver unit number 24
Maximum output current

(per every driver unit) ±5 A

Constant-current precision ±20 mA
Maximum output frequency 200 Hz

In the following experiment, we set the resolution, the sampling time, and the exposure time of
the high-speed camera as 1100 × 1100, 20 ms and 5000 µs, respectively. The distance between the
LSGM’s tip and high-speed camera lens l was 420 mm, we can measure through Equation (11) that the
maximum value of θ is 42◦, (the maximum tilting angle of PMSM is 37.5◦). Consequently, the intrinsic
parameter matrix of the camera generated by the calibration method [30] is

Ma =

 2295.71 0 555.51 0
0 2295.71 554.87 0
0 0 1 0

 (16)

From Table 1, dα = dβ = 0.007 mm, the focal length of the camera can be computed as:

f = aα × dα = 16.07 mm (17)

Measurement results obtained by the MEMS were set as the reference (analytical results), Table 3
shows the parameters of the MEMS. Although MEMS can get a precise position of PMSM in a certain
time (about 10 min) after calibration, it is known that the measurement error will gradually increase
after a certain time. Every measurement time was 10 s in the following experiment.
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Table 3. Parameters of the MEMS.

Module Type MPU6050

Measurement dimension
Acceleration 3-DOF

Angular velocity 3-DOF

Attitude angle 3-DOF

Measurement range Acceleration ±16 g

Angular velocity ±2000◦/s

Resolution
Acceleration 0.01 g

Angular velocity 0.05◦/s

Attitued angle 0.01◦

Data output frequency 100 Hz

4.1. Experimental Measurement on Tilting Motion of PMSM Rotor

The rotor shaft can make a tilting motion with respect to the z axis in the SCF, the tilting angle
varied between 0◦ to 37.5◦. The initial position was determined by drawing two lines on the stator
shell and spherical rotor, respectively, as shown in Figure 14.
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Figure 14. Tilting motion of PMSM rotor.

Figure 15a shows the images obtained by the high-speed camera when the rotor made a tilting
motion; the coordinate values of three OFPs in the ICF were calculated by image processing. Further,
we get the position of rotor output shaft tip by the tilting angle_θ through Equation (11) and the yaw
angle_ϕ through Equation (13), which is shown in Figure 15b.
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Figure 15. Experimental measurement on tilting motion: (a) Images captured by high-speed camera
and coordinate values of optical feature points; (b) Position of rotor shaft tip.

Figure 16a shows the tilting angle_θ when the PMSM made a tilting motion. The maximum tilting
angle was about 22◦, and the rotor wiggled 11.5 times in 10 s. The maximum difference between
the experimental and analytical results of the tilting angle was about 0.32◦, as shown in Figure 16b.
Figure 16c shows the yaw angle_ϕ. It moved between 90◦ and 270◦ in the first 5 s, which means
the rotor made a tilting motion about 5 times near the XZ plane. In the next 5 s, the rotor made a
tilting motion about 6.5 times near the YZ plane and the yaw angle moved between 180◦ and 360◦.
The maximum difference between the experimental and analytical results of the yaw angle was about
0.3◦, as shown in Figure 16d. Figure 16e shows the spinning angle_ω. It was about 330◦ in the first 5 s
and was changed into about 255◦ in the next 5 s. The maximum difference between the experimental
and analytical results of the spinning angle was about 0.31◦, as shown in Figure 16f.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 21 

 

  
(a) (b) 

Figure 15. Experimental measurement on tilting motion: (a) Images captured by high-speed camera 
and coordinate values of optical feature points; (b) Position of rotor shaft tip. 

Figure 16a shows the tilting angle_θ  when the PMSM made a tilting motion. The maximum 
tilting angle was about 22°, and the rotor wiggled 11.5 times in 10 s. The maximum difference between 
the experimental and analytical results of the tilting angle was about 0.32°, as shown in Figure 16b. 
Figure 16c shows the yaw angle_ϕ . It moved between 90° and 270° in the first 5 s, which means the 
rotor made a tilting motion about 5 times near the XZ plane. In the next 5 s, the rotor made a tilting 
motion about 6.5 times near the YZ plane and the yaw angle moved between 180° and 360°. The 
maximum difference between the experimental and analytical results of the yaw angle was about 0.3°, 
as shown in Figure 16d. Figure 16e shows the spinning angle_ ω . It was about 330° in the first 5 s and 
was changed into about 255° in the next 5 s. The maximum difference between the experimental and 
analytical results of the spinning angle was about 0.31°, as shown in Figure 16f. 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 16. Cont.



Appl. Sci. 2018, 8, 2415 15 of 21

Appl. Sci. 2018, 8, x FOR PEER REVIEW  15 of 21 

 

 
 

(e) (f) 

Figure 16. Experimental results of rotor tilting motion: (a) Experimental and analytical results of θ ; 

(b) difference between experimental and analytical results of θ ; (c) experimental and analytical 

results of ϕ ; (d) difference between experimental and analytical of ϕ ; (e) experimental and 
analytical results of ω ;(f) difference between experimental and analytical of ω . 

4.2. Experimental Measurement on Spinning Motion of PMSM Rotor at the Center Point  

When the rotor was rotating around the z axis at the center point, i.e., the tilting angle_θ  was 
0°, as shown in Figure 17. The spinning angle of the rotor shaft can be calculated from the images 
which were taken by the high-speed camera. 

 
Figure 17. Spinning motion of PMSM rotor at center point. 

Figure 18a shows the images taken by the high-speed camera and the coordinate values of the 
three OFPs in the ICF. After calculating the tilting angle_θ  and yaw angle_ϕ , we can get the position 
of rotor output shaft tip, which is shown in Figure 18b. 
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4.2. Experimental Measurement on Spinning Motion of PMSM Rotor at the Center Point

When the rotor was rotating around the z axis at the center point, i.e., the tilting angle_θ was 0◦,
as shown in Figure 17. The spinning angle of the rotor shaft can be calculated from the images which
were taken by the high-speed camera.
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Figure 17. Spinning motion of PMSM rotor at center point.

Figure 18a shows the images taken by the high-speed camera and the coordinate values of the
three OFPs in the ICF. After calculating the tilting angle_θ and yaw angle_ϕ, we can get the position of
rotor output shaft tip, which is shown in Figure 18b.
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shows the spinning angle_ω . It can be seen that the PMSM rotor rotated clockwise at about 5.5 turns 
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Figure 18. Experimental measurement on the spinning motion of PMSM rotor at center point:
(a) Images captured by high-speed camera and coordinate values of optical feature points; (b) Position of
rotor shaft tip.

Figure 19a shows the tilting angle_θ when the PMSM rotor made a spinning motion at the center
point, however the maximum tilting angle was about 2.8◦. This may be caused by the position direct
(PD) control algorithm and the time delay of position detection applied in this PMSM. The maximum
difference between the experimental and analytical results was about 0.25◦, as shown in Figure 19b.
Figure 19c shows the yaw angle_ϕ, it varied from 90◦ to 210◦, the maximum difference between the
experimental and analytical values was about 0.3◦, as shown in Figure 19d. Figure 19e shows the
spinning angle_ω. It can be seen that the PMSM rotor rotated clockwise at about 5.5 turns in 10 s,
and the maximum difference between the experimental and analytical values was about 0.3◦, as shown
in Figure 19f.
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4.3. Experimental Measurement on Edge Spinning Motion of PMSM Rotor

Figure 20 shows that the PMSM rotor shaft spinning at a tilted angle. When the rotor shaft was in
motion in three-DOF, the spherical rotor span around the tilted z axis at the same time.
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Figure 21 shows the experimental measurement on the edge spinning motion of PMSM rotor.
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Figure 21. Experimental measurement on the edge spinning motion: (a) Image captured by high-speed
camera and coordinate values of optical feature points; (b) Position of rotor shaft tip.

Figure 22a shows the tilting angle_θ when the PMSM rotor made an edge spinning motion, its
average value was about 24◦. The variation of the tilting angle might be caused by the PD control
algorithm and the time delay of position detection used in the PMSM. The maximum difference of
the tilting angle between the experimental and analytical results was about 0.22◦, which is shown
in Figure 22b. Figure 22c shows the yaw angle_ϕ. It can be seen that the PMSM rotor is rotating
anti-clockwise at the approximate 4.5 turns around the z axis in the SCF. The maximum difference of
the yaw angle between the experimental and analytical results was about 0.3◦, as shown in Figure 22d.
Figure 22e shows the spinning angle_ω, we can see that the PMSM rotor was rotating clockwise at
the approximate 4 turns around the z axis in the RCF. The maximum difference of the spinning angle
between the experimental and analytical results was about 0.45◦, as shown in Figure 22f, this difference
was mainly caused by the three LEDs in the LSGM which were not at the same level when the rotor
was tilted.
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analytical results of θ; (b) difference between experimental and analytical results of θ; (c) experimental
and analytical results of ϕ; (d) difference between experimental and analytical results of ϕ;
(e) experimental and analytical results of ω; (f) difference between experimental and analytical
results of ω.

4.4. Comparison of Different Rotor Position Measurement Methods

To date, four types of sensors have been widely used for the RPM including MEMS, photoelectric
sensor, Hall-effect sensor, and high-speed camera The experimental results obtained by the MEMS
were set as the reference values because the MEMS has been found to have the highest accuracy among
four of them. The experimental results obtained by the other three methods were compared with those
by the MEMS. Table 4 shows their differences. It can be seen that the high-speed camera based RPM
has shown higher accuracy than the other two methods.

Table 4. Comparison of different rotor position measurement methods.

Measurement Method Photoelectric Sensor Hall-Effect Sensor High-Speed Camera

Tilting motion
eθ(◦) 0.65 1.55 0.32
eϕ(◦) 0.58 1.62 0.3
eω(◦) 0.49 1.47 0.31

Spinning motion at
Center point

eθ(◦) 0.59 1.29 0.25
eϕ(◦) 0.51 1.36 0.3
eω(◦) 0.47 1.28 0.3

Edge spinning motion
eθ(◦) 0.69 1.87 0.22
eϕ(◦) 0.62 1.83 0.3
eω(◦) 0.51 1.31 0.45

* eθ is the error of tilting angle_θ; eϕ is the error of yaw angle_ϕ; eω is the error of spinning angle_ω.

5. Conclusions

Rotor position measurement (RPM) is a precondition for closed-loop operation of spherical motors.
This paper presents a novel RPM method for a PMSM based on image processing. In the proposed RPM,
a LSGM was installed at the top of a PMSM rotor shaft, where three LEDs in the LSGM were arranged
in a straight line with different distances to form three optical feature points (OFPs). A high-speed
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camera was used to capture the images of these three OFPs. The coordinate values of the three OFPs in
the images were extracted to compute the tilting angle_θ, the yaw angle_ϕ and the spinning angle_ω of
the PMSM rotor, and thus obtain the rotor position of a PMSM. As there was no physical contact
between a high-speed camera and a PMSM, extra moment of inertia and friction resistance, which
may compromise the working performances of spherical motors, were avoided. The experimental
platform was set up to verify the effectiveness of the proposed RPM method with high detection
precision. In the future, we will install a tiny camera in a PMSM to measure the rotor position, which
has negligible influence on the motion of rotor and structure of a PMSM. Combining with the other
sensors, we will use the multiple sensor fusion method to further improve the precision of the RPM.
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