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Featured Application: Interaction with nursing-care assistant robot and appliances in
smart infrastructure.

Abstract: The expansion of nursing-care assistant robots in smart infrastructure has provided
more applications for homecare services, which has raised new demands for smart and natural
interaction between humans and robots. This article proposed an innovative hand motion trajectory
(HMT) gesture recognition system based on background velocity features. Here, a new wearable
wrist-worn camera prototype for gesture’s video collection was designed, and a new method
for the segmentation of continuous gestures was shown. Meanwhile, a nursing-care assistant
robot prototype was designed for assisting the elderly, which is capable of carrying the elderly
with omnidirectional motion and grabbing the specified object at home. In order to evaluate
the performance of the gesture recognition system, 10 special gestures were defined as the move
commands for interaction with the robot, and 1000 HMT gesture samples were obtained from five
subjects for leave-one-subject-out (LOSO) cross-validation classification with an average recognition
accuracy of up to 97.34%. Moreover, the performance and practicability of the proposed system were
further demonstrated by controlling the omnidirectional movement of the nursing-care assistant
robot using the predefined gesture commands.

Keywords: HMT gesture recognition; smart infrastructure; nursing-care assistant robot; wearable
wrist-worn camera; continuous gesture segmentation; human-robot interaction

1. Introduction

The evolution of the Internet of Things (IoT) network has made intelligent devices more available,
which offers more possibilities to facilitate people’s lives [1,2]. In aging societies, one focus of smart
infrastructure field is the assistance of the elderly and the disabled by using advanced IoT devices.
Therefore, there is a strong demand for robots to tackle problems that resulted from the aging
population, such as the lack of caregivers for nursing and accompanying of the elderly, and are
promoting the development of nursing-care assistant robots [3]. Providing more natural and intelligent
interaction modes [4,5] with the nursing-care assistant robots [6] is one of the frontiers of smart
infrastructure development [7]. Hand gesture recognition paves an appropriate way [8] to obtain
people’s intention for the control of smart devices, and some progress has been made in previous
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studies. Elderly people can use smart IoT devices to express intention by making corresponding
gestures, so as to control various smart devices remotely [9] at home [10]. Therefore, natural
human-robot interaction based on hand gestures [11] will become a popular research topic in the
near future.

Hand gestures are the most common means for nonverbal communication [12]. Generally
speaking, gestures are divided into two types: static gestures and dynamic gestures. The former
mainly focuses on the finger’s flex angles and poses [13,14], while the latter pays more attention
to the hand motion trajectory (HMT) [15]. In previous studies, sensors for the above two types of
gesture recognition mainly referred to two categories: image-based sensors [16] and non-image based
sensors [17]. Most previous studies of static hand gestures recognition have used non-image based
sensors (integrated in wearable gloves and bands [14]), while the studies of HMT gesture recognition
are based on fixed image-based sensors (such as using in-depth information provided by Kinect [18]).
Inertial sensors are commonly applied in the field of non-image based HMT gesture recognition.
Xu et al. and Xie et al. used the accelerometer inertial sensor for the HMT gesture recognition with a
mean recognition accuracy of 95.6% and 98.9% [19,20]. However, their methods were based on the
feature of acceleration, which was susceptible to the sensor’s posture. Besides, the acceleration is not as
intuitive as the velocity or displacement when representing a trajectory gesture, which might further
limit the system’s performance on more diverse and complex gestures.

In recent years, significant efforts have been devoted to developing the image-based sensors for
HMT gesture recognition. Plouffe et al. used the Kinect sensor to achieve the recognition of static
and dynamic hand gesture recognition in real time, and achieved an average accuracy of 92.4% [21].
Tang et al. proposed an approach for continuous hand trajectory recognition based on the depth
data collected by the Kinect2 sensor [22]. In addition, Zhang et al. proposed a novel system for
dynamic continuous hand gesture recognition based on a frequency-modulated continuous wave
radar sensor [23], which achieved a high recognition rate of 96%. However, the above methods for
the dynamic gesture recognition have to rely on the position-fixed sensors, which limits the spatial
flexibility of gesture actions and is not a suitable human-robot interaction [24] mode for the elderly.
What's more, there is a study on gesture recognition without spatial position restriction. Kim et al.
recovered the full three-dimensional (3D) pose of the user’s hand using a wrist-worn sensor [25].
It should be pointed out that the work of Kim et al. is only effective for static finger gesture recognition,
and cannot achieve the HMT gesture recognition.

In this article, we propose a novel HMT gesture recognition system based on a wearable
wrist-worn camera, and apply it to the intelligent interaction with a nursing-care assistant robot,
as shown in Figure 1. To our best knowledge, this is the first study of HMT gesture recognition
using a wearable wrist-worn camera based on background velocity analysis, which has no workspace
restrictions. In addition, we proposed a reliable method to detect the start/end point of effective HMT
gestures for continuous gesture segmentation, which is achieved by detecting the fist motion and the
hand motion velocity. Furthermore, we constructed an algorithm framework that is composed of hand
region segmentation, background velocity calculation, continuous gesture segmentation, and gesture
type classification. We also designed the prototype of an HMT gesture recognition system and carried
out experimental verification and results analysis. To further demonstrate the practicability of the
proposed system, we designed a prototype of a nursing-care assistant robot for the aged-care at home,
and defined 10 special gestures to interact with the nursing-care assistant robot.
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Figure 1. The flow-process diagram of the proposed hand motion trajectory (HMT) gesture recognition
system based on the wearable wrist-worn camera for application in the smart infrastructure.

The remaining part of this article is organized as follows: the architecture of the wearable
wrist-worn camera and the new nursing-care assistant robot are described in Section 2. The algorithm
framework for the gesture recognition and the gesture principle designed for the navigation of
the nursing-care assistant robot are presented in Section 3. In Section 4, the description of the
experimental process and the evaluation of the proposed gesture recognition system are conducted,
and the application of the interaction with the nursing-care assistant robot is carried out. Finally,
Section 5 gives the discussion and conclusion of our work.

2. System Architecture

The architecture of the HMT gesture recognition system consists of three parts: data acquisition,
data processing, and a natural human-robot interface for smart infrastructure. In the data acquisition,
the subject puts the wearable wrist-worn camera on their right wrist and performs gestures. The camera
records the original video data of the background, which reflects the HMT. After that, the data
are transmitted to the host computer through Wi-Fi, and then the data are processed. During data
processing, a series of algorithms are used to recognize the hand region, calculate the velocity of the
background based on matching the Speeded-Up Robust Features (SURF) feature points, and segment
the continuous gesture. Then, the velocity data of the effective gesture are obtained. After that,
the classification algorithm is used to recognize the target gesture. The gesture recognition results
correspond to the predefined control commands, so that various smart IoT devices in smart homes can
be remotely controlled by the gesture. The highlight application of this study is the interaction between
human and robot. A nursing-care assistant robot is designed for the assistance of elderly people at
home, and the completed prototype can achieve two working modes of the man-in-seat interaction
mode and remote interaction mode based on the proposed HMT gesture recognition system.
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2.1. The Wearable Camera Architecture

For the HMT gesture recognition in this study, we designed a new wearable wrist-worn camera.
The hardware structure is shown in Figure 2. We used SolidWorks to design the lightweight and
foldable structures firstly, as shown in Figure 2a. The device is designed according to the requirements
of lightweight, unobtrusiveness, and portability, as a wearable device for the daily use of the elderly [26].
The base, shell, and camera hood are all manufactured by the 3D printing of nylon material (the
thickness of printing shell is one mm), which has the advantage of being lightweight (the final
prototype is 114 g in weight). The foldable structure of the camera partially endows the device with a
compact structure. The base and an elastic fabric wristband are bonded by melt adhesive (we use a
dispensing gun to heat the melt adhesive and apply the base to the fabric). The mentioned foldable
structure guarantees the unobtrusiveness of the device for users. The drawer type structure between
the shell and the base is adopted, which can be easily dismantled and installed, and satisfies the user’s
usage requirements of portability.

Charging socket
Switch

Wristband

Prototype

Figure 2. (a) Concept design of the wearable wrist-worn camera with an emphasis on wearability and
user’s comfort; (b) Integrated implementation of the wearable wrist-worn camera.

The selected image-based sensor is the Raspberry Pi Camera Module, which is a CMOS-type
(Complementary Metal Oxide Semiconductor) 175-degree wide-angle camera that is especially
compatible with Raspberry Pi with a resolution of five million pixels (2952 x 1944 pixels). As the
control unit, Raspberry Pi Zero W integrates a 1-Ghz single-core central processing unit (CPU) and 512
MB RAM with additional support for 802.11 b/g/n wireless LAN connectivity. The module is suitable
for prototype development and the verification of smart infrastructure under the Internet of Things
technology due to its small size (65 mm x 30 mm X 5 mm) and wireless transmission compatibility.
In addition, compared with other controller modules such as Arduino, it has a higher clock frequency,
which is more suitable for fast image processing and acquisition. In order to ensure the small size of
the integrated design, the camera module and the Raspberry Pi are connected by a flexible flat cable
(FFC). According to the power supply requirement and the size limitation of the integrated design,
two rechargeable lithium batteries with a rated voltage of 3.7 V are selected for parallel output with a
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total capacity of 2000 mAh. Meanwhile, in order to meet the demand of Raspberry Pi and the camera
module’s power supply, the boost converter is used to get 5 V of voltage output. The integrated
implementation of the wearable wrist-worn camera described above and the prototype are shown
in Figure 2b.

In the process of collecting the original video data, the Raspberry Pi runs the python script on the
Raspbian system (a system based on Debian GNU/Linux for Raspberry Pi hardware development)
to establish the TCP (Transmission Control Protocol) server firstly, and then connects with the TCP
client on the computer. After the successful connection, the Raspberry Pi collects the video data from
the camera module, and then transmits the video data to the computer with the configuration of
320 x 240 resolution and a frame rate of 12 frames per second (FPS). The above parameters based on
experimental optimization can reduce the packet loss and satisfy the data processing requirements
of subsequent algorithms. The algorithmic details of data processing will be introduced in detail
in Section 3.

The exact size of the wearable camera can be found in Figure 2a. The camera hood is equipped
with a camera module, which can rotate 0-150 degrees between the camera hood and the shell through
a rotating shaft. There are irregular grooves designed at the bottom of the base for uniform melt
adhesive. The angle 0 is set to 80 degrees in the working state of this study, and it can be easily
folded in the non-working state. The test result showed that the working current is 0.21 A in the
video transmission state, and 0.11 A in the boot state without data transmission. According to the
battery capacity and actual use test, the device can work continuously for more than four hours, which
fully meets the requirements of the use in household conditions [27]. Furthermore, the system power
consumption can be further reduced by monitoring the motion velocity threshold that triggers the
sleep mode.

2.2. The Nursing-Care Assistant Robot

With the advent of an aging society, many robots, such as mental commitment robots dedicated
for mental healing [28] and the smart wheelchairs [29], have been proposed to help on-site caregivers.
Mukai et al. developed an assistant robot, RIBA, to lift a human in its arms [30]. The above nursing
robots are mainly oriented toward hospitals and clinics. In this study, we have integrated the design
of a nursing-care assistant robot for aged-care at home that can not only carry people similar to a
wheelchair, but also grasp the target object. As shown in Figure 3, the mechanical structure of the
nursing robot consists of four parts: omnidirectional mobile chassis, lift adjusting mechanism, dual
manipulator above the chassis, and the seat part at the fore. The YuMi collaborative robot produced by
Asea Brown Boveri Ltd. (ABB) was chosen as the dual manipulator. The frame of the other structures
was made of all the aluminum profiles. The design of all of the mechanical structures of this cooperative
robot was carried out in SolidWorks. Meanwhile, the corresponding structural stability was checked
to ensure the reliability and safety of the household environment. Limited by the length of the article,
the details of the check are not carried out in this article; these are provided in the corresponding
supplementary materials, Check S1. The dimensions of the robot are shown in Figure 3, where the
maximum (550 mm) of longitudinal lift is reflected.

The user can sit on the seat part in front of the nursing cooperative robot, and the dual manipulator
makes corresponding nursing actions behind the user such as assisting in helping the user get up
from the seat, fetching the target object, and so on. In detail, the robot can move its dual arms to a
suitable position providing supporting points such as the chair arms for the elderly to get up from
the seat. An electric lifting adjusting mechanism is designed between the dual manipulator and the
mobile chassis. The corresponding height between the dual manipulator and the user can be adjusted
to adapt to users with different body shapes and ensure the space for the manipulator with different
movements. Similarly, the sliding rail mechanism between the seat part and the mobile chassis can
adjust the relative distance between the user and the manipulator, which ensures the user’s comfort
and a wide application for different people.



Appl. Sci. 2018, 8, 2349 60of 19

Gripper i i

MCU.STM32 ﬂpp | (YuMi) Dual manipulator |
I - -, ) l

°Illlllll° Ethernet . . )J A

Mechanical arm g 4

. 1200mm
Seat part WP TE550mm)
CAN-bus :
0 0 ~ Servo motor ‘ -
i,

e ma-

Omnidirectional
movement _ Mecanum wheels

Omnidirectional || Lift adjusting
mobile chassis mechanism

NN .

Figure 3. Concept design of the nursing-care assistant robot consisting of an omnidirectional mobile

chassis, lift adjusting mechanism, dual manipulator, and the seat part. The communication protocol of
the robot control system is shown as well.

As shown in Figure 3, the communication protocol of the nursing-care assistant robot mainly
related to the communication between the omnidirectional mobile chassis and the dual manipulator.
In this design, the STM32F405RGT6 provided by STMicroelectronics is selected as the microcontroller
unit (MCU) in the main control board. The motion control of the dual manipulator is based on the
IRC5 controller of ABB. The single manipulator consists of a mechanical arm and a gripper, which
is independently communicated with the main control board via Ethernet. The omnidirectional
mobile chassis is driven by four servo motors, which are controlled by the corresponding servo motor
controller. The Controller Area Network (CAN-bus) communication mode is chosen between the
mobile chassis servo controller and the MCU. The nursing-care assistant robot that we proposed is
aiming to assist and nurse the elderly at home. Two working modes of the nursing-care assistant
robot are designed to better meet the above nursing needs: man-in-seat interaction mode and remote
interaction mode. The man-in-seat interaction mode refers to the near-field control. When the user
sits on the nursing-care assistant robot’s seat part, this mode realizes the function of assisting the
elderly in moving to the designated destination and taking some necessary objects such as medicines.
The remote interaction mode refers to the condition that interacts with the robot remotely, which is
aiming to assist the elderly in picking up distant objects.

3. Algorithm and Principle

3.1. Algorithm for HMT Gesture Recognition

After obtaining the original video data, MATLAB is used to decode the data for the subsequent
processing in the computer. In order to realize continuous HMT gesture recognition, the main idea
of our scheme is as follows. The hand in the middle of the captured video footage is almost static,
and the feature that can reflect the trajectory of hand motion is the background variation around
the hand. We select the velocity of the background as the characteristic parameter, and indirectly
reflect the actual hand motion trajectory based on the motion velocity of the background in the video.
Secondly, in order to distinguish the effective gestures and other ineffective gestures in the process of
continuous hand motion, we used an innovative method to segment gestures by detecting the motion
of fist bobbing and the changes of hand motion velocity. The motion of the fist bobbing is defined as
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flexing and then extending the wrist. Since the size of the fist varies from user to user, the angle of
wrist flex varies from person to person. What the user needs to ensure is that the fist disappears from
the video screen when the wrist is flexed. It can be more clearly shown by the demonstration video
in the supplementary materials, Video S1. After obtaining the effective gesture data, we classify the
gestures by cross-validation, and obtain the gesture recognition results. The algorithm flow diagram is
shown in Figure 4.
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Figure 4. The algorithm flow diagram of the continuous HMT gesture recognition.

In order to implement the above algorithm framework, we divide the continuous HMT gesture
recognition algorithm framework into the following four main steps: (1) hand region segmentation,
which can obtain the height feature of the hand; (2) background velocity calculation, which can be
obtained by the background feature point matching; (3) continuous gesture segmentation, which
is achieved by the start-end signal detection; and (4) data normalization and cross-validation
classification, which can obtain the recognition accuracy to evaluate the performance of the system.
The algorithm is discussed in detail in the subsections of this section.

3.1.1. Hand Region Segmentation

In the process of continuous gesture recognition, the motion of fist bobbing should be judged by
the height change of the hand region. In addition, the foreground area of the hand should be removed,
and only the background part should be reserved for subsequent processing when calculating the
velocity of the background feature. Therefore, the recognition and segmentation of the hand region is
the important part of the algorithm framework. In this subsection, we will describe the algorithms for
hand region segmentation and hand height calculation.

In order to improve the efficiency of the algorithm and the recognition velocity of the whole system,
we reduced the pixels of the original video frame to 72 x 96 pixels from 240 x 320 pixels before the hand
region segmentation. Since the camera module used in this study is a 175-degree wide-angle camera,
the original image has a wide-angle distortion effect, as shown in Figure 5a. Generally, the wide-angle
distortion can be corrected by the corresponding correction algorithm [31]. However, the hand region
is an important parameter in continuous gesture segmentation and background velocity calculation in
this study. Particularly, we didn’t use the general wide-angle distortion correction algorithm; instead,
we used the pixel reduction method to remove the serious distortion image corner, which results in the
pixels being cut down to 54 x 73 pixels, as shown in Figure 5b. This method is very suitable for this
study. The serious wide-angle distortion can be eliminated conveniently, and the characteristics of the
hand region in the middle of the image are highlighted. At the same time, in order to improve the
performance of the subsequent processing algorithm, the red—green-blue (RGB) image is transformed
into a L*a*b* color space. The transformation result is shown in Figure 5c. Then, we use the simple
linear iterative cluster (SLIC) [32] algorithm, which can generate superpixels to further divide the pixel
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meshes and reduce the computation cost of hand region segmentation. The result of the SLIC is shown
in Figure 5d.

54 x 73 pixels g RGB to L*a*b*
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Figure 5. The processing of video image for hand region segmentation: (a) Original red—green-blue
(RGB) image; (b) Image after compressing and cutting pixels; (c) RGB image is transformed into L*a*b*
color space; (d) The superpixels result of the simple linear iterative cluster (SLIC) algorithm; (e) Seed
pixels of the foreground and background for the lazy snapping algorithm; (f) The result of hand region
segmentation using the lazy snapping algorithm.

The lazy snapping algorithm [33] is used to realize the segmentation of the hand region, which
is an interactive algorithm for image segmentation. The foreground and background are segmented
based on the seed pixels specified by the user. In the original video images, the distinction between
the foreground and background is more obvious. Obviously, the middle part of the image is the
hand region, while the rest is the environmental background. Therefore, the video image sequence
is segmented by giving the initial foreground and background seed pixels. As shown in Figure 5e,
the green area is the seed pixels of the foreground S¢,.(0), and the blue area is the seed pixels of the
background Sy, (0).

As shown in Figure 5f, the hand region segmentation result Ry ,nq(7) of the current frame can be
obtained by giving the S¢ye(i—1) and Sy, (i—1) of the previous frame. The foreground seed pixels
Store (i) for the next gesture segmentation are obtained by combining Sg...(0) and the erosion of the
segmentation result of the hand region of the current frame Ry ,n4(i). The background seed pixels Spack(7)
for the next gesture segmentation are obtained by subtracting the expansion of the segmentation result
of the hand region of the current frame R} ;4 (7) from Sy, (0). Therefore, the whole video sequence
can obtain the segmentation results of the hand region. After obtaining the segmentation results of the
hand region of each frame, which can serve for the background velocity calculation, the hand height
H(i) of the current frame can be calculated by the highest pixel of the hand region, which is used for
the subsequent continuous gesture segmentation algorithm.

3.1.2. Background Velocity Calculation

In this study, background velocity is the dominant feature reflecting the trajectory of the hand.
How to obtain the background velocity in the video image is a problem to be solved after the foreground
of the hand region and the background of the environment have been segmented. The acquisition of
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velocity depends on the selection of reference points. In this study, the Speeded-Up Robust Features
(SUREF) [34] keypoints are chosen to be the reference points, and the background velocity is obtained
by the average displacement of the matched SURF keypoints between two adjacent image frames.

This part of the specific algorithm flow is introduced below. Firstly, the SURF keypoints of two
adjacent image frames are extracted, and the keypoints in the foreground are removed according to
the segmentation results of the hand region, which results that only the keypoints in the background
are retained. As shown in Figure 6a,b, the green plus signs and the red dots are the keypoints extracted
from the two adjacent image frames, respectively. Moreover, the corresponding matching distance is
calculated by using the method Lowe et al. proposed in [35]. The keypoints obtained from the two
adjacent image frames are matched according to the minimum distance, and the matching keypoints
whose distance exceeds the threshold Lowe et al. proposed in [35] will be removed.

+ SUREF points of previous frame |[® SURF points of current frame

Hand
region
(b)
o Effective velocity
of current frame
= -
g-10p o ./ €. ...
E 8 Ly M
2 s
g
;-15 @ Valid value :
O Imvalid value | : o
+ Mean value | !

25 30 35 40
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(d)

Figure 6. Speeded-Up Robust Features (SURF) keypoints are extracted, and the average displacement
of matching keypoints between the adjacent frames was used to characterize the velocity of background.
(a) The extracted SURF keypoints of the previous image frame; (b) The extracted SURF keypoints of the
current image frame; (c) The matching keypoints between adjacent image frames; (d) Determination of

the effective values of current frame’s velocity.

As shown in Figure 6¢, after obtaining the matching keypoints between two adjacent image
frames, the displacement of the matching keypoints between two adjacent image frames with that
of the frame interval is 1/12 s, according to the above data configuration. The velocity vector of
each matching was shown by the yellow arrow in Figure 6¢. In order to quantify the background
velocity by the velocity vector of the matching points, all of the velocity vectors are represented in
the coordinate system, as shown in Figure 6d. The 1/5 maximum and the 1/5 minimum values of
the vector components Vx and Vy are deemed invalid, which may be affected by the matching at the
edge of the image. The invalid values are shown by the pink circle marker in Figure 6d, while the
remaining valid values are shown by the blue dot marker. The final velocity values of the current
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frame are represented by the red plus sign marker in Figure 6d, which was obtained by averaging all
of the valid velocity values.

3.1.3. Continuous Gestures Segmentation

One of the focuses in this study is to recognize a series of continuous HMT gestures
correspondingly. In order to realize the recognition and classification of the corresponding gestures,
it is necessary to distinguish between the effective gestures and the ineffective gestures in the process
of continuous hand motion. Two special rules are defined to distinguish the start point and the end
point of an effective gesture: The user should perform the fist bobbing before starting an effective
gesture and maintain a motionless state for more than half a second after performing an effective
gesture. During the algorithm debugging progress, we obtained total of 1000 gesture samples from five
subjects at first, and saved the 1000 gestures as the dataset for a gesture segmentation test. The details
of the acquisition of the 1000-gestures dataset will be described in detail in Section 4. The specific
algorithm flow is introduced as follows.

Due to the instability of the test subjects” movements, nominal motionless during performing
gestures is not completely static, but slightly quivering. In order to define the nominal motionless
state, we set the maximum velocity threshold V. If the velocity mean of a frame’s last 0.5 s is smaller
than V, the hand is considered as being in a motionless state in this frame. Half a second is enough for
judging according to the mentioned rule after performing an effective gesture. In order to investigate
the optimal threshold of V; for gesture segmentation, we conduct segmentation accuracy tests of the
1000-gestures dataset described above based on five motionless states with five different V; values
from one pixel/image to five pixels/image. The experimental results are shown in Table 1. The best
segmentation accuracy can be obtained when V' is set as three pixels/image. Thus, the threshold is set
as three pixels/image to define the motionless state.

Table 1. Segmentation accuracy of continuous gestures with different values of V.

Vi (pixels/image) 1 2 3 4 5
Segmentation accuracy (%) 83.1 97.1 99.2 98.3 97.8

As shown in Figure 7, the algorithm flow chart for the segmentation of a triangular trajectory
is presented as a sample. Based on the results of the hand region segmentation, we have obtained
the variation curve of the height H(i) of the hand region, which reflects the motion of the fist bobbing.
The velocity curve, which reflects the hand motion trajectory, was obtained by the SURF keypoints
matching. We defined the effective gesture start rule as follows: when the successive descending edge
and rising edge appear in the H(i) curve, as shown in the interval S1 in Figure 7, the motion of fist
bobbing appears. This indicates that the subsequent green interval-1 may have the start point of an
effective gesture. If the velocity curve changes so greatly, it wouldn’t be considered as a motionless
state within interval-1; then, the effective gesture starts, as shown in the pink interval-2, which indicates
an effective gesture. The intervals S3, 54, and S5 correspond to the three-step straight line trajectory
of the complete triangular trajectory gesture, which make up interval-2. A motionless interval, S2, is
allowed between interval S1 and interval S3, which starts after the fist bobbing and continues until
the effective gesture begins. We set the time-window width of interval-1 to two seconds, which is
experimentally optimized. The start signals of the 1000-gestures dataset mentioned above are tested
with seven time-window widths of interval-1 from 1000 ms to 4000 ms with a step of 500 ms, as
shown in Table 2, and the best corresponding accuracy of gesture segmentation is obtained when the
time-window width is set as 2000 ms (2 s). If the motionless interval S2 is longer than the time-window
width of interval-1, the effective gesture interval-2 will not appear. That is to say, gestures that start
from two seconds after the fist bobbing will be considered invalid.
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Figure 7. Description of the continuous gesture segmentation principle based on the process of a
triangular HMT gesture.

Table 2. Segmentation accuracy with different time-window widths of interval-1.

Interval-1 (ms) 1000 1500 2000 2500 3000 3500 4000

Segmentation

o 90.4 99.0 99.2 98.9 98.5 96.5 58.2
accuracy (%)

The above rule defines the start point of the effective gesture. After the gesture is completed,
the following rule is defined to determine the end point of an effective gesture: when an effective
gesture is completed, we define the motionless state within a certain period of more than half a
second as an end signal, as shown in interval S6. Considering that individual differences may have an
impact on the duration of the motionless state, we calculated the gesture segmentation accuracies of
the 1000-gestures dataset under seven time-window widths of S6 (100 ms, 500 ms, 900 ms, 1000 ms,
1100 ms, 1500 ms, and 1900 ms), as shown in Table 3. The best segmentation accuracy can be obtained
when the time-window width S6 is set as 1000 ms (one second); hence, the time-window width of S6 is
set as one second for the segmentation of continuous gestures. If the motionless interval’s duration is
lower than one second, it will not be judged as an end signal of the gesture. So far, we have completed
the definition of the start point and the end point of an effective gesture through which we can achieve
the segmentation of the continuous gestures to get a complete velocity curve data of a single gesture.
At this time, the single gesture velocity data sequence has been obtained.

Table 3. Segmentation accuracy with different time-window widths of interval S6.

Interval S6 (ms) 100 500 900 1000 1100 1500 1900

Segmentation

o 98.1 98.6 98.8 99.2 98.7 98.3 96.9
accuracy (%)

3.1.4. Classification

After obtaining the data for a single gesture, it is necessary to identify the corresponding type of
the gesture. Since different gestures have different durations and movement speeds, the velocity data
of separated single gestures are normalized before classification by linear interpolation and resampling
with the number of sampling points setting as 30. After obtaining the normalized data, a dynamic
time warping (DTW) [36] algorithm is used to measure the similarity between different gestures. Then,
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we use three different methods of cross-validation to classify gestures after data acquisition. Finally,
we use the k-Nearest Neighbor (kNN) algorithm [37] to classify the input gestures and determine the
gesture type. The above algorithms are all implemented in MATLAB.

3.2. Principle for Navigation of a Nursing-Care Assistant Robot

According to the hardware of the nursing-care assistant robot described above, the chassis can
move in all directions through different movement combinations of four Mecanum wheels. We defined
six kinds of movements of the moving chassis: forward, backward, left, right, clockwise rotation,
and counterclockwise rotation. The six movements mentioned above can accomplish the basic actions
of omnidirectional movement and the flexible navigation of the robot at home.

In order to interact with the nursing-care assistant robot through HMT gestures, the one-to-one
gesture command that corresponds to the movement of the nursing-care assistant robot needs to be
defined. We defined 10 corresponding HMT gestures, as shown in Figure 8, for the interaction between
the human and the nursing-care assistant robot. Six of them (gestures 1-6) are used for the six kinds
of chassis movements mentioned above. In addition, two gestures (gestures 7 and 8) are defined for
the acceleration and deceleration, respectively, and gesture 10 is defined for the stop. According to
the introduction of the control system of the nursing-care assistant robot, the control of the mobile
chassis and the dual manipulator are mutually independent. In order to realize the overall control of
the nursing-care assistant robot, we defined gesture 9 for switching the control interface to realize the
function of the dual manipulator.

® Clockwise

@ Move Forward [2 Move Backwardl @ Move to Left | @ Move to Right Rotate

s | -

® Counter-

T ] ; .
clockwise Rotate @ Speed Up Speed Down (9@ Mode Switch o Stop

Figure 8. Ten predefined gestures for the interaction between human and nursing-care assistant robot.

4. Experiments and Results

4.1. Dataset

Before the experiment, the approval of the Ethics Committee of the 117th Hospital of People’s
Liberation Army of China (PLA) has been obtained, and all of the subjects have signed a consent form.
In this study, the performance of the HMT gesture recognition system is tested and verified with five
subjects in two postures (sitting and standing); then, we conducted the application on the nursing-care
assistant robot by controlling the robot’s movement based on the predefined 10 gestures using the
wrist-worn camera.

In order to verify the performance of the gesture recognition system, five subjects of four males
and one female, aged from 20-30 with a healthy and movable body, were included in the experiment.
In the experiment, the test subjects performed the predefined 10 gestures continuously in one round as a
gesture combination. Each subject repeated the gesture combination 10 times in both sitting conditions
and standing conditions, respectively. In other words, 200 gesture samples were collected from each
subject. Finally, 500 gesture samples were obtained in each condition, and a total of 1000 gesture
samples were obtained. During the experiment, the participant put the wearable wrist-worn camera on
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their right wrist. Then, the camera was positioned to ensure a suitable proportion of the hand area in
the image. After that, the participant performed the predefined 10 HMT gestures one by one to collect
gesture data following the predefined rules. The participant performed the motion of fist bobbing
firstly, and then made the single effective HMT gesture. After finishing a single gesture, the participant
needed to maintain a motionless state for more than half a second. The test subjects were guided by the
above rules and pretrained to perform the gesture combination once, which was not included as one
of the experimental samples to be analyzed. After finishing all of the HMT gestures, the original video
data of the gestures were collected and processed to extract the velocity data of the effective single
HMT gesture. Then, a DTW algorithm was used for measuring the similarity of the different gestures,
and three different methods of cross-validation were used to classify the gestures. The recognition
accuracies based on different cross-validation were obtained for the performance verification. After the
experiments for performance verification, we applied the HMT gesture recognition system to interact
with the nursing-care assistant robot. Similarly, the participant put on the wearable camera to control
the nursing-care assistant robot in its man-in-seat interaction mode and remote interaction mode,
respectively, based on the predefined 10 gestures. What is different from the experiments in the
application is that the HMT gesture recognition is in real time, which is based on a specified training
set using a representative method of cross-validation for the classification. The data processing and
algorithm verification that were involved in this experiment were all carried out in version 2018a of
MATLAB installed on a computer configured with 8 G of memory and 2.6 Ghz CPU.

4.2. Results of the HMT Gesture Recognition

4.2.1. Results of the Continuous Gesture Segmentation

According to the segmentation algorithm of continuous gestures defined in Section 3,
10 consecutive gestures of all of the groups were segmented to extract the effective single gesture.
In the experiment, 94 sets of 100 consecutive gestures from the five subjects were segmented into
10 corresponding gestures correctly. The start and end points of the segmentation were also in line
with the expectations of the algorithm. Among the six groups of gestures with incorrect segmentation,
there were three groups that were caused by the absence of start and end points because of the
non-standardized gestures (including the too-small motion of the fist bobbing before the single effective
gesture, and the loss of a motionless state after finishing the single effective gesture). The remaining
three groups of segmentation errors were caused by the motion of fist bobbing during the process of
the effective HMT gesture, which lead to an extra wrong segmentation. Finally, there were 992 gestures
completely segmented out of the whole 1000 gestures correctly, which led to a segmentation accuracy
rate of 99.20%. The effective gestures that were not correctly segmented were processed manually by
specifying the start and end points.

4.2.2. Results of the Background Velocity

According to the above results of continuous gesture segmentation and the calculation of
background velocity based on the matching of the SURF keypoints, a group of the velocity curves of
the 10 predefined gestures in this experiment is shown in Figure 9. The velocity curves of Vx and Vy
are mapped from the background velocity to the gesture trajectory velocity. As seen from the figure,
the simple movement between gesture 1 and 4 takes less time to make; the effective gesture action
duration is about one second, and the complex movement between gestures 5 and 10 is about twice the
simple duration of about three seconds. To reduce the influence of the different lengths of gesture time
for classification, all of the hand gesture data were normalized by the method mentioned in Section 3.
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Figure 9. Velocity curves sample of the 10 predefined HMT gestures.

4.2.3. Results of the HMT Gesture Recognition

After obtaining the effective velocity data of the corresponding gestures, 1000 gestures were
classified with three different cross-validation methods, based on the distance between the velocity data
of the corresponding gestures calculated by a DTW algorithm. In order to meet the data requirements
of the DTW algorithm, the original velocity data were normalized and resampled with 30 sampling
points by linear interpolation before classification.

The three cross-validation methods are introduced as follows: (1) leave-one-subject-out (LOSO)
cross-validation is a method that refers to selecting the sample data of one subject as the test set and the
sample data of the other subjects as the training set; (2) leave-other-subject-out (LPO) cross-validation
refers to selecting the sample data of one subject as the training set and the sample data of the other
subjects as the test set; (3) leave-one-group-out within one subject (LOOWS) cross-validation refers to
selecting one group of samples from one subject as the test set and the other groups of samples of this
subject as the training set. The types of the test gestures were determined according to the shortest
distance to the training set based on the DTW algorithm, and the most types that the test gesture was
determined to be were taken as the recognition results.

Finally, the accuracies of gesture recognition using different cross-validation methods are shown
in Table 4. The mean recognition accuracy with the LOSO cross-validation was up to 97.34%, which
verifies the system’s performance in front of an unknown subject. The LPO cross-validation achieved
a mean accuracy of 96.55%, which is lower than LOSO, and reflects the variations between different
subjects and the diversity of our data. The LOOWS method achieved a mean accuracy of 98%, which is
higher than LOSO, and indicates that the user can easily add their characteristic gestures to the system,
and the gestures can be recognized efficiently. As shown in Table 4, the HMT gesture recognition
accuracies in the standing condition are slightly higher than those in the sitting condition. Besides the
random influence of the external environment, the features of the gesture in the standing condition
are more evident than those in the sitting condition since the action space in the standing condition is
much larger than that in the sitting condition.

Table 4. Gesture recognition accuracies using three cross-validation methods with five subjects. LOSO:
leave-one-subject-out, LPO: leave-other-subject-out, LOOWS: leave-one-group-out within one subject.

Posture Siting Condition Standing Condition
Subject 1 2 3 4 5 Mean 1 2 3 4 5 Mean

Recognition LOSO 97.33  96.78  93.68 97.89 9567 9627  99.67 9817  96.44 9933 9848 98.42 97.34
Accuracy LPO 96.56  97.56  93.78 9733  94.67 9598 99.37 9756 9444 9844 9756 9747  96.55
(%) LOOWS 97.67  90.00 100 100 100 97.53 98.33 100 94.00 100 100 9847  98.00

Mean
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In order to cater for the interactive application of the two interaction modes with the nursing-care
assistant robot, the gesture velocity data collected in the standing and sitting conditions based on LOSO
cross-validation are analyzed, respectively. The confusion matrices of the recognition results under
the two conditions are shown in Figure 10. In addition, the precision, recall, and F-measure of the
10 gestures’ classification are calculated based on the confusion matrix to further verify the performance
of the gesture recognition, which are shown in Figure 11. The mean value of the F-measure under the
sitting condition is up to 0.984; under the standing condition, it is 0.963. The higher F-measure value in
sitting conditions indicates its better classification performance than that in standing conditions.
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Figure 10. (a) Confusion matrix of gesture recognition in sitting conditions; (b) Confusion matrix of
gesture recognition in standing conditions.
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Figure 11. (a) The precision, recall, and F-measure of gesture classification in sitting conditions;
(b) The precision, recall, and F-measure of gesture classification in standing conditions.

The overall recognition results of sitting conditions and standing conditions based on LOSO
cross-validation are clearly shown from the confusion matrix in Figure 10. Among the confusing
gestures, we analyzed the reasons for some having a high proportion of varying classification types.
Gesture 7 was classified inaccurately as gesture 4 with the proportion of 4.67% under the sitting
condition and 3.11% under the standing condition, because of the missing horizontal motion detection.
The missing detection was caused by the incorrect end of a gesture due to the unexpected pauses
during a single gesture period. For similar reasons to those mentioned above, gesture 8 was classified
inaccurately as gesture 4 with the proportion of 4.67%, and gesture 10 was recognized incorrectly as
gesture 2 with the proportion of 2.67%. There is another situation: gesture 8 was classified wrongly as
gesture 2 with the proportion of 2.67%, which was caused by the unobvious longitudinal motion in
gesture 8. For example, the subjects immediately started the showcased gestures with the uncompleted
motion of the fist bobbing, resulting in the insufficient longitudinal motion.
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4.3. Interaction with Nursing-Care Assistant Robot

HMT gesture recognition was applied to the intelligent interaction with the nursing-care assistant
robot at home. Based on the control system and interaction mode of the nursing-care assistant robot
proposed in Section 2, we improved the HTM gesture recognition system to a real-time HMT gesture
recognition system, which was more efficient for the interaction application with the robot. Different
from the algorithm framework proposed in the theoretical verification part of Section 3, the real-time
HMT gesture recognition system’s algorithm framework had the specified training templates based on
the LOSO cross-validation, which is more practical and faster during the interaction progress.

The interaction application with the nursing-care assistant robot was carried out under two
different interaction modes of the robot. As shown in Figure 12a, under the man-in-seat interaction
mode, the user wore a wearable camera on his right wrist, and sat on the seat part in front of the
nursing-care assistant robot. Then, the user made corresponding predefined gestures to guide the
robot. Due to the additional background velocity of the robot when the user interacted with the robot
in the man-in-seat interaction mode, there was a deviation between the experimental results in sitting
conditions and the actual control interaction process in theory. However, the subsequent application
shows that this additional velocity hardly affected the recognition accuracy, which illustrates the
robustness of the proposed HMT gesture recognition system. The HMT gesture recognition in standing
conditions corresponds to the remote interaction mode of the nursing-care assistant robot. The remote
interactive state is shown in Figure 12b. The user remotely guides the robot to a specified condition,
and then the command mode is switched for the control of the dual manipulator by performing the
gesture command. After that, the manipulator is remotely operated to complete the action of assisting
in grabbing the specified objects. During the progress of the interaction, the original video data of
the gesture collected by the wearable camera is transmitted to the host computer through Wi-Fi for
processing and recognition, and the recognition result communicates with the robot’s control system
through the predefined control commands corresponding to the predefined HMT gesture.

Wearable
camera

Gesture

=777 R\ s

) E : > bjectgblod
Omnidirectional A= ¢ : Y (— Sk grabbe

| ] | ETzDual ﬁnﬁ.ipulntoﬁ‘
mobile chassis ”ﬁ
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Figure 12. The implementation of the interaction with the nursing-care assistant robot: (a) Man-in-seat
interaction mode of the nursing-care assistant robot; (b) Remote interaction mode of the nursing-care
assistant robot.

5. Discussion and Conclusions

In this paper, an innovative HMT gesture recognition system based on background velocity
features using a wearable wrist-worn camera was proposed and applied to intelligent interaction with
a nursing-care assistant robot. In this study, the environment image data were collected during the
user’s hand motion when using a wearable wrist-worn camera. The velocity of the HMT gesture was
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reflected by background velocity, which was calculated by the displacement of the matching SURF
points between adjacent frames. In addition, we defined a reliable rule to segment the continuous
gestures by detecting the motion of fist bobbing and the background velocity, and the accuracy of the
gesture segmentation reached 99.2% with the 1000 effective gestures that were obtained.

Ten gesture command rules for interacting with the nursing-care assistant robot were defined in
this study. More importantly, in order to evaluate the performance of the HMT gesture recognition
system proposed in this study, we collected 1000 effective gestures from five test subjects. The gestures’
classification and recognition were achieved using three different cross-validation methods based
on the DTW algorithm. The average recognition accuracy of 97.34% is achieved based on the
LOSO cross-validation, and the recognition accuracy of gesture recognition in sitting conditions
and standing conditions were analyzed and compared. In addition, the application of interaction with
the nursing-care assistant robot under the man-in-seat interaction mode and the remote interaction
mode were conducted. Furthermore, a demonstration video was made and provided as supplementary
material for clear expression.

Although the HMT gesture recognition system that was proposed in this study as a novel
recognition method has significantly improved flexibility and reliability compared with the traditional
fixed gesture recognition method, there are also some drawbacks to the current work. Although the
approach of the fist bobbing detection proposed in this study to segment the effective gestures is
reliable, the continuous gesture segmentation algorithm takes a long time due to the hand region
segmentation based on the lazy snapping algorithm, which affects the efficiency of the whole algorithm.
The algorithm for the hand region segmentation can be improved or replaced in order to reduce the
computation time in the future.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2076-3417/8/12/2349/
s1, Video S1: Human-robot interaction based on HMT gesture recognition using a wearable wrist-worn camera;
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