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Abstract: High penetration of wind power plants may have an adverse impact on power systems
stability by reducing the inertia, and problems like frequency stability could appear due to total
inertia in the system being reduced, making the power system more vulnerable to disturbances.
However, most recent grid codes include an emulation inertia requirement for wind power plants,
because modern wind turbines are capable of providing virtual inertia through power electronic
converter controls to improve frequency stability issues. Because of this, it is necessary that the inertia
estimation analyze and quantify the impact of the inertia reduction in power systems. In this paper,
an implementation of a methodology for the inertia estimation of wind power plants is presented. It is
evaluated through synchrophasor measurements obtained from a Real-Time Digital Simulator (RTDS)
implementation, using industrial Phasor Measurement Units (PMUs). This methodology is based on
the swing equation. Furthermore, a comparison of the results obtained between two professional
tools RSCAD and DIgSILENT PowerFactory is performed, in order to evaluate the accuracy and
the robustness of the methodology. This methodology is applied for the inertia estimation of an
equivalent of the southeast zone of the Mexican power system, where there is a large-scale penetration
of wind power plants. The results demonstrate that this methodology can be applied in real power
systems using PMUs.

Keywords: inertia constant; swing equation; phasor measurement units; RTDS; wind power plants

1. Introduction

The amount of wind power generation has grown in recent years, providing 3% of global power,
for example, China is leading with 164 GW, the United States with 6 GW, Germany with 6 GW,
India with 4 GW, and the U.K. with 4 GW [1]. This is along with the aim of reducing the dependence
on fossil fuels and mitigating the adverse effects of global warming [2,3]. Wind generation brings
benefits [4,5], but also challenges for power systems [6,7], especially when there is a high penetration
of wind power plants. Therefore, it is essential to conduct studies about the stability and operation of
power systems, including this type of plant.

The determination of the stability of the power system is important; it lets us know if the power
system is able to regain a state of equilibrium after the system is subjected to a physical disturbance [8].
Inertia is the parameter that represents the capability of rotating machines to store and inject their
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kinetic energy in the system. The level of inertia influences the Rate Of Change of Frequency (ROCOF)
and transient frequency values during a system perturbation. The transient value of the system
frequency is important because variations in the frequency caused by an inertia decrease can raise
the risk of reaching values that are dangerous for the system frequency stability (generator trip,
load shedding intervention, etc.) [9].

On the other hand, wind turbine generators are decoupled from the grid by power electronic
converters; thus, they do not directly contribute to system inertia [10], and large-scale penetration
of non-inertial wind generators in the power system will result in reduced system inertia [11-13].
This reduction has a substantial impact on frequency regulation [14]. Therefore, the inertia estimation
can be used as an input for the control of power electronic converters and energy storage systems,
among others, helping to maintain the system frequency stability during disturbances.

In the literature, potential applications have been proposed for the results obtained from the inertia
estimation. For instance, in [15], the inertia estimation was used to enhance the dynamic operation and
performance of a power grid against frequency stability problems, while in [16], an inertia estimation
algorithm was used in combination with the ROCOF and a derivative control of a High Voltage Direct
Current (HVDC) controller to provide active power and enhance the inertia response of conventional
generators when the power demand changes. However, the main application of the inertia estimation
in wind power plants is to set the references of the synthetic inertial controllers included in these
plants [17,18]; these controllers are based on the concept of hidden inertia emulation of wind power
plants, which increases the electric power output during the initial stages of stability frequency issues
using the kinetic energy from moving parts. The concept of synthetic inertia provides a boost energy
in a similar way as a synchronous generator with real inertia and reduces stability frequency issues.

This paper improves and evaluates the methodology presented in [11] for the estimation of the
inertia available in hydro and wind power plants based on the measurements obtained from PMUs.
The methodology was modified using a fourth-order finite-difference approximation to calculate
the second-order derivative of the swing equation, and the results obtained are way better. Besides,
the methodology is tested using measurements obtained from industrial PMUs in a test power system
implemented in an RTDS, to test its practical application, and not only using offline simulations,
as reported previously. In addition, the methodology is applied to an equivalent of the Mexican
southeast power system, where there is high penetration of wind and hydropower generation.

In order to evaluate the accuracy and robustness of the inertia estimation, a power system was
implemented as an experimental setup in a Real-Time Digital Simulator (RTDS), and the results of the
inertia estimation were compared against the professional software DIgSILENT PowerFactory [19].

The rest of the paper is organized as follows: in Section 2 is presented the literature review
referent to the inertia estimation in power systems; in Section 3, the methodology to estimate the inertia
constant of the generation units is presented; Section 4 shows the inertia estimation of the experimental
validation; Section 5 presents the behavior of the inertia estimation when the generated active power is
varied; Section 6 presents the results obtained with the application of the methodology in the southeast
zone of the Mexican electric system; finally, Section 7 draws the main conclusions of this paper.

2. Methods for Inertia Estimation

To address frequency stability issues, some works have been proposed to estimate the inertia in
power systems with the purpose to improve the frequency stability and enable higher penetration of
wind power plants [14,20].

In [20], a virtual inertia was estimated by using the frequency deviation measurements in a
microgrid. The method was based on the swing equation, and the value of the inertia was used
for tuning load frequency controllers of the generation units and calculating the active power
required for an energy system storage, composed by Ultracapacitors (UC), to improve the frequency
stability problems.
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The work in [21] calculated a synthetic inertia by means of a transfer function that represented the
electromechanical behavior of a synchronous generator. The inertia estimation was done considering
load changes and frequency deviations read of the power system.

In the work reported in [22], a virtual inertia was estimated through the swing equation of
synchronous machines. The system was linearized with respect to the speed of the generator, and the
inertia was determined by the balance between the mechanical and active power of the generation units.

The work in [23] estimated the power system inertia through a simulation model and frequency
measurements from PMUs. In the inertia estimation, the frequency and the total active power at the
connection point just after the disturbance were considered.

In [24], the inertia estimation was based on an approximation of the total power change after a
disturbance has occurred. This methodology used the average frequency of the system and the first
instant after the application of the disturbance to estimate the inertia.

The aforementioned methodologies were based on the swing equation and transients events,
like the ROCOF, and some of them used off-line measurements, such as the power system frequency,
which led to a low inertia estimation accuracy [25]. On the other hand, the method presented in [24]
provided low inertia estimation error by employing particle swarm optimization, but the accuracy
of this method depended on the load power change model and a large number of parameters such
as currents, load impedance, power change measurements after the disturbance, and the frequency
average of the system.

Table 1 shows the differences between the main methodologies proposed in the literature for the
inertia estimation and the methodology used in this research. The plus and minus signs indicate if the
methodology contains (+) or not (—) the characteristic evaluated in Table 1, respectively. The principal
characteristics used in the comparison are the simplicity of the algorithm, online implementation,
accuracy of the inertia estimation on the first oscillation, mean error, a smaller number of parameters
used for the estimation, and the robustness of the algorithm against variations in the system.

In contrast with the the mentioned methods, the methodology used in this paper only needs the
bus angle deviation at generation buses obtained from PMUs and real power measurements. It has
a considerable balance of accuracy on the first oscillation, a simplified algorithm, robustness in the
presence of variations in the system, and low error in the estimation of the inertia in the generation
units. However, a disadvantage of this methodology is that the accuracy is reduced when the system
is subject to small perturbations such as load variations. The methodology uses the time when the
perturbation starts to determinate the peak value of the first angular oscillation. In its current form,
this methodology does not include any technique for the detection of perturbations.

3. Methodology for the Inertia Estimation

Typically, the natural inertia of synchronous generator units responds voluntarily when the
system is subject to disturbances, without any control actions [26,27]. This behavior can be achieved in
wind power plants through power electronic converters by wind turbine inertia controls, even when
they are decoupled partially or completely from the grid [12,28,29]. This assumption is valid because
modern wind turbine controllers can convert the kinetic energy into active power, i.e., control functions
achieved by power converter controls can be seen as the virtual inertia of wind generators [14,18].
This is shown in Figure 1. Through both natural and virtual inertias, active power is released to the
power system from the kinetic energy of generation units. In the case of wind power plants, this is
done through power electronics converters and wind turbine controls that extract the kinetic energy
from moving parts and convert it into real power output [17,18]. This characteristic of inertia response
in wind power plants can be described in a format similar to conventional generator units by the
swing equation, which is directly derived from Newton’s law of motion on rotating objects. Due to
this correlation between the virtual inertia of wind power plants and the real inertia of synchronous
generation units, an inertia can be estimated for wind power plants in a format similar to conventional
generators [11].
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Table 1. Comparison among methodologies for the inertia estimation.

Characteristic Optimization ROCOF Load Disturbance and Fifth Order Methodology
Methods [16] [17] Frequency Deviation [23] Polynomial [29] Used
Simplicity of the algorithm. — - — + +
Online implementation. — — + + +
Accuracy on inertia estimation on the first oscillation. — — — — +
Percentage of error. <5% <13% <10% <42% <4%
Less number of parameters used. — + — + +
Robustness of the inertia estimation against — — — + +

variations in the system.

Virtual inertia
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Figure 1. Virtual inertia concept in wind power plants.

The characteristic inertia response can be represented by the swing equation, which describes
the change between the axis of the rotor and the magnetic field. This change is produced when a
disturbance occurs in the power system. As a result, the rotor accelerates or decelerates with respect to
system synchronous speed [26]. The swing equation is given by the next expression [27,30]:

Eazﬂ = APM — APE — KDACU (1)

wo at2
where wy is the rated speed of the system, J is the rotor angle, Py is the mechanical power, P is the
electrical power, Kp is the damping factor, and Aw is the derivative of the rotor angle.

Equation (1) represents the dynamic response of the inertia of the synchronous machines or a
group of synchronous machines. Rotor angle is the rate of change of the angular displacement of the
rotor, that is the angular speed of the rotor is equivalent to the derivative of the angle of the rotor with
respect to time. This expression can be represented as [11]:

Y]
Aw = 7

@)
The rotor angle 6 cannot be directly measured; however, the angle of the voltage on the bus 6
closely follows the rotor angle. Thus, Equation (1) can be rewritten as [11]:

2
gaa%e:APM—APE—KD% (©)]

Real-time measurements, like mechanical power, could be difficult to obtain, especially when
there is a change in the mechanical power at the turbine of each generation unit. A consideration can be
applied to Equation (3) assuming that the mechanical power has a very large time constant compared
with the electrical power. During the first swing of any disturbance, when primary frequency controls
are not yet active, it is valid to assume that the mechanical power output remains constant. In addition,
the mentioned consideration for this methodology is applied for short-term transient events where the
mechanical torque has a higher value in comparison with electromagnetic torque [27,31].

Assume:

APy =0 4)
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APg 1y = Pg(ty — Pro 5)

The swing equation can be developed with [11]:

2H 9%Af8 oAb
_— — — —_— 6
wo 972 Pro — Pg(t) — Kp 5 (6)
It can be rewritten as:
2H 9%A0(t) IAO(t)
—_— pu— et 7
w o + Kp o Pro PE(t) (7)

Another consideration is to assume Kp = 0 in a short time after a disturbance. Furthermore,
as can be noted, this methodology is suitable for discrete measurements; in this way, using finite
difference equations and applying a fourth-order central finite-difference scheme [32], Equation (7)
can be expressed as:

12]12 * o * (PEO — PE(f))

H =
2 % (_9i+2 + 169i+1 - 3061 + 1691',1 - 91',2)

®)

where h is the integration step size of the finite-difference approach, 6 is the vector of the bus-voltage
angles, and i is the i element of this vector. The implementation of the methodology considers the
following conditions: (a) the detection of the beginning of the disturbance, (b) the detection of the peak
value of the first angular oscillation, and (c) assuming the knowledge of the active power provided
by the generation units [11]. Finally, the bus-voltage angle at the generation buses is provided by the
PMUs, and the total generated active power is directly measured at the generation stations.

4. Methodology Evaluation

This section presents the validation of the methodology for the inertia estimation. The main
purpose is to evaluate the accuracy and robustness of the results of the inertia estimation obtained with
the methodology in comparison with known given inertia values. In order to carry out this evaluation,
two case studies were implemented in the professional software DIgSILENT PowerFactory and an
experimental validation in an RTDS. Afterward, in Section 6, the evaluated methodology is applied to
the inertia estimation of the hydropower and wind power plants of the southeast Mexican equivalent
power system.

For the first case study, the results were produced by a three-phase short-circuit event at the
transmission L1 of Figure 2. This event was applied in the middle of the line, at t = 0.3 s, then at
t = 0.4 s, was cleared by opening the breakers at the end of the line, and the inertia of the generation
unit G1 was estimated. In this case, in RTDS, a distributed parameter model was used to have a
more realistic system representation, while in DIgSILENT PowerFactory was used in the lumped
parameters PI-model, because DIgSILENT PowerFactory does not support the use of the model of
distributed parameters when a three-phase short-circuit is applied at the middle of the transmission
line. On the other hand, in the second case study, the PI-model was used in both software; also, it was
observed that despite the models used to represent the synchronous machines and their controllers
Automatic Voltage Regulator (AVR), governors, and excitation systems) the same in both software,
their implementations were slightly different, and this yielded different results for the same system
under simulation [33,34]; for that reason, the controllers were tuned in DIgSILENT PowerFactory to
obtain a similar behavior as RTDS and to be able to compare the obtained results. These changes were
made to evaluate the robustness of the methodology for the inertia estimation.
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Figure 2. Implementation in RSCAD-RTDS. PSS, Power System Stabilizer. G, Generator; B, Bus.
4.1. System Configuration

Figure 2 shows the schematic implementation of the system under study in the software RSCAD
of RTDS. The system consists of two synchronous Generators G1 and G2, and their control systems
(Governor PIDGOV, Automatic Voltage Regulator (AVR) EXST1, and Power System Stabilizer (PSS)
STAB2A) [35,36], two three-phase transformers, two transmission lines, and an electrical load modeled
as a constant impedance. The parameters of the test system can be consulted in the Appendix A.

Figure 3 presents the experimental setup of the system in RTDS. The measured three-phase
voltages of buses 1, 2, 3, and 5 simulated in RTDS are sent to the PMUs. The estimated synchrophasors
are sent via Ethernet in the IEEE protocol C37.118. The sample rate of synchrophasors is 60 cycles/s in
protection mode. A GPS satellite clock SEL-2404 is used to timestamp the calculated phasors. All the
phasors are received by a computer for further analysis.

ReakTime Digial Smalaor

Figure 3. Hardware-in-the-loop implementation in RTDS.
4.2. Analysis and Comparison of the Results

This section presents the analysis and comparison of the results obtained from the two simulation
professional tools. To present this comparison, it the voltages at the all buses of the power system,
rotor speed at the generator G1, and the angle 8 of the voltage at bus 1 were used.

Figure 4 shows the plots, in both software, of the results of the voltages in the buses of the system.
The signals have almost the same behavior, but there are some differences in the values in the first
oscillations, whereas in RTDS, the value is 1.95 in p.u. at B3and in DIgSILENT PowerFactory is 1.05
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p-u. These differences are due to the models used in elements such as the AVR, governors, excitation
systems, synchronous machines, and transmission lines between RTDS and DIgSILENT PowerFactory.
In addition, the short-circuit produced some oscillations at the beginning and at the end of the event,
but as the behavior of the voltages indicated, the system was stable.

2 —

5 | i | —Bl1
oF 15 aly )'.-.._ —B2
& 1 == \ — K— . = — B3
§ 0.3 04 0.5 — B4
S . ‘ | | | | B5

0 1 3 4 5
time (s)
(a)
2 \ T

5 —BI
& ! ] — B2
o1 e — —B3
&0 | .
fS 0.3 0.4 0.5 B4
g B5

0 : : I | |
! ! 2 tirhe (s) 4 g 6
(b)

Figure 4. Voltages in the buses of the power system: (a) RTDS. (b) DIgSILENT PowerFactory.

Figure 5 displays the rotor speed of the generator G1. It can be appreciated that both signals in
RTDS and DIgSILENT PowerFactory were almost the same, but in t =1.14 s, the speed in RTDS was
374.1 rad/s, while in DIgSILENT PowerFactory, it was 374.9 rad/s. In addition, the results suggest
that the power system would be able to reach a new steady state, without loss of stability after being
subjected to a three-phase short-circuit.

382

—RTDS
380 - —DIgSILENT PowerFactory]| |

(rad/secs)
wW
>

w
J
[}

w G1

~ 374

372

370 Il Il Il Il Il
0 1 2 3 4 5 6

time (s)

Figure 5. Rotor speed comparison between two professional tools.

Figure 6a presents the voltage angle 6 at bus 1 obtained from the PMUs’ SEL in radians. Figure 6b
shows the same angle in degrees and referenced to the generator G1, obtained from RTDS and
DIgSILENT PowerFactory, respectively. From Figure 6b, it can be observed that the signals presented
the same behavior, but in detail, there were some differences; this was because the RTDS waveform
was obtained directly from the industrial PMUs, while the DIgSILENT PowerFactory waveform was
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obtained from the RMS simulation. These signals were used to estimate the inertia for the generation
unit G1.

Phase

time

8 f—— RIDS
;_EEj [ = DIgSILENT PowerFactory
E P NZR

0 1 2 3 4 5 6
time (s)
(b)
Figure 6. Voltage synchrophasors: (a) phase angles of the voltages provided by the PMUs. (b) angular
difference between Buses B1 and B5 from RTDS and DIgSILENT PowerFactory.

On the other hand, the derivative of the voltage angle 6 on the bus followed closely the angular
speed of the rotor wy, as shown in Figure 7. This signal was used to estimate the inertia value.

380

T
—— T

time (s)

Figure 7. Rotor speed and derivative of the angle bus in RTDS.

Table 2 presents the results of the inertia estimation for this case study. The results obtained
demonstrate that there was concordance and that the results were better in comparison with the results
reported in [24,25,37], where the error in the estimation was between 0.22% and 41.11%. On the other
hand, [11] reported an estimation error of 16%. It is important to mention that it is not possible to
establish a perfect comparison between the results obtained in this research with the results reported
in the literature because the test systems were different; however, the models used and perturbations
applied were similar. It is worth mentioning that the estimation errors obtained both in the literature
and in this research were compared with previously-reported values, and this makes the comparison
valid and fair and demonstrates that using the methodology presented in this contribution, better
results were obtained.
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Table 2. Inertia estimation results at bus 1, Case 3 phase short-circuit.

Simulation Tool H Input (s) H Estimated (s) Absolute Error %
RTDS 3.7 3.8 2.7
DIgSILENT PowerFactory 3.7 3.56 3.78

In order to evaluate the accuracy and robustness of the methodology used in this paper, another
case study was carried out. In this case study, in RTDS and in DIgSILENT PowerFactory, the lumped
parameters PI-model for the transmission lines was used, and the generator controllers in DIgSILENT
PowerFactory were tuned to obtain a similar behavior as for RTDS. Table 3 provides the results for this
case study. The values obtained demonstrate robustness in the methodology to estimate the inertia in
the generation units. From the results, it can be noted that the values of the inertia estimated present a
considerable accuracy in comparison with the real inertia of the generation units.

Table 3. Inertia estimation results at bus 1, Case 3 phase short-circuit and PI model.

Simulation Tool H Input (s) H Estimated (s) Absolute Error %
RTDS 3.7 3.79 2.43
DIgSILENT PowerFactory 3.7 3.65 1.35

In agreement with the results obtained in RTDS and DIgSILENT PowerFactory. It can be observed
that the values were similar; this evidence suggests a considerable accuracy of the methodology for
the inertia estimation values. Besides, the results validate the performance of the two professional
simulation tools. In conclusion, the results and behavior of the signals are slightly different; these are
due to the models used in RTDS and DIgSILENT PowerFactory. In the case of the model of the
transmission lines, these differences affect the results of the voltages, currents, and the bus angle
connected to these elements. Furthermore, the results shown in Tables 2 and 3 show a considerable
reliability for the use of the two professional simulation tools.

In addition, the results provided by DIgSILENT PowerFactory offer reasonable performance, so it
is feasible to use this tool to estimate the inertia on large-scale power systems. An example of this
affirmation is presented in the next section.

5. Inertia Estimation Varying Pg

The results obtained using the proposed methodology demonstrate an accurate performance.
However, it was observed that the accuracy of the inertia estimation depended on the increment of the
total active power Pg generated by the generation units of the system. In this section is presented a
comparison of the results obtained in DIgSILENT PowerFactory with different values of P to estimate
the inertia at G1. The results were obtained from the experimental validation of Section 4 in the second
case study. This procedure used the measurements prior to a disturbance, using different values of Pg
during the first oscillation; hence, the inertia could be estimated. Figure 8 shows the behavior of the
active power provided by G1 and the inertia estimation when the short-circuit event was applied at
the transmission line L1 (Figure 2).

Figure 8 presents the results of the inertia estimation when Pr was varying. For this case study,
the input inertia at G1 was H = 3.7 s; the first three approximations were H = 3.57 s, H = 13.78 s,
and H = 3.13 s; and these results suggest that first approximation had a noticeable accuracy. This
behavior was due to the changes of Pr in the system and the other values used to estimate the inertia.
However, this does not mean that the inertia estimation cannot be improved; some factors like the
second derivate of the angle at the generation bus had an influence on the results, and its value was
produced in accordance with the type of event or disturbance presented in the power system.
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Figure 8. Active power generated by G1 and the behavior of Hestimated.

6. Inertia Estimation of the Southeast Zone of Mexico

An important aspect of this methodology is that it can be applied to estimate the inertia of wind
power plants. Hence, this section presents the results of the methodology applied to the equivalent of
the Mexican power system, in the area of the Istmo of Tehuantepec, Oaxaca, Mexico, where there is a

high penetration of wind power plants.

Figure 9 shows the system presented in [38]; the system is composed of 24 wind power plants with
the doubly-fed induction generator technology, and they are distributed in Ixtepec (14 wind power
plants, 1438 MW) and Juchitan (10 wind power plants, 782.75 MW), with a total installed capacity of

2220.75 MW [39].

Peninsular
area
800 MW
MMT
DT JUI Bus 2 BMB
Bus 9 Bus 1 239 km 8 km Bus 3
400 kV 100 KV
i-n—n-|<—( ) Bombana
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Figure 9. One line simplified diagram of the southeast zone of Mexico.

Two case studies were carried out in the professional software DIgSILENT PowerFactory. In the
first case was simulated a generation trip at bus 6, while the second case presented a load increment in

the active power at bus 9.
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6.1. Generation Trip at Bus 6

In this case was simulated a generation trip of 200 MW at bus 6 in ¢t =1 s. The hydropower
generation units included their control systems, such as governors [40], AVR [36], and PSS [36].
The wind power plants were modeled as reported in [41,42].

Figure 10 shows the active power in p.u. at bus 3 generated by Bombana. For this case study,
it can be noted that there was an increase in the value of the active power to compensate the trip
generation at bus 6. A consideration previously described in the methodology to the inertia estimation
was the detection of the beginning of the disturbance and the peak value of the first angular oscillation
(blue window). For this case, the peak value of the active power was 0.52 p.u. int = 1.02 s.

0.54 w \ \
First angular

oscillation 7

time (s)

Figure 10. Active power in p.u. at bus 3 (Bombana): generation trip case.

Table 4 summarizes the values of the estimated inertias of the generation units, where H input
(s) is the inertia constant, which is already known and given by the system operator (CENACE,
in English: National Energy Control Center) [40], while H estimated (s) is the inertia obtained using
the methodology.

Table 4. Inertia estimation results, generation trip case.

Power Plants  Generation  H (Input) H (Estimated) Absolute Error %

Bombana Hydropower 4 3.85 3.75
Chicoasen Hydropower 4.7 4.62 1.70
Schpoina Hydropower 3.7 3.71 0.27
Tapachula Hydropower 4 4.04 1.00
Ixtepec Wind power  0.00237 0.00236 0.42
Juchitan Wind power  0.00237 0.00233 1.69

6.2. Load Increment

In this case study is simulated an increase in the value of the electrical load at bus 9 of 32.5 MW,
int=1s.

Figure 11 illustrates the response of the active power at bus 2 generated by Chicoasen. It can be
noted that due to the increment of the electrical load, there was an increase from 0.33 p.u.-0.3392 in
p-u. int = 1.02 s, and this increment represents 22.5 MW of active power. The peak value was used for
the inertia estimation for this generator. Furthermore, there was a minimum of oscillations when the
load was increased, as a result mainly of the actions of the control systems of the generation units.

Table 5 shows the results of the inertia estimation of the generation units. In particular, it can
be observed that there were a few differences in the inertia estimation, and the percentage of error
increased slightly in some power plants in comparison with the case study presented previously.
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Figure 11. Active power in p.u. at bus 2 (Chicoasen): load increment case.

This is associated with the type of disturbance applied to the power system. For this case, it was a
small disturbance. Nevertheless, the results are still good in comparison with the results reported in
the literature, whose values were between 0.22 %, 41.11% [24,25,37], and 16%, reported in [11].

Table 5. Inertia estimation results, load increment case.

Power Plants Generation  H (Input) H (Estimated) Absolute Error %

Angostura Hydropower 4 4.08 2.00
Bombana Hydropower 4 4.03 0.75
Chicoasen Hydropower 4.7 4.78 1.70
Schpoina Hydropower 3.7 3.61 243
Tapachula Hydropower 4 4.01 0.25
Juchitan Wind power  0.00237 0.0023 2.95
Ixtepec Wind power  0.00237 0.00228 3.80

7. Conclusions

This paper describes the experimental validation and implementation of a methodology for inertia
estimation of wind power plants. This methodology is based on the equation of oscillation, and it uses
measurements of the angle bus, detection of the disturbance, peak value of the disturbance, and the
knowledge of active power flow in the generation units.

A comparison between the results obtained with two professional tools (RTDS and DIgSILENT
PowerFactory) was carried out in order to demonstrate the accuracy, performance, and robustness
of the methodology. RTDS is used for the validation of the methodology used, while DIgSILENT
PowerFactory is used to calculate the inertia estimation of a large-scale power system.

Furthermore, the results of the inertia estimation of the area of the Istmo of Tehuantepec, Mexico,
were analyzed and presented. From the obtained results, it can be concluded that the methodology can
be applied to wind power plants. The estimation of generator inertia is accurate when a generation
trip occurs in the system. However, a disadvantage of this methodology is that the accuracy is reduced
when small perturbations are applied to the system. This means that the inertia estimation also
depends on measurements of the disturbances and their natures.

From the results presented in this paper, it can be concluded that despite the differences between
the case studies analyzed in terms of disturbances, network topology, controllers, professional tools,
and modeling of the elements, the methodology presents a great robustness to obtain the inertia
estimations, i.e., the results of the inertia estimation present a considerable accuracy with respect to the
real inertia of the generation units.

With this methodology, it is possible to estimate the inertia in generation units, such as wind power
plants, and to set the references of the synthetic inertial controllers to improve frequency stability.
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Appendix A

The parameters of the single-line diagram used in this research are given in Tables A1-A5.

Table Al. Parameters of the synchronous generators.

Parameter Value Parameter Value

G1 950 (MW) G2 Slack

H 3.7 (s) G1/G2 TL;O 4.452871 (s)
kVA 13.8 X{i/ 0.252 (p.u.)
MVA 1000 G1/5000 G2 X;’ 0.253 (p.u.)
P.F. 0.94 (p.u.) X} 0.296 (p.u.)
rstr 0.0028544 (p.u.) Xy 1.305 (p.u.)
Tél:o 0.06225397 (s) X; 0.18 (p.u.)
qu 0.1(s) X 0.474 (p.u.)

Table A2. Parameters of the Automatic Voltage Regulator (AVR) model used in RTDS.

Parameter Value Parameter Value
K, 200 (p.u.) Tr 0.1(s)

K. 0(p.u.) T, 0.02 (s)
Ky 0.001 (p.u.)  Vipax 10 (p.u.)
Ta 0.001 (s) Vipin -10 (p.u.)
Ty 0(s) Vimax 20 (p.u.)
T, 0(s) V7 in 0(pu.)

Table A3. Parameters of the PSS model used in RTDS.

Parameter Value Parameter Value
Hiim 0.05 (pu.) Ky 0.1 (p.u.)
inv —1 (cs) Ks 1(p.u.)
IPB 1 (MVA) T 2 (s)

Ky 1(pu) T3 0.01 (s)

K3 0.2 (p.u) Ts 0.01 (s)
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Table A4. Parameters of the governor used in RTDS.

Parameter Value Parameter Value

Ay 1(pu) P, 0.5 (p.u.)
Diyrp 0(p.u.) P 1(p.u)

Go 0(p.u.) Py 0 (p.u.)

Gy 0.25 (p.u.) Rperm 0.05 (p.u.)
Gy 0.5 (p.u.) T, 0.000001 (s)
Grax 1.2 (p.u.) Ty 0.3 (s)

Guin 0.01 (p.u.) Treg 0 (s)

K, 0 (p.u./s) Tw 3(s)

K; 0.105 (p.u./s)  Velyax 0.1 (p.u./s)
K, 1.163 (p.u./s)  Velpmin -0.1 (p.u./s)
Py 0.25 (p.u.)

Table A5. Parameters of the transmission lines.

Parameter Value Parameter Value

R 0.0175 (ohm/km) B’ 5.025292 (uS/km)
Rf) 0.2758 (ohm /km) B}, 3.127895 (uS/km)
X’ 0.329377 (ohm/km) Length 350 (km) L1/L2
X} 1.213911 (ohm/km) kV 500
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