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Abstract: This paper presents a comprehensive overview of the frequency-domain filtered-x least
mean-square (FxLMS) algorithms for active noise control (ANC). The direct use of frequency-domain
adaptive filters for ANC results in two kinds of delays, i.e., delay in the signal path and delay in the
weight adaptation. The effects of the two kinds of delays on the convergence behavior and stability of
the adaptive algorithms are analyzed in this paper. The first delay can violate the so-called causality
constraint, which is a major concern for broadband ANC, and the second delay can reduce the upper
bound of the step size. The modified filter-x scheme has been employed to remove the delay in
the weight adaptation, and several delayless filtering approaches have been presented to remove
the delay in the signal path. However, state-of-the-art frequency-domain FxLMS algorithms only
remove one kind of delay, and some of these algorithms have a very high peak complexity and hence
are impractical for real-time systems. This paper thus proposes a new delayless frequency-domain
ANC algorithm that completely removes the two kinds of delays and has a low complexity. The
performance advantages and limitations of each algorithm are discussed based on an extensive
evaluation, and the complexities are evaluated in terms of both the peak and average complexities.

Keywords: Active noise control; frequency domain adaptive filter; computational complexity;
delayless; causality

1. Introduction

Acoustic noise control is essential for reducing the noise level in modern society since noise
seriously affects human health [1,2]. Passive noise control, which is based on using reactive devices,
e.g., Helmholtz resonators and quarter wavelength resonators, and using resistive materials, e.g.,
acoustic linings and porous membranes, is very effective for reducing high-frequency noise, but not
so effective for low-frequency noise reduction. Active noise control (ANC) based on the principle of
superposition is an appealing method for low-frequency noise reduction [3–6]. In practice, passive
noise control and ANC methods are usually combined to provide wideband noise reduction.

In ANC systems, the filtered-x least mean-square (FxLMS) algorithm is widely used to update the
weights of the control filter, but the complexity of the FxLMS algorithm increases linearly with the
filter length. In certain applications, the control filter is on the order of several thousand. Therefore,
the FxLMS and other time-domain algorithms, e.g., the filtered-x affine projection (FxAP) [7–9],
are too complex, which is prohibitive for real-time systems. The frequency-domain adaptive
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filter (FDAF) [10–17] has been successfully used in echo cancellation [18–21], acoustic feedback
cancellation [22], and beamforming [23] due to its good convergence behavior and low complexity.
In [24–27], the block LMS (BLMS) was extended to ANC applications and the corresponding
frequency-domain implementation was provided. The experiment in [27] used both the periodic
and band-limited signals as the reference signals, but the delay problem was not discussed. In [28],
a more efficient implementation of BLMS was presented, where the filtering of the reference signal by
the secondary path was also implemented using FFT. Meanwhile, the fast Hartley transform (FHT)
was adopted to reduce the complexity. The frequency-domain implementation was extended to the
multichannel case in [26,29]. The aforementioned algorithms are obtained by applying the FDAF
originally used in echo cancellation to the ANC problem. However, the algorithm requirements for
echo cancellation and ANC are quite different. Specifically, the direct use of the FDAF for ANC
introduces two kinds of delays. First, there is at least one-block delay between the input of the
reference signal and the output of the cancelling signal because the FDAF algorithm is implemented
on a block-by-block basis. This delay can violate the causality constraint, which is a major concern for
broadband ANC [4,30,31]. Second, the delay between the weight adaptation and the observation of
the error signal is introduced because of the effect of the secondary path. The behavior of the filtered-x
algorithm is similar to that of the delayed-LMS algorithm, which reduces the upper bound of the step
size and slows the convergence and reconvergence rate [32]. In addition, the peak complexity of the
FDAF algorithms presented in [28] is quite high because the FFT operation should be completed in
one sampling interval; therefore, these algorithms are impractical for real-time implementation.

Many approaches have been proposed to reduce the two kinds of delays. The modified
filtered-x structure [33,34] was used in the frequency-domain ANC in [35], which makes the adaptive
algorithm behave like the standard FDAF and thus removes the delay in the weight adaptation. The
partitioned-block FDAF (PBFDAF) algorithm was introduced for ANC to reduce the delay in the signal
path [36–39]. This is achieved by partitioning the whole impulse response into several small sections,
but this method does not completely eliminate the input-output delay. Several delayless algorithms
were then proposed to totally remove the delay in the signal path. The calculation of the adaptive filter
output can be implemented directly using the time-domain convolution and hence the delay in the
signal path is removed [40–43]. However, the complexity of the convolution in the time domain is still
high. In [44], a delayless FDAF algorithm originally used in echo cancellation [45] was extended to
ANC, but the computational burden at certain sampling periods is rather high. Two computationally
efficient FDAF algorithms for ANC were proposed in [46,47] using the delayless approach in [48,49],
but the delay in the filter adaptation is not removed.

Although many efforts have been devoted to the frequency-domain FxLMS algorithms, these
algorithms are not well compared and analyzed. To fill this gap, this paper presents a comprehensive
review of the frequency-domain FxLMS algorithms. Only mono-channel algorithms are considered in
this paper, since they can be straightforwardly extended to the multi-channel case. The conventional
frequency-domain FxLMS algorithms are reviewed, and then the effects of the two kinds of delays
on the overall performance are analyzed. Specifically, it was found that calculating the adaptive filter
output and the weight vector update in different ways leads to different convergence performances,
which is quite different from system identification problems. The update-first approach is then
proposed to improve the stability. Several delayless frequency-domain algorithms for ANC are
surveyed, but these algorithms did not remove the delay related to the secondary path. To address this
problem, we present a new delayless frequency-domain FxLMS algorithm to completely remove
the aforementioned two types of delays and overcome the shortcomings of the state-of-the-art
frequency-domain FxLMS algorithms. The complexity of the frequency-domain approaches in terms
of both peak and average multiplications per sample are evaluated. Simulations are carried out to
evaluate the convergence performance and stability of the frequency-domain FxLMS algorithms.
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2. FxLMS Algorithm

The diagram of the FxLMS algorithm is presented in Figure 1, where P(z) is the primary path
and S(z) is the secondary path. We define the weight vector of the control filter at the time index n as
w(n) = [w0(n), w1(n), · · · , wNw−1(n)]T with a length of Nw. The reference signal x(n) is picked up by
a reference microphone and then filtered by the adaptive filter to generate the cancelling signal y(n)
driven by a secondary loudspeaker

y(n) = xT(n)w(n) (1)

where x(n) = [x(n), x(n− 1), · · · , x(n− Nw + 1)]T is the reference signal vector. The cancelling signal
y(n) is then filtered by the secondary path S(z) to obtain the control signal z(n) at the location of the
error microphone

z(n) = ȳT(n)s (2)

where ȳ(n) = [y(n), y(n− 1), · · · , y(n− Ns + 1)]T , and s = [s0, s1, · · · , sNs−1]
T is the weight vector of

the secondary path with a length of Ns. The residual error signal picked up by the error microphone is

e(n) = d(n) + z(n), (3)

where d(n) is the disturbance signal at the error microphone.

FxLMS
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Figure 1. FxLMS Algorithm.

The FxLMS algorithm is commonly used to update the weight vector [3,4]

w(n + 1) = w(n)− µv(n)e(n) (4)

where µ is the step size, and v(n) = [v(n), v(n− 1), · · · , v(n− Nw + 1)]T the filtered reference signal
vector, where the filtered reference signal v(n) is given by

v(n) = xT
s (n)ŝ (5)

where xs(n) = [x(n), x(n− 1), · · · , x(n− Ns + 1)]T , and ŝ = [ŝ0, ŝ1, · · · , ŝNs−1]
T is an estimate of the

actual weight vector of the secondary path. An accurate estimate of the secondary path is required for
the FxLMS to work properly, which can be obtained by an offline- or online-modeling method [4,6].

The FxLMS algorithm requires 2Nw + Ns multiplications. In certain scenarios, the length of the
weight vector may reach several thousand taps. Thus, the computational complexity is a major concern
for real-time systems.

3. Conventional Frequency-Domain ANC Algorithms

The conventional frequency-domain ANC algorithms in [24–28,37,39] can be understood as direct
frequency-domain implementations of the FxLMS algorithm. Since the FDAF algorithm is a special
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case of PBFDAF, we only present the PBFDAF in this paper. The corresponding method using the
conventional filtered-x scheme is referred to as the frequency-domain partitioned block filtered-x
LMS (FPBFxLMS) algorithm. The method using the modified filtered-x scheme is referred to as the
frequency-domain partitioned block modified filtered-x LMS (FPBMFxLMS) algorithm.

3.1. FPBFxLMS Algorithm

The diagram of the FPBFxLMS algorithm is shown in Figure 2. The linear convolution operations (1)
and (5) and the cross-correlation (4) can be implemented using FFTs. The adaptive filter w(n) is segmented
into Pw partitions as w(n) = [wT

0 (n), ..., wT
Pw−1(n)]

T, where wp(n) = [wpL(n), ..., w(p+1)L−1(n)]T is the
p-th subfilter with L = Nw/Pw taps. The frequency-domain weight vector of the p-th partition is

Wp(k) = F[wT
p (k), 01×L]

T (6)

where k denotes the frame index, 01×L is a 1× L all-zero vector, and F is the Fourier transform matrix
whose (p, q)-th element is exp(−j2πpq

2L ) with 0 ≤ p ≤ 2L− 1, 0 ≤ q ≤ 2L− 1 and j =
√
−1. The output

of the control filter at the k-th frame is

y(k) = [y(kL− L + 1), ..., y(kL)]T

= Q01F−1
Pw−1

∑
p=0

Xp(k)Wp(k),
(7)

where Q01 = [0L IL] is the projection matrix (the notations 0L and IL being the L× L zeros and
identity matrices, respectively), and

Xp(k) = diag{Fxp(k)} (8)

is the frequency-domain reference matrix with xp(k) = {x[(k− p− 2)L + 1], ..., x[(k− p)L]}T (diag{·}
denoting the diagonal matrix).
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Figure 2. FPBFxLMS algorithm.

For the FxLMS algorithm, the output of the control filter is calculated on a sample-by-sample
basis and hence there is only one-sample delay for the generation of the cancelling signal. For the
frequency-domain implementation in (7), however, a block of the reference signals should be collected
before the calculation of y(k). There is at least one-block delay even if (7) is completed in one sample
period. Thus, the cancelling signal driven by the loudspeaker is a delayed version of y(n):

u(n) = y(n−D) (9)

where D denotes the delay, which includes both the buffering time and the processing time. In [28,37],
the calculation of (7) is completed in one-sample period and hence the total delay D = L. In [39], the
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calculation of (7) is distributed in one block KL ≤ n ≤ KL + L, and thus the delay is D = 2L. The
advantages and limitations of each implementation method are discussed later.

The impulse response of the secondary path is segmented into Ps partitions as ŝ = [ŝT
0 , ŝT

1 , ..., ŝT
Ps−1]

T,
where ŝp = [ŝpL, ..., ŝ(p+1)L−1]

T is the p-th subfilter with L = Ns/Ps taps. The Fourier transform of ŝp is

Ŝp = F[ŝT
p , 01×L]

T. (10)

The linear convolution in (5) can also be implemented using FFT

v(k) = [v(kL− L + 1), ..., v(kL)]T

= Q01F−1
Ps−1
∑

p=0
Xp(k)Ŝp.

(11)

The update equation of the FPBFxLMS algorithm is [10,16,37,39]

Wp(k + 1) = Wp(k)− µG10Λ−1(k)VH
p (k−m)E(k), (12)

where (·)H denotes the Hermitian operation,

G10 = F

[
IL 0L
0L 0L

]
F−1 (13)

is the windowing matrix that forces the last L time-domain elements to zero,

E(k) = F[01×L, eT(k)]T (14)

is the frequency-domain error vector with e(k) = [e(kL− L + 1), ..., e(kL)]T,

Vp(k) = diag{Fvp(k)} (15)

is the filtered reference signal matrix with vp(k) = {v[(k− p− 2)L + 1], ..., v[(k− p)L]}T, Λ(k) is the
PSD matrix of the filtered reference signal which is used to improve the convergence, and the parameter
m is related to the algorithm latency

m =

{
1 D = L
2 D = 2L

. (16)

The PSD matrix Λ(k) can be computed recursively [10,16]

Λ(k) = λΛ(k− 1) + (1− λ)VH
0 (k)V0(k) (17)

where λ is a smoothing factor, 0 < λ < 1.
To reduce the complexity while retaining good convergence properties, the constraint in (12) can

be added periodically [50,51]. Another way to reduce the complexity of (12) is to use the unconstrained
algorithm [13]

Wp(k + 1) = Wp(k)− µΛ−1(k)VH
p (k−m)E(k). (18)

The unconstrained PBFDAF exhibits a lower complexity than the constrained version, but the
constrained version has a better convergence. Thus, we only consider the constrained FDAF.

The frequency-domain FxLMS algorithms with D = L and D = 2L are presented in Tables 1 and
2, respectively, where A denotes the number of multiplications of the 2L-point FFT operation. The
differences between the two algorithms are twofold. First, the FPBFxLMS II algorithm has a larger
delay, which limits its application in broadband ANC. Second, the complexity of the FPBFxLMS II
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algorithm is distributed evenly in one frame, while steps (1)–(7) of the FPBFxLMS I algorithm should
be completed in one-sample period. Therefore, the peak complexity of the FPBFxLMS I algorithm is
rather high. This means that a strong processor should be used, and a large portion of power is wasted
due to the unbalanced complexity [46,48,49]. From the perspective of real-time implementation, the
FPBFxLMS I algorithm is not practical. A real-time multichannel ANC system using the FPBFxLMS
II algorithm was implemented in the Graphics Processing Unit (GPU) in [39], and a comprehensive
complexity evaluation was carried out.

Table 1. FPBFxLMS I [28,37].

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the output of the control filter using (7) One FFT and 4LPw multiplications
(3) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(4) Compute the FFT of v0(k) using (15) One FFT
(5) Update Λ(k) using (17) 4L multiplications
(6) Compute the FFT of the error signal using (14) One FFT
(7) Update the weight vector using (12) 2Pw FFTs and 6LPw multiplications
(8) Compute the cancelling signal using (9): u(n) = y(n− L) 0

Note: Steps (1)–(7) should be completed between kL and kL + 1; Average multiplications: (5 + 2Pw)A/L + 10Pw +
4Ps; Peak multiplications: (5 + 2Pw)A + 10LPw + 4LPs + 4L.

Table 2. FPBFxLMS II [39].

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the output of the control filter using (7) One FFT and 4LPw multiplications
(3) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(4) Compute the FFT of v0(k) using (15) One FFT
(5) Update Λ(k) using (17) 4L multiplications
(6) Compute the FFT of the error signal using (14) One FFT
(7) Update the weight vector using (12) 2Pw FFTs and 6LPw multiplications
(8) Compute the cancelling signal using (9): u(n) = y(n− 2L) 0

Note: Steps (1)–(7) should be completed between kL and kL + L; Average and peak multiplications:
(5 + 2Pw)A/L + 10Pw + 4Ps.

3.2. Analysis

In this section, we carry out theoretical analysis on the effects of the two kinds of delays on the
adaptive algorithm convergence behaviors. When the FxLMS converges, the optimal solution (which
may not be realizable) in the z-domain is [4]

Wopt(z) =
P(z)
S(z)

. (19)

For the FPBFxLMS algorithms, a D-sample delay is introduced to the signal path, and hence the
optimal solution becomes

Wopt(z) =
P(z)

z−DS(z)
. (20)

When the FDAF algorithm is applied for echo cancellation, the algorithm delay has no effect on
the algorithm convergence. However, this is not the case for broadband ANC because the causality
solution of (20) may not exist and the extra delay in the signal path deteriorates the noise reduction
performance [30,31]. For the broadband ANC system to work properly, the casualty condition should
be satisfied [3]

τbuff + τproc + τsec ≤ τAD, (21)



Appl. Sci. 2018, 8, 2313 7 of 20

where τsec includes the delay in the antialiasing filter, A/D converter, D/A converter, reconstruction
filter and loudspeaker and the acoustic delay between the secondary loudspeaker and the error
microphone, τbuff denotes the buffering time, τproc is the processing time of the adaptive algorithm,
τAD is the acoustic delay between the reference sensor and the error microphone. The algorithm latency
is the sum of τbuff and τproc, and we have τbuff + τproc = DTs, where Ts is the system sampling period.
For the FxLMS algorithm, only one-sample delay is introduced, i.e., D = 1. For the aforementioned
two FPBFxLMS algorithms, however, the algorithm latency is very large, i.e., D = L or D = 2L. In
the frequency-domain ANC algorithm, the distance between the reference sensor and the secondary
loudspeaker should be large enough to satisfy the casualty condition [30,31]. However, this is not
always achievable because of practical installation constraints. Therefore, the delay in FPBFxLMS
algorithms is a major limitation for broadband ANC.

At this point, we investigate the effect of the secondary path on the weight update. Using (3), we
rewrite the error vector e(k) as e(kL− L + 1)

· · ·
e(kL)

 =

 d(kL− L + 1)
· · ·

d(kL)

+

 z(kL− L + 1)
· · ·

z(kL)


=

 d(kL− L + 1)
· · ·

d(kL)

+

 u(kL− L + 1) ∗ s
· · ·

u(kL) ∗ s


=

 d(kL− L + 1)
· · ·

d(kL)

+

 y(kL− L + 1− D) ∗ s
· · ·

y(kL− D) ∗ s


(22)

where ∗ denotes the linear convolution. The last element of e(k) can be expressed as

e(kL) = d(kL) + y(kL− D) ∗ s

= d(kL) +
Ps−1
∑

p=0
yT(k−m− p)s̃p

= d(kL) +
Ps−1
∑

p=0

[
Q01F−1

Pw−1
∑

q=0
Xq(k−m− p)Wq(k−m− p)

]
s̃p,

(23)

where s̃p = [s(p+1)L−1, ..., spL]
T . From (23), it can be seen that the generation of e(kL) requires

Ps past weight vector Wq(k − m − p), p = 0, ..., Ps − 1. Similarly, the generation of e(k) requires
Wq(k−m− p), p = 0, ..., Ps. Therefore, the following assumption is used implicitly for deriving (12)

Wq(k) ≈ Wq(k− 1) ≈ · · · ≈ Wq(k−m− Ps). (24)

The relationship in (24) holds only when the step size µ is very small, and the frequency-domain
algorithm used in ANC is very similar to the delayed LMS algorithm [32]. Hence, the maximum step
size that can guarantee the stability of the algorithm is reduced, and the fastest convergence speed of
the algorithm is lower. Therefore, the frequency-domain ANC algorithm becomes quite different from
the standard FDAF algorithm in terms of convergence behavior.

The above analysis provides another interesting insight to the implementation of the
frequency-domain algorithm. For the two algorithms in Tables 1 and 2, we first calculate the
filtering-out using Wp(k) and then update Wp(k), which is called the filtering-first approach. We could
propose an alternative method, namely, the update-first approach. That is, we first update the weight
vector to obtain Wp(k + 1) using (18), and then we use the new weight vector Wp(k + 1) to calculate
the filtering-out

y(k) = Q01F−1
Pw−1

∑
p=0

Xp(k)Wp(k + 1). (25)
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By so doing, the delay between the weight update and the observation of the error signal can be
reduced, and hence the convergence performance can be improved. We then obtain two algorithms in
Tables 3 and 4 by applying the update-first approach to the algorithms in Tables 1 and 2, respectively.
The update-first approach exhibits a better convergence behavior than the filtering-first approach,
while these approaches have a similar computational complexity.

Table 3. FPBFxLMS III.

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(3) Compute the FFT of v0(k) using (15) One FFT
(4) Update Λ(k) using (17) 4L multiplications
(5) Compute the FFT of the error signal using (14) One FFT
(6) Update the weight vector using (12) 2Pw FFTs and 6LPw multiplications
(7) Compute the output of the control filter using (25) One FFT and 4LPw multiplications
(8) Compute the cancelling signal using (9): u(n) = y(n− L) 0

Note: Steps (1)–(7) should be completed between kL and kL + 1; Average multiplications: (5+ 2Pw)A/L + 10Pw + 4Ps;
Peak multiplications: (5+ 2Pw)A + 10LPw + 4LPs + 4L.

Table 4. FPBFxLMS IV.

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(3) Compute the FFT of v0(k) using (15) One FFT
(4) Update Λ(k) using (17) 4L multiplications
(5) Compute the FFT of the error signal using (14) One FFT
(6) Update the weight vector using (12) 2Pw FFTs and 6LPw multiplications
(7) Compute the output of the control filter using (25) One FFT and 4LPw multiplications
(8) Compute the cancelling signal using (9): u(n) = y(n− 2L) 0

Note: Steps (1)–(7) should be completed between kL and kL + L; Average and peak multiplications:
(5 + 2Pw)A/L + 10Pw + 4Ps.

3.3. FPBMFxLMS Algorithm

The aforementioned frequency-domain algorithms directly employ the residual error signal e(n)
to update the weight vector, resulting in a delay between the weight adaptation and the observation
of the error signal. To reduce this type of delay, the modified filtered-x structure was adopted to
update the weight vector in [35], as shown in Figure 3. The basic idea is summarized as follows. The
disturbance signal d̂(n) at the error microphone is estimated as

d̂(n) = e(n)− ẑ(n) (26)

where
ẑ(n) = u(n) ∗ ŝ (27)

is the estimate of the control signal at the location of the error microphone. To reduce the complexity,
the linear convolution in (27) is implemented using FFT. Then, ẑ(n), kL − L + 1 ≤ n ≤ kL can be
computed as

ẑ(k) = [ẑ(kL− L + 1), ..., ẑ(kL)]T

= [u(kL− L + 1) ∗ ŝ, ..., u(kL) ∗ ŝ]T

= Q01F−1
Ps−1
∑

p=0
Up(k)Ŝp,

(28)
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where
Up(k) = diag{Fup(k)} (29)

is the frequency-domain cancelling signal matrix with up(k) = {u[(k− p− 2)L + 1], ..., u[(k− p)L]}T .
The estimated disturbance signal vector is

d̂(k) = [d̂(kL− L + 1), ..., d̂(kL)]T

= e(k)− ẑ(k).
(30)

Recall that d̂(k) is generated by Vp(k − 2), and the pseudo frequency-domain error vector can be
calculated as

Ê(k) = D̂(k) + G01
Pw−1

∑
p=0

Vp(k− 2)Wp(k), (31)

where

G01 = F

[
0L 0L
0L IL

]
F−1 (32)

is the overlap-save projection matrix, and

D̂(k) = F[01×L, d̂T(k)]T (33)

is the reconstructed frequency-domain disturbance signal vector. The pseudo frequency-domain error
vector Ê(k) is only used for the weight update. The weight update equation is

Wp(k + 1) = Wp(k)− µG10Λ−1(k)VH
p (k− 2)Ê(k). (34)

PBFDAF
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Figure 3. FPBMFxLMS algorithm.

Equations (31) and (34) describe the standard PBFDAF algorithm, which removes the effect of the
secondary path. The output of the control filter can be computed using Wp(k + 1) according to (25).
However, the delay in the signal path still exists. The FPBMFxLMS algorithm is presented in Table 5.
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Table 5. FPBMFxLMS algorithm [35].

Operation Complexity

(1) Compute the frequency-domain reference matrix U0(k) using (29) One FFT
(2) Estimate the control signal at the error microphone ẑ(k) using (28) One FFT and 4LPs multiplications
(3) Estimate the disturbance signal vector d̂(k) using (30) 0
(4) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(5) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(6) Compute the FFT of v0(k) using (15) One FFT
(7) Commutate the pseudo frequency-domain error vector Ê(k) using (31) 2 FFT and 4LPw multiplications
(8) Update Λ(k) using (17) 4L multiplications
(9) Update the weight vector using (34) 2Pw FFTs and 6LPw multiplications
(10) Compute the control filter out using (25) One FFT and 4LPw multiplications
(11) Compute the cancelling signal using (9) u(n) = y(n− 2L) 0

Note: Steps (1)–(10) should be completed between kL and kL + L; Average and peak multiplications:
(8 + 2Pw)A/L + 14Pw + 8Ps.

4. Delayless Frequency-Domain ANC Algorithms

The algorithm in Table 5 removes the delay in the weight update but does not remove the delay
in the signal path. It is more essential to remove the delay in the signal path because this delay has
a major effect on the performance of broadband ANC systems. Several delayless frequency-domain
ANC algorithms have been presented to remove delays in the signal path [44,46,47]. This section first
reviews several delayless frequency-domain ANC algorithms, and then, a new delayless algorithm
with the modified filtered-x scheme is proposed.

4.1. Qiu’s Delayless Algorithm

The delayless frequency-domain ANC is presented in Figure 4. To avoid the delay in the signal
path, the calculation of the adaptive filter output can be directly implemented using the time-domain
convolution [40–43]

y(k + 1) =

 xT(kL + 1)w(k + 1)
· · ·

xT(kL + L)w(k + 1)

 . (35)

If the filter length Nw is small, the complexity required in (35) may be acceptable. However, when
Nw is large, the computational complexity may be too high for a resource-limited system. To resolve
this problem, a hybrid fast convolution scheme is adopted to calculate the control filter output [44]

y(k + 1) = [y(kL + 1), ..., y(kL + L)]T

=

 x̄T(kL + 1)w0(k + 1)
· · ·

x̄T(kL + L)w0(k + 1)

+ Θ(k + 1),
(36)

where x̄(n) = [x(n), x(n− 1), . . . , x(n− L + 1)]T , and

Θ(k + 1) = Q01F−1
Pw−1

∑
p=1

Xp(k + 1)Wp(k + 1). (37)

Please note that the calculation of Θ(k + 1) should be completed between kL and kL + 1, and the
first term of the right-hand side of (36) is calculated in the time domain on a sample-by-sample basis.
The update equation is

Wp(k + 1) = Wp(k)− µG10Λ−1(k)VH
p (k)E(k). (38)
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The calculation of w0(k) does not require extra computational cost and is expressed by

w0(k) = [IL 0L]F−1W0(k). (39)

PBFDAF

( )x n
( )P z

( )d n ( )e n

( )S z( )W z
( )y n

ˆ( )S z
( )v n

( )z n

+

+

Figure 4. Qiu’s delayless algorithm.

Because the calculation of Θ(k+ 1) uses Wp(k+ 1), the weight update in (38) should be completed
between kL and kL + 1, which means the update-first approach must be used. By using this approach,
the delay in the signal path is removed. However, this algorithm is not practical because (36) and (38)
should be completed within one sampling period, which requires (5 + 2Pw)A + 10LPw + 4LPs + L
multiplications per sample. In addition, the algorithm requires L multiplications per sample between
kL + 2 and kL + L. Thus, the complexity of the algorithm is not evenly distributed over time, i.e.,
its peak complexity is rather high. A complexity measurement carried out in [46] indicated that the
complexity of this algorithm in the first sample of each block is up to 200 times higher than the mean
computational load. Even if a high-performance processor is employed to complete this task, most
of this power is wasted. Furthermore, the delay in the weight update still exists, which limits the
available step size for adaptation. Qiu’s delayless algorithm is summarized in Table 6.

Table 6. Qiu’s delayless algorithm [44].

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(3) Compute the FFT of v0(k) using (15) One FFT
(4) Update Λ(k) using (17) 4L multiplications
(5) Compute the FFT of the error signal using (14) One FFT
(6) Update the weight vector using (38) 2Pw FFTs and 6LPw multiplications
(7) Compute Θ(k + 1) using (37) One FFT and 4L(Pw − 1) multiplications
(8) Compute the cancelling signal y(k + 1) using (36) L2 multiplications

Note: Steps (1)–(7) should be completed between kL and kL + 1; Average multiplications: (5 + 2Pw)A/L + 10Pw +
4Ps + L; Peak multiplications: (5 + 2Pw)A + 10LPw + 4LPs + L.

4.2. Fink’s Delayless Algorithm

A computationally efficient delayless FDAF algorithm was presented in [46] that uses the fast
filtering approach of [48]. The difference between Qiu’s and Fink’s delayless algorithms is twofold.
First, the convolutions in the first and second partitions are calculated in the time domain for the Fink’s
algorithm. Second, the previous weight vector Wp(k) instead of Wp(k + 1) is used to calculate the
control filter output

y(k + 1) = y0(k + 1) + y1(k + 1) + b(k + 1), (40)

where
yp(k + 1) = Q01F−1Xp(k + 1)Wp(k), p = 0, 1, (41)



Appl. Sci. 2018, 8, 2313 12 of 20

b(k + 1) = [b(kL + 1), ..., b(kL + L)]T

= Q01F−1
Pw−1

∑
p=2

Xp(k + 1)Wp(k).
(42)

It should be noted that (42) is completed in the k-th frame but not in one sampling period as
in Qiu’s algorithm, and hence the high peak complexity is avoided. The elements of y0(k + 1) and
y1(k + 1) are computed in the time domain on a sample-by-sample basis

yp(k + 1) =

 x̄T(kL + 1− pL)wp(k)
· · ·

x̄T(kL + L− pL)wp(k)

 . (43)

The weight vector is updated using (38), which is completed between kL + 1 and kL + L.
Accordingly, the total complexity of the algorithm is distributed evenly in one frame. However,
the delay in the weight adaptation is not removed. Fink’s delayless algorithm is presented in Table 7.

The pipeline of the process should be considered carefully. There are two tasks, the time-domain
convolution on a sample-by-sample basis and the frequency-domain procedure on a block-by-block
basis. When new block data are collected, the task for the weight update in (38) and the calculation of
b(k + 1) are scheduled with low priority and should be completed in one block. When new data are
available, the frequency-domain task is interrupted by the time-domain task. Then, the convolution
operation is scheduled with high priority and should be completed in one sampling period. After the
convolution operation has been executed, the interrupted frequency-domain task is recovered.

Table 7. Fink’s delayless algorithm [46].

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(3) Compute the FFT of v0(k) using (15) One FFT
(4) Update Λ(k) using (17) 4L multiplications
(5) Compute the FFT of the error signal using (14) One FFT
(6) Update the weight vector using (38) 2Pw FFTs and 6LPw multiplications
(7) Compute b(k + 1) using (42) One FFT and 4L(Pw − 1) multiplications
(8) Compute the cancelling signal y(k + 1) using (40) 2L2 multiplications

Note: Steps (1)–(7) should be completed between kL and kL + L; Average and peak multiplications:
(5 + 2Pw)A/L + 10Pw + 4Ps + 2L.

4.3. Proposed Delayless Algorithm

Several approaches have been proposed to remove the delay in the signal path or the weight
update delay, but none of these algorithms can remove both kinds of delays. To address this problem,
we propose a new delayless frequency-domain FxLMS algorithm as shown in Figure 5. First, we
employ the modified filtered-x scheme to the frequency-domain ANC to remove the delay in the
weight adaptation. Second, the delayless fast filtering approach in Section 4.2 is used to remove the
signal path delay.

The estimate of the control signal at the location of the error microphone is

ẑ(k) = [ẑ(kL− L + 1), ..., ẑ(kL)]T

= [y(kL− L + 1) ∗ ŝ, ..., y(kL) ∗ ŝ]T

= Q01F−1
Ps−1
∑

p=0
Yp(k)Ŝp,

(44)

where
Yp(k) = diag{Fyp(k)} (45)
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is the frequency-domain cancelling signal matrix with yp(k) = {y[(k− p− 2)L + 1], ..., y[(k− p)L]}T .
Then, we can use (30) to estimate the disturbance signal vector d̂(k). The weight vector is updated as

Ê(k) = D̂(k) + G01
Pw−1

∑
p=0

Vp(k)Wp(k), (46)

Wp(k + 1) = Wp(k)− µG10Λ−1(k)VH
p (k)Ê(k). (47)

PBFDAF

( )x n
( )P z

( )d n ( )e n

( )y n

ˆ( )S z

( )z n

ˆ( )d n

ˆ( )z n

-

+

+

+

ˆ( )S z

( )W z ( )S z

( )v n

Figure 5. Proposed delayless algorithm.

Once we obtain the new weight vector Wp(k+ 1), we can use (40) to calculate the control filter output.
By doing so, the delay in the signal path is removed by using the hybrid fast filtering approach, and the
delay in the weight update is removed by means of the modified filtered-x structure. Furthermore, the
total complexity is distributed evenly in one block, which makes the algorithm practical. The proposed
delayless algorithm is presented in Table 8.

Table 8. Proposed delayless algorithm.

Operation Complexity

(1) Compute the frequency-domain reference matrix X0(k) using (8) One FFT
(2) Compute the filtered reference signal vector v(k) using (11) One FFT and 4LPs multiplications
(3) Compute the FFT of v0(k) using (15) One FFT
(4) Compute the frequency-domain cancelling matrix Y0(k) using (45) One FFT
(5) Estimate the control signal at the error microphone ẑ(k) using (44) One FFT and 4LPs multiplications
(6) Estimate the disturbance signal vector d̂(k) using (30) 0
(7) Compute the pseudo frequency-domain error vector Ê(k) using (46) Two FFTs and 4LPw multiplications
(8) Update Λ(k) using (17) 4L multiplications
(9) Update the weight vector using (47) 2Pw FFTs and 6LPw multiplications
(10) Compute b(k + 1) using (42) One FFT and 4L(Pw − 1) multiplications
(11) Compute the cancelling signal y(k + 1) using (40) 2L2 multiplications

Note: Steps (1)–(10) should be completed between kL and kL + L; Average and peak multiplications:
(8 + 2Pw)A/L + 14Pw + 8Ps + 2L.

5. Computational Complexity Analysis

The complexity of the aforementioned frequency-domain FxLMS algorithms is summarized
in Table 9. We assume that one 2L-point real FFT can be realized using one L-point complex FFT
plus additional operations, requiring 2Llog2(L) + 4L real multiplications [4]. The peak and average
multiplications per sample required for the frequency-domain ANC algorithms involved are presented
in Figure 6, where we use L = 256 and Ps = 2. The average complexity of all the frequency-domain
algorithms is lower than that of the FxLMS algorithm, which shows the complexity advantage of the
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frequency-domain adaptive algorithms. The FPBFxLMS I in [28,37] and Qiu’s delayless algorithm
in [44] both have high peak complexity and hence are unrealizable in real-time systems. The proposed
delayless method achieves load-balanced implementation and is only slightly more complex than
Fink’s delayless algorithm in [46].

Table 9. Complexity of the frequency-domain ANC algorithms.

Algorithm Average Multiplications per Sample Peak Multiplications per Sample

FPBFxLMS I [28,37] (5 + 2Pw)A/L + 10Pw + 4Ps (5 + 2Pw)A + 10LPw + 4LPs + 4L
FPBFxLMS II [39] (5 + 2Pw)A/L + 10Pw + 4Ps (5 + 2Pw)A/L + 10Pw + 4Ps
FPBMFxLMS [35] (8 + 2Pw)A/L + 14Pw + 8Ps (8 + 2Pw)A/L + 14Pw + 8Ps

Qiu [44] (5 + 2Pw)A/L + 10Pw + 4Ps + L (5 + 2Pw)A + 10LPw + 4LPs + L
Fink [46] (5 + 2Pw)A/L + 10Pw + 4Ps + 2L (5 + 2Pw)A/L + 10Pw + 4Ps + 2L
Proposed (8 + 2Pw)A/L + 14Pw + 8Ps + 2L (8 + 2Pw)A/L + 14Pw + 8Ps + 2L
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Figure 6. Peak and average complexities. (a) Average multiplications per sample. (b) Peak multiplications
per sample.

6. Evaluations

In this section, we carry out computer simulations to evaluate the convergence performance of
several frequency-domain algorithms in the context of ANC. The sampling rate is fs = 32768 Hz. The
length of the primary and secondary path are N = 1536 and Ns = 256, respectively. The optimal
solution of the control filter is computed using the MINT method [52] and has a length of Nw = 1536.
Their corresponding time-domain impulse responses are plotted in Figure 7. Figure 7c shows that
maximum delay allowed in the signal path is D = 256 to guarantee the causality condition of the
system. The signal-to-noise ratio (SNR) measured at the error microphone is 30 dB. Two signals, i.e.,
the narrow band signal between 100–800 Hz and a multi-tone signal at 40, 340 and 700 Hz, are used as
the reference. The convergence performance is evaluated by the learning curve given by

A(k) = 10log10 (Pe(k)/Pd(k)) , (48)

where Pd(k) and Pe(k) denote the powers of the disturbance signal d(n) and the error signal e(n),
which are computed recursively as

Pd(k) = βPd(k− 1) + (1− β)
kL

∑
n=kL−L+1

d2(n), (49)

Pe(k) = βPe(k− 1) + (1− β)
kL

∑
n=kL−L+1

e2(n), (50)
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where β is the smoothing factor. In the following, we use λ = 0.8 and β = 0.8.
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Figure 7. Primary and secondary paths. (a) Primary path. (b) Secondary path. (c) Least square solution
of the control filer.

Figure 8 compares the convergence performance of the filtering-first and update-first approaches
in Tables 1–4. The narrow band noise is used as input, and the block length is L = 64. The update-first
approach is more stable than the filtering-first approach given the same step size, which agrees with
the above analysis. In addition, the two methods have the same complexity, and hence the update-first
approach is recommended for practical implementation.
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Figure 8. Convergence comparison between the update-first and filtering-first approaches.
(a) FPBFxLMS I and FPBFxLMS III. (b) FPBFxLMS II and FPBFxLMS IV.

The effect of the block length on the convergence performance of several frequency-domain
FxLMS algorithms is investigated in Figures 9 and 10. In Figure 9, we use the multi-tone signal as the
reference, and the step size µ = 0.03. The block length is set to L = 64, 128, 256. All the algorithms
are convergent for L = 64, 128, while they diverge for L = 256. We found that all the algorithms can
converge using a smaller step size µ = 0.001 for the block length L = 256. For the multi-tone input, all
the frequency-domain algorithms can converge if a sufficiently small step size is employed.
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Figure 9. Learning curves of the frequency-domain ANC algorithms with multi-tone signal as input.
(a) L = 64. (b) L = 128. (c) L = 256.
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Figure 10. Learning curves of the frequency-domain ANC algorithms with narrow band noise as input.
(a) L = 64. (b) L = 128. (c) L = 256.

The experiment in Figure 9 is repeated using the narrow band noise as input, and the learning
curves are presented in Figure 10. The three delayless frequency-domain algorithms are stable and have
a similar convergence for narrow band noise input in all the experiments. However, their convergence
rate decreases as the block length. The convergence performance of the traditional frequency-domain
FxLMS algorithms is dramatically affected by the block length. For L = 64, the causality condition is
fulfilled for all the algorithm involved, and they exhibit a similar convergence. When the block length
is L = 256, the FPBFxLMS IV and the FPBMFxLMS algorithms with a delay of D = 512 do not gain
any noise reduction, and the FPBFxLMS III algorithm with a delay of D = 256 only exhibits a 10-dB
noise reduction. The experiment demonstrates that the delay in the signal path has a major effect on
the broadband noise reduction.

In Figure 11, we investigate the stability of the frequency-domain algorithms with and without
the modified filtered-x structure. Specifically, we compare the FPBFxLMS IV, FPBMFxLMS, and three
delayless algorithms. The narrow band white noise is used as the reference. We use a small step size
µ = 0.01 for Figure 11a and a large step size µ = 0.08 for Figure 11b. All the algorithms involved
exhibit a similar convergence performance when the step size is small. However, when a large step size
is adopted, the frequency-domain algorithms without the modified filtered-x structure diverge, but the
modified filtered-x algorithms are stable because the available step size of the modified filtered-x
algorithm is larger than those of the FxLMS-type algorithms. The proposed delayless algorithm
outperforms all the other methods.
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Figure 11. Algorithm stability of the traditional and modified structures. (a) µ = 0.01. (b) µ = 0.08.

7. Conclusions

This paper presented a comprehensive review of the frequency-domain FxLMS algorithms in
terms of convergence performance, stability, and computational burden. Practical applications include
active noise control of open windows [53], the ventilation system [54], and automotive cabins [55],
where several thousands of coefficients are required to model the control filters. The frequency-domain
algorithms used in ANC and system identification are quite different. First, broadband ANC is
sensitive to algorithm latency, and a large delay may cause the system to fail. Second, direct use of an
FDAF for ANC results in a delay in the weight update and the observation of the error signal, which
reduces the maximum step size of the algorithm.

This paper reviewed the delayless filtering methods and the modified filtered-x structures to
address the two delay problems. Specifically, the update-first approach was proposed to improve
the stability of the FPBFxLMS algorithms. Several frequency-domain FxLMS algorithms have a very
high peak complexity and thus are not practical for real-time systems, although these algorithms are
correct in theory. A computationally efficient delayless frequency-domain algorithm was proposed that
combines the hybrid fast filtering approaches and the modified filtered-x structure, which completely
removes the aforementioned two types of delays. Extensive simulations were carried out to evaluate
the convergence performance of the state-of-the-art frequency-domain FxLMS algorithms.

However, more work needs to be done regarding the frequency-domain FxLMS algorithms. For
instance, the step size bound of the traditional frequency-domain FxLMS algorithms in Tables 1–4
should be determined. Analyzing the statistical convergence behavior of the frequency-domain FxLMS
algorithms is an interesting topic [56–59].
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