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Abstract: In order to use touch control products more conveniently, a general objective is to develop
lighter and smaller touch panels. A touch panel using the one glass solution (OGS) is an important
development. The black matrix (BM) in an OGS touch panel is used as a black frame. The photoresist
is divided into a positive photoresist and a negative photoresist. The BM photoresist is negative. After
coating, exposure, and development in the BM process, after-develop inspection is implemented to
check if the appearance is abnormal. It is quite difficult to rework the negative photoresist process.
There is still room for improving the BM photoresist process capability Cpk. Thus, in order to reduce
the customer complaint rate and enhance stability, the photolithography process is improved to
enhance Cpk. Among the BM black negative photoresist forming process conditions of OGS products,
the pre-baking time is the most important process control factor. The method set up herein improves
the original Cpk = 0.90. This study employs the fast messy genetic algorithm (fmGA) to select
the optimum orthogonal array of the Taguchi method, so as to implement the decision process of
optimum parameter design. The Cpk of the optimum parameter is 2.12.

Keywords: one glass solution; black matrix; after-develop inspection; process; capability; fast messy
genetic algorithm

1. Introduction

Technology products have almost become indispensable in the modern world, as the mobile
phone was upgraded to the multi-touch smart phone, the digital photo frame evolved into the tablet
PC, the notebook computer evolved into the detachable touch-screen notebook computer, and wearable
devices developed into the smart watch. All these consumer electronics products represent extensive
applications of touch panels [1]. Panels are divided into touch panels and color filter panels, and
many panel processes are identical. The constituent structure is divided into array, cell, and module
manufacturing stages. The array process contains thin film, lithography, and etching processes [2].
This study discusses the photolithography process of the array stage.

The one glass solution (OGS) of touch panel technology means that the old combination of
multiple functional glasses changes into the solution using one single glass touch panel. The difference
from the general touch panel is that the OGS structure is combined with the functions of touch control
and LENS/Cover Glass. Therefore, the OGS touch panel is more esthetic and stronger than a simple
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touch panel, and the combination of LENS/Cover Glass can be reduced, such that overall glass
thickness decreases a substantial amount.

The OGS structure has an artistic black matrix (BM) for display frame printing, shading the
backlight, and upgrading the overall texture. The BM produces a BM pattern in the color filter panel
process to separate the transmission of color resist. The BM is produced through coating and a negative
photoresist. The BM is formed by a photoresist in the OGS panel and is used as a black frame of
the OGS touch panel, but it is completed before the capacitive circuit process of the touch panel.
The LENS/Cover Glass is then replaced when the BM is done. However, the LENS/Cover Glass uses
ink universally, and the general BM for OGS is a negative photoresist, so the production is different
from LENS/Cover Glass. After coating, exposure, and development in the BM process, after-develop
inspection (ADI) is implemented to check if the appearance is abnormal. The width, opening, and line
spacing data after BM photoresist development are measured using optical microscopy (OM), and it is
determined whether or not the measured data are within the product specification.

In order to use touch control products more conveniently, a general objective is to develop
lighter and smaller touch panels. Touch panels using OGS are an important development. The major
difference between the OGS touch panel and traditional touch panels is that the artistic appearance
and protective function of Cover Glass are integrated into the touch panel, so that the OGS touch
panel process can be combined with an artistic appearance. The BM photoresist process influencing
the appearance of the OGS touch panel often results in customer complaints about the appearance
abnormalities, or in influences on the function. The BM in an OGS touch panel is used as a black frame.
The photoresist is divided into positive and negative. The BM photoresist is negative.

It is quite difficult to rework the negative photoresist process. If the product exceeds the
specification, the product is rejected, and the production expense is wasted. There is still room for
improving the BM photoresist process capability Cpk (Appendix A). The photolithography process is an
important step, which must be improved to enhance Cpk [3], in order to decrease customer complaint
frequency and increase stability. This study proposes an experimental design method for improving the
touch panel industry according to lithographic photoresist operating conditions. Related parameters
include temperature, exposure, concentration, vacuum pressure, light rays, and humidity. The purpose
is to find and master the optimum parameters, establish stable photoresist operating conditions, and
enhance the process capability. This study set up a demonstration and used the hybrid Taguchi-genetic
algorithm to solve the quality stability problems in BM black negative photoresist forming and size
of the OGS product [4–7]. The performance was measured in a flow chart and improved by Taguchi
quality engineering [8–10]. The BM black negative photoresist build-up dimension of the OGS product
was taken as the experimental subject, in order to find a development model for a BM black negative
photoresist forming stability for OGS products. The optimized experimental level combination of the
BM black negative photoresist build-up dimension of the OGS product in the process was found to
produce the optimum parameters meeting a satisfactory level, thus reducing the wasted expenses of
additional defects, and improving the process.

2. Literature Review

Among the important issues of the multiple-stage manufacturing process, developing a robust
parameter design (RPD) in good time is a difficult research task [11]. As the random processing
principle cannot be precisely implemented in the experimental design, noise factors have adverse
effects on experiments. This phenomenon occurs in different places at different stages in this document.
After this document is improved, by considering only a single set of noise factors, the optimum design
method can be developed, the system optimization process can be effectively designed, and the key
issue proposed by this document can be solved by the modified minimum aberration criterion [9].
A hybrid system is utilized as a potential tool to deal with construction engineering and management
problems [12].
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This study integrates a rapid fuzzy genetic algorithm (fmGA) [12] with a support vector machine
(SVM) and develops an innovation artificial intelligence model. The early prediction of dispute
propensity is used in the initial stage of calculation for public-private partnership projects, and is
one of the key concepts of fmGA-based SVM (GASVM) [12]. While the fmGA optimizes the SVM
parameters, the main value of SVM is the optimization application of the learning rate and curve.
The curve and synthesis indices are employed for performance evaluation of the proposed hybrid
intelligence classification model. The overall performance of the method developed by this document is
different from other references, as it has better evaluation. Line balancing and scheduling are complex
problems, and while there are several methods to solve related problems, they may not be effective [13].
An improved hybrid genetic algorithm (GA) is proposed in this document, and an effective solution
can be proposed for this type of subject. This type of problem addresses how to assign the work and
schedule the work station. Use of the hybridized dynamic programming optimization process can
attain better schemes. Within a specific time, the chromosome can be transformed to implement a
better solution. This document proposes a partial diversity maintaining method to avoid the algorithm
falling into local optimum solutions [14].

This reference indicates that the optimal design process of electrical discharge machining
(EDM) processes will be implemented by integrating physical and neural networks [15]. Related
important studies seldom mentioned the classification of parameters or the model building process.
This document integrates a fuzzy neural network with mathematical model building to solve problems.

The method proposed in this study is compared with other methods; previous studies have
not compared this type of method. The optimal design of water-cooled condensers is the subject
of optimization in this study, which integrates nonlinear programming with multiple inputs and
outputs [16]. This document applies the Taguchi method and an inverse-model to implement the
critical steps of optimal design. In this experimental process, the full factorial design for the minimum
number of experiments with the optimum orthogonal table of key factors are found by the Taguchi
method. Afterwards, an inverse model, as developed in this document, is put into an artificial
neural network system with multiple inputs and outputs, in order to implement the critical steps of
optimal design.

It is very complex to correctly predict the various parameters of the Taiwan Stock Exchange
Capitalization Weighted Stock Index (TAIEX) and Hang Seng Stock Index (HSI). This document
integrates time series, fuzzy theory, and an artificial neural network [17] to implement better predictive
validity. The result shows that different data types will significantly improve different prediction
methods. The Vapor Assisted Petroleum Extraction (VAPEX) process is an important and complex
work, as fractures that increase recovery are among the important issues that must be discussed [18].
This document integrates fuzzy theory with an adaptive neural network to analyze the chain effect,
resulting from the geometric fracture parameters in VAPEX, and develops the optimum parameter
design process for decision makers.

3. Research Method and Process Architecture

This study’s experiment measures the lithography BM negative photoresist build-up dimension
on the OGS touch panel and uses the pattern hole size measurement data as a response value, i.e.,
the nominal-the-best characteristic, hoping to make the measured data meet the quality standard, in
which the quality characteristic has a nominal-the-best characteristic [19]. The photoresist build-up
dimension is taken as the target characteristic. There are many types of factors influencing the BM
photoresist build-up dimension, which vary with the customer requirement or operation specification.
If the selected operating conditions are inappropriate, then the photoresist build-up dimension will
be impacted.

The execution steps herein were designed according to the research method, and the controllable
factors in the photolithography process proposed by previous scholars and experts were applied to the
BM photoresist build-up dimension influencing factors. The better decision effect was validated, and
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the key method to be improved first was then selected according to the requirement. The results were
compared comprehensively, so that the process capability was more enhanced. This study analyzed
the lithographic photoresist production operation conditions of touch panel plants, so the subjects
of expert interviews were photolithography process engineers and process integration engineers in
the touch panel industry. The engineers’ experiences and the photoresist manufacturer’s product
operating conditions are discussed. All of the factors that may influence the BM negative photoresist
build-up dimension ADI are drawn into a characteristic diagram. The photolithography process
engineers and process integration engineers were interviewed to determine factors influencing the BM
negative photoresist build-up dimension ADI, so as to remove the unnecessary factors for analyzing
the hybrid Taguchi-genetic algorithm.

3.1. Hybrid Taguchi-Genetic Algorithm

This study integrated a genetic algorithm and the Taguchi experimental solution [8,9]. The Taguchi
experimental solution was used to improve the crossover steps of the genetic algorithm, because
the Taguchi experimental design method has a systematic inference capability [20]. It replaces the
traditional random crossover and effectively generates excellent offspring [21]. The traditional genetic
algorithm often gets into a local optimum [22]. The method can remedy the defects in GA [23], and
this study employs an optimum orthogonal array of the Taguchi method [22], so as to implement the
decision process of optimum parameter design [24,25]. Figure 1 illustrates the research process.

3.2. fmGA—Determining the Process Control Factors

The traditional genetic algorithm generates many calculation points randomly. Each iterative
process takes the relatively optimum point, usually finding the local optimum, and the searched
optimal solution may be different each time. Getting into the local optimum instead of searching out
the actual global optimum is a defect in the traditional genetic algorithm, which should be remedied.
The encoding mode is improved from binary coding to real number coding [21]. The Taguchi method
can simultaneously enhance robustness and convergence efficiency.
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Figure 1. The research process [26–30].

4. Generation of Initial Chromosomes

The procedure of generating M initial chromosome groups is described below. A set of
chromosomes (v1, v2, . . . , vi, . . . , vN) represents a set of N parameters to be determined [13]:
Procedure:

(1) Generate a random number β, where β ∈ [0, 1].
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(2) vi = qi + β(si − qi), where qi is the lower bound values of vi, and si is the upper bound values of
vi [8].

(3) Duplicate the aforesaid two steps N times, so as to generate a set of chromosomes
(v1, v2, . . . , vi, . . . , vN) [20].

(4) Repeat Steps (1) to (3) M times, so as to generate the group containing M initial chromosomes [23].

5. Selection and Reproduction

The fmGA is based on messy genetic algorithms (mGAs). The chromosome of the fmGA is
divided into allelelocus and allele values. The allelelocus represents the allele number, and the allele
value is the numerical value of the allele number. Figure 2a shows the chromosome complement of
fmGA. In addition, the fmGA does not fix the chromosome length, as it can handle the over-specified
chromosome after the cut-splice operation [12]. If a chromogene is over-specified (Chromosome
A2), then the fmGA uses the first-come-first-serve rule of browsing from left to right to screen the
repeated allele value (final allele value of Chromosome A2 is 111100), as shown in Figure 2b. The major
difference between fmGA and the traditional genetic algorithm is that fmGA uses a variable string
length, and the allelelocus and allele values can evolve simultaneously, which is suitable for handling
high netting variability. The Taguchi analysis sheet of different level factors is optional.
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As the class interval of numerical magnitude distribution of the factor data is very large, it
is normalized to 0 to 1 before it is imported into fmGA. Normalization is expressed as Equation
(1). The purpose of normalization is to convert the influence factors of different numerical values
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and performance objective ground acceleration to the same interval, so as to increase the accuracy
of analysis.

v∗i (k) =
vi(k)−min

[
vi(k)

]
max

[
vi(k)

]
−min

[
vi(k)

] (1)

where

v∗i (k) : numerical value after variable normalization;
vi(k) : initial value before variable normalization.

5.1. Crossover

The crossover operation selects two chromosomes from the population randomly, and the bits
exchanged mutually form another two chromosomes. The simplest crossover operation is one-point
crossover. The crossover point of two chromosomes is selected randomly, and all the bits after this
crossover point of the two chromosomes are exchanged. This paper utilizes the linear interpolation
method. First, the crossover rate is set. If the random value is smaller than the crossover rate, then the
crossover operation begins. A crossover point is selected randomly from the selected two chromosomes.
The linear interpolation method of convex set theory is then employed for the randomly selected two
different chromosomes v and y, expressed as Equations (2) and (3) [12].

v =
(
v1, v2, . . . , vi, vj, vk, . . . , vN

)
(2)

y =
(
y1, y2, . . . , yi, yj, yk, . . . , yN

)
(3)

The linear interpolation crossover is implemented mutually. When the genetic codes vi and yi
decide on a crossover, the generation of new genetic codes is expressed as Equations (4) and (5):

v′i = vi + β(yi − vi) (4)

y′i = qi + β(si − qi) (5)

where β is the random number value of [0, 1], qi is the lower bound values of yi, si is the upper bound
values of yi, and the new chromosomes v′ and y′ after crossover are expressed as Equations (6) and
(7) [20].

v′ =
(
v1, v2, . . . , v′i, vj, vk, . . . , vN

)
(6)

y′ =
(
y1, y2, . . . , y′i, yj, yk, . . . , yN

)
(7)

5.2. Mutation

The mutation generates a diversified chromosome population. The procedure of the chromosomal
mutation is as follows [20].

(1) Select a chromosome v =
(
v1, v2, . . . , vi, vj, vk, . . . , vN

)
; it is mutated if the mutation rate

is reached.
(2) Select a gene of a chromosome randomly for mutation, assuming vi is the gene mutation.
(3) Generate a random number α in the range of [0, 1]. If α ≥ 0.5, then execute v′i = vi + β(si − vi).

If α < 0.5, then execute v′i = vi + β(vi − si). where β is the random number value of [0, 1], qi is
the lower bound values of vi, and si is the upper bound values of vi [20].

(4) The new offspring x′ after the chromosomal mutation is expressed as v′ =(
v1, v2, . . . , v′i, vj, vk, . . . , vN

)
.
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5.3. Architecture of ANFIS

The Sugeno fuzzy model is represented by the Adaptive Network-Based Fuzzy Inference System
(ANFIS) architecture. The antecedent and consequent parameters of Sugeno fuzzy rules can be
determined by using a neural network learning algorithm. In other words, the Sugeno fuzzy model
can be provided with a self-learning ability to adjust the optimum fuzzy rules by itself [15].

5.3.1. Layer 1 Input Layer

On Layer 1, the input variable is mapped into the fuzzy set, expressed as Equation (8), where
µj(vi) represents the membership function of the i input variable in the j set. The membership function
is assumed to be a bell-shaped function. There are three parameters aji, bji, cji [16].

O1,ji = µj(vi) =
1

1+
∣∣∣∣ vi−cji

aji

∣∣∣∣2bji
, i = 1, 2, . . . , N;

j = 1, 2, . . . , M
(8)

5.3.2. Layer 2 Rule Layer

The neuron of Layer 2 calculates the fitness of fuzzy rules. The fuzzy sets of input variables are
combined and paired before fuzzy logic operation, expressed as Equation (9). This layer uses T-norm
for fuzzy AND operation, where the AND or product operation is represented by symbol Π [17].

O2,z = wz =
N
Π

i=1
µj(vi), j = 1, 2, . . . , M;

z = 1, 2, . . . , Z
(9)

5.3.3. Layer 3 Normalization Layer

The neuron of Layer 3 normalizes the fitness, expressed as Equation (10). The node of this layer is
represented by symbol N [18]. The output result of No. i rule is divided by the total output result of all
rules, so that the output value is 0 to 1 [18].

O3,z = wz =
wz

Z
∑

z=1
wz

(10)

5.3.4. Layer 4 Conclusion Inference Layer

The neuron of Layer 4 executes an inference operation of each fuzzy rule, expressed as
Equation (11) [17]. The upper normalization result is multiplied by the Sugeno fuzzy model,
expressed as Equation (10), where rzi is the correlation coefficient of the primary Sugeno fuzzy model.
The consequent parameter is the parameter generated by this layer [16].

O4,z = wz fz = wz

(
N

∑
i=0

rzivi + rzo

)
, v0 = 1 (11)

5.3.5. Layer 5 Output Layer

Layer 5 has only one neuron, by calculating the sum of the neuron output values in the upper
layer, expressed as Equation (12), as the final output value of the network [15].

O5,1 =
z

∑
z=1

wz fz =

z
∑

z=1
wz fz

z
∑

z=1
wz

(12)
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6. ANFIS Learning Parameters

When the Sugeno fuzzy model is replaced by ANFIS, the neural network learning algorithm can
be used to adjust the parameters of the Sougrno fuzzy rules. The antecedent parameters aji, bji, cji
have to be determined, as well as the consequent parameters. The determination of these parameters
is obtained through a learning algorithm from the input data and output data. In other words, we
can build an ANFIS network, so that all the parameters in the Sugeno fuzzy rules receive learning.
The ANFIS network after learning can represent or approximate the input–output data relationship.
The ANFIS parameters use a hybrid learning method [15,16].

(1) The antecedent parameter is fixed—namely, the antecedent parameter is assumed to be given.
(2) All input data are imported into the network. The optimum consequent parameter is estimated

by the least-square estimator (LSE), and the approximate output value is obtained.
(3) The ANFIS network output value is compared with the target output value, thus obtaining the

output error.
(4) The antecedent parameter adjustment is deduced by the steepest descent method.
(5) Return to Equation (1) and continue learning until the output error is small enough.

7. Case Analysis and Discussion

An Optical Measuring Machines (OMM) dimensional measurement precision microscope was
used at 2500 µm for the BM photoresist ADI, as shown in Figure 3.Appl. Sci. 2018, 8, x FOR PEER REVIEW  10 of 17 
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Figure 3. The BM photoresist build-up dimension (nominal-the-best; diameter: 2500 µm).

Current condition measurement: The present Cpk process capability of BM photoresist build-up
dimension was analyzed. The key success factors shown are the study design and the results, as shown
in Table 1.

Table 1. Factor level setting for control factors.

Control Factor Range Current Level Level 1 Level 2 Level 3

A. Target material temperature (◦C) 40~350 170 150 170 -
B. Toor (%) 10−1 ∼ 10−8 0.0001 0.01 0.001 0.000001
C. Prebaking time (S) 100~350 120 120 130 140
D. Exposure (mj) 100~450 400 360 380 400
E. Rate of development (M/min) 2.5~4 2.8 2.7 2.8 2.9
F. Post-baking time (S) 7300 1800 1700 1800 1900
G. Post-baking temperature (◦C) 350 240 230 240 250
H. Exposure GAP (µm) 20~400 150 140 150 160
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The dimension process capability index Cpk = 0.9 < 1.33, meaning the process is unstable. Because
the process capability is insufficient, there is large room for improvement.

In this study, human factors include immature skill, insufficient training, and misoperation;
environmental factors include temperature, humidity, and light rays; material factors include exposure,
overtime, concentration, and temperature; method factors include exposure, development rate, and
pre-baking time; machine factors include feed rate, part failure, and vacuum pressure. All of these
factors may cause problems in the lithography BM photoresist operation build-up dimension.

Data analysis: The factors were analyzed and confirmed by interviews with experts, and
the factors that influence the BM negative photoresist build-up dimension ADI were determined
by interviewing photolithography process engineers and process integration engineers, so as to
remove the unnecessary factors in implementing the analysis of the hybrid Taguchi-genetic algorithm.
The factors and levels influencing the BM photoresist build-up dimension were analyzed according to
the lithographic photoresist operating conditions influencing ADI, as shown in Table 1.

After fmGA analysis, the two-level and three-level factors were collected simultaneously, while
the experimental data were collected by an orthogonal array of mixed level L18

(
21 × 37). According to

the results in Table 2, the root mean square error (RMSE) [11] value of training examples ranges from
0.039 to 0.058, as the input variable and output variable were normalized to 0 to 1. This result is fairly
good. The RMSE of the test examples ranges from 0.012 to 0.031, which is a better result than that of
the training examples.

Table 2. Fast messy genetic algorithm (fmGA) training and test results.

Group A B C D E F G H RMSE

Level Training example Test example

1 1 1 1 1 1 1 1 1 0.051 0.012
2 1 1 2 2 2 2 2 2 0.062 0.023
3 1 1 3 3 3 3 3 3 0.042 0.029
4 1 2 1 1 2 2 3 3 0.039 0.031
5 1 2 2 2 3 3 1 1 0.048 0.019
6 1 2 3 3 1 1 2 2 0.052 0.022
7 1 3 1 2 1 3 2 3 0.058 0.028
8 1 3 2 3 2 1 3 1 0.048 0.018
9 1 3 3 1 3 2 1 2 0.046 0.013

10 2 1 1 3 3 2 2 1 0.041 0.026
11 2 1 2 1 1 3 3 2 0.051 0.028
12 2 1 3 2 2 1 1 3 0.048 0.027
13 2 2 1 2 3 1 3 2 0.052 0.016
14 2 2 2 3 1 2 1 3 0.049 0.019
15 2 2 3 1 2 3 2 1 0.053 0.022
16 2 3 1 3 2 3 1 2 0.046 0.026
17 2 3 2 1 3 1 2 3 0.058 0.021
18 2 3 3 2 1 2 3 1 0.051 0.023

The experiment was conducted and the data were collected according to the orthogonal array
configuration, with limited samples used for the experiment. This experiment hopes to optimize the
BM photoresist build-up dimension, but the quality characteristic of Toor is in percentage form in this
study. If the quality characteristic is in percentage form, then, when the value approaches 0 or 100, the
additivity is very bad, so the deficiency is remedied. The Taguchi method implements Ω transformation
(Omega transformation) for the quality characteristics in percentage form. The experimental data
with additivity are obtained by Ω transformation, and the signal/noise (SN) ratio was worked out of
these data.

When the experimental control factor and level table were completed, the orthogonal array
was created. The two-level and three-level factors were collected simultaneously in this experiment.
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The experimental data were collected by a mixed-level orthogonal array, and the table shows the factor
level setting for control factors.

The experimental process employs finite authentic specimens to simulate the normal operating
conditions. The correct detected number in Table 3 was converted into percentage form, and the
SN ratio of each experiment was obtained after Ω transformation of the Taguchi method, as shown
in Table 3. As this experiment employed the nominal-the-best characteristic, the SN ratio of each
experiment was calculated by Ω transformation of the Taguchi method.

Table 3. Experimental data.

Group A1 A2 A3 A4 A5 A6 A7 Mean SD SN

1 0.94 0.94 0.93 0.94 0.92 0.95 0.94 0.94 0.01 11.6
2 0.91 0.92 0.92 0.93 0.93 0.89 0.87 0.91 0.022 10
3 0.93 0.93 0.93 0.93 0.94 0.92 0.95 0.93 0.01 11.4
4 0.97 0.94 0.93 0.93 0.93 0.94 0.97 0.94 0.018 12.3
5 0.90 0.90 0.90 0.89 0.91 0.89 0.90 0.90 0.007 9.5
6 0.92 0.90 0.89 0.94 0.93 0.92 0.89 0.91 0.02 10.2
7 0.91 0.92 0.86 0.91 0.92 0.90 0.89 0.90 0.021 9.6
8 0.87 0.84 0.87 0.85 0.87 0.86 0.87 0.86 0.012 7.9
9 0.77 0.72 0.72 0.75 0.75 0.75 0.76 0.75 0.019 4.7

10 0.74 0.79 0.76 0.76 0.75 0.75 0.77 0.76 0.016 5.0
11 0.76 0.74 0.76 0.76 0.74 0.76 0.75 0.75 0.01 4.8
12 0.95 0.94 0.93 0.94 0.92 0.94 0.94 0.94 0.01 11.6
13 0.64 0.64 0.63 0.62 0.66 0.65 0.66 0.64 0.015 2.6
14 0.93 0.93 0.89 0.87 0.91 0.92 0.92 0.91 0.022 10
15 0.71 0.73 0.70 0.70 0.75 0.72 0.71 0.72 0.018 4.0
16 0.93 0.93 0.94 0.97 0.97 0.94 0.93 0.94 0.018 12.3
17 0.64 0.64 0.63 0.62 0.66 0.65 0.66 0.64 0.015 2.6
18 0.92 0.90 0.89 0.91 0.92 0.86 0.91 0.90 0.021 9.6

The factorial effect was calculated by subtracting the minimum value from the maximum value of
various levels; the larger the figure, the more important the factor, as shown in Table 4.

Table 4. Factor response table of the signal/noise (SN) ratio.

A B C D E F G H

Level 1 7.26 5.11 8.29 1.23 2.25 2.41 4.31 8.82
Level 2 4.24 6.21 1.08 9.97 9.34 3.56 6.89 4.81
Level 3 8.38 3.42 3.25 4.21 7.69 2.5 5.21
Range 3.02 3.27 7.21 8.74 7.09 5.28 4.39 4.01
Rank 7 8 2 1 3 5 4 6

“Others” in Table 5 are regarded as errors. The variance of Factors A and B is smaller than that
of Others, so they are considered as factors without influence. In other words, the variation caused
by Factors A and B is regarded as an occasional phenomenon caused by experimental error, so these
variations can be regarded as errors. The variation caused by Factors A and B is pooled to errors.
The table shows the analysis result of variance after the Others term and Factors A and B are pooled to
the error term.
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Table 5. Preliminary analysis of variance.

Factors SS DOF Var.

A 1.62 1 1.62
B 0.48 2 0.24
C 301.28 2 150.64
D 326.93 2 163.465
E 255.23 2 127.615
F 189.87 2 94.935
G 209.23 2 104.615
H 168.32 2 84.16

Others 63.21 2 31.605
Total 1516.17 17 -

“Others” in Table 6 are regarded as errors. The variance of Factors A and B is smaller than Others,
so they are considered as factors without influence. In other words, the variation caused by Factors A
and B is regarded as an occasional phenomenon caused by experimental error, so these variations can
be regarded as errors. The variation caused by Factors A and B is pooled to errors. The table shows the
analysis result of variance after the Others term and Factors A and B are pooled to the error term.

Table 6. SN error pooling.

Factors SS DOE Var. F Confidence Significance Contribution

A Pooled 0.001%
B Pooled 0.0003%
C 301.28 2 150.64 9.2 100% Yes 19.28%
D 326.93 2 163.47 9.6 100% Yes 21.56%
E 255.23 2 127.62 8.2 98.6% Yes 17.71%
F 189.87 2 94.94 6.2 97.2% Yes 13.51%
G 209.23 2 104.62 6.9 98.1% Yes 15.81%
H 168.32 2 84.16 5.8 96.9% Yes 11.28%

Others Pooled 0.002%
Error 65.31 5 13.06 S = 3.78 0.85%
Total 1516.17 17 At least 90% confidence

When the influence of factors reaches 90% confidence level, the table shows that those factors
with enough influence are C, D, E, F, G, and H. The contribution of various control factors to the
detection yield is also presented in the table. The contribution of various factors is thus validated.
The contribution of a control factor represents the proportion of total quality loss caused by the
variation of a factor, and it can be regarded as a simple index representing the influence of the change
in a factor on total quality loss. It can be considered an index for judging the importance of factors.

According to the factor response table of the SN ratio, the optimum parameter combination is
A1, B3, C1, D2, E2, F3, G2, and H1. Considering the influencing factors C1, D2, E2, F3, G2, and H1,
the SN ratio of the original parameter combination was compared with the SN ratio of the optimum
parameter combination, as shown in Table 7.
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Table 7. SN ratios of the original parameter combination and the optimum parameter combination.

Factors
Original Design Optimum Design

Setting Effect (dB) Setting Effect (dB)

A A2 – A1 –
B B2 – B3 –
C C1 3.73 C1 3.73
D D3 2.84 D2 3.98
E E2 1.92 E2 1.92
F F2 1.21 F3 1.32
G G2 1.68 G2 1.68
H H2 1.08 H1 1.16

Average 4.36 4.36
Predicted by Additive Model 21.36 28.39

According to the table, when the original parameter combination is changed to the optimum
parameter combination, the SN ratio increases from 21.36 to 28.39, or a rise of 7.03, which is expressed
by Equation (13).

∆SN = E1→1
C + E3→2

D + E2→2
E + E2→3

F
+E2→2

G + E2→1
H = 7.03

(13)

If there is no interaction between factors, then the SN ratio in a factor combination is predicted by
the following two equations below. This is the additive model—namely, when there is no interaction
between factors, this additive model can be used to predict the relationship between response value
and factor, expressed as Equations (14) and (15).

ηoriginal = η+ (ηC1 − η) + (ηD3 − η) + (ηE2 − η)+

(ηF2 − η) + (ηG2 − η) + (ηH2 − η)
(14)

ηoptimal = η+ (ηC1 − η) + (ηD2 − η) + (ηE2 − η)

+(ηF3 − η) + (ηG2 − η) + (ηH1 − η)
(15)

where η is the general average of SN, where ηoriginal = 21.36, ηoptimal = 28.39, and ∆SN = 28.39−
21.36 = 7.03.

After the calculation of the aforesaid equations, ∆SN is 7.03. Therefore, there is no interaction
between factors, and this conclusion is reliable. The optimum parameter combination is obtained by
the aforesaid analysis of variance (ANOVA) and factorial interaction validation, so that the appearance
detection yield is increased. There is no interaction between factors as validated. The factors can be
considered independently, so this conclusion is reliable. The factorial response value is also confirmed.
The confirmation experiment is conducted again, two cycles are implemented, and each cycle has 7
data. Therefore, mr = 2, expressed as Equations (16)–(18).

CLperdit = ηperdit ±
S√
me
× TINV(1− α%, do f ) (16)

CLperdit = 23.81± 3.82√
1.6
× TINV(10%, 8)

= 23.81± 4.28

CLcon f irm = ηcon f irm ±
S√
mr
× TINV(1− α%, do f ) (17)

CLcon f irm = 17.23± 3.82√
1.2
× TINV(10%, 8) =

17.23± 4.16
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CL = ±

√
S2

me
+

S2

mr
× TINV(1− α%, 1, do f ) (18)

CL = ±
√

4.282 + 4.162 = 4.29.

In this reproducibility experiment, the difference between prediction value and confirmation
experiment value is 4.28dB, and the 90% allowable error value is 4.29 dB. The difference value is within
the permissible range, so this experiment is reliable. The optimum parameter combination is A1, B3,
C1, D2, E2, F3, G2, and H1, and Cpk is 2.12. Considering the influencing factors C1, D2, E2, F3, G2, and
H1, Cpk is 2.09.

8. Conclusions and Suggestions

8.1. Conclusions

This study imports items from a touch panel plant of Taiwan for a demonstration experiment in
order to solve the problems in the BM black negative photoresist forming of OGS products and Cpk
quality stability of the ADI size. The present performance in a flow chart is measured and improved
using the Taguchi method.

This study takes the BM black negative photoresist build-up dimension of OGS products as the
experimental subject, hoping to find a development model for the BM black negative photoresist
forming stability of the OGS product. The optimum experimental level combination of the BM black
negative photoresist build-up dimension of OGS products in the process was found. The optimum
parameter combination is A1, B3, C1, D2, E2, F3, G2, and H1, and Cpk is 2.12; considering the influencing
factors C1, D2, E2, F3, G2, and H1, Cpk is 2.09. Thus, the waste expense of additional defective units
was reduced, and the process was improved.

The findings of the preliminary, readjusted, and final process condition analyses are
presented below.

(1) The BM black negative photoresist forming of OGS products is highly correlated with the
photolithography process conditions’ pre-baking time, exposure, and development rate.

(2) Among the BM black negative photoresist forming process conditions of OGS products, the
pre-baking time is the most important control factor.

The method set up herein improves the original Cpk = 0.90. The Cpk of the optimum parameter is
2.12, meaning the process capability was enhanced very strongly. Therefore, the optimum BM black
negative photoresist process parameter combination was indeed found by the Taguchi experiment
analysis, the quality of products is guaranteed, and industrial competitiveness is greatly improved.

8.2. Suggestions

In future, different engineering designs can be analyzed and optimized using this
decision-making technique.

Conflicts of Interest: The author confirms that this article content has no conflict of interest.

Appendix A

Process capability index (Cpk) (see Appendix) is generally regarded as evaluation indicator. Cpk < 1
denotes a defect, 1≤ Cpk < 1.33 denotes warning, and Cpk ≥ 1.33 denotes acceptance [31,32].

Cpk = min
(

Cpu, Cpl

)
= (1−|Ca|)×Cp

Cpu =
USL− µ

3σ
(Upper specification only)
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Cpl =
µ− LSL

3σ
(Lower specification only)

Ca =
|µ− Target|

(USL− LSL)/2

Cp =
USL− LSL

6σ

where, USL is the upper limit of the specifications, µ is the process average value, LSL is the lower
limit of the specifications, target is the median value of the specifications, and σ: is the standard
deviation [31,32].
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