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Abstract: This paper investigates the postbuckling and free vibration response of geometrically 

imperfect multilayer nanobeams. The beam is assumed to be subjected to a pre-stress compressive 

load due to the manufacturing and its ends are kept at a fixed distance in space. The small-size effect 

is modeled according to the nonlocal elasticity differential model of Eringen within the nonlinear 

Bernoulli-Euler beam theory. The constitutive equations relating the stress resultants to the cross-

section stiffness constants for a nonlocal multilayer beam are developed. The governing nonlinear 

equation of motion is derived and then manipulated to be given in terms of only the lateral 

displacement. The static problem is solved for the buckling load and the postbuckling deflection in 

terms of three parameters: Imperfection amplitude, size, and lamination. A closed-form solution for 

the buckling load in terms of all of the beam parameters is developed. With the presence of 

imperfection and size effects, it has been shown that the buckling load can be either less or greater 

than the Euler buckling load. Moreover, the free vibration in the pre and postbuckling domains are 

investigated for the first five modes. Numerical results show that the effects of imperfection, the 

nonlocal parameter, and layup on buckling loads and natural frequencies of the nanobeams are 

significant. 
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1. Introduction 

Micro/nano-electro-mechanical systems (MEMS/NEMS) have received a great deal of attention 

in the last decade due to their promising functionality and features. MEMS and NEMS can be made 

of multilayer materials, which makes them modeled as multilayer structures. The lithography 

technique is one way to fabricate MEMS and NEMS structures that are composed of multilayers and 

masks. One method to make masks is to use an electron-beam (e-beam) lithography machine. A major 

advantage of e-beam masks is that there are few restrictions on the shapes of features. Layer-

multiplying co-extrusion is a manufacturing technology capable of producing nano-layered optical 

polymer films having precisely controlled refractive-index distributions. This technology can be 

applied to the fabrication of spectral filters based on a variation of the Christiansen filter of Bortz and 

Shatz [1]. Legtenberg et al. [2] presented the design and performance of an electrostatic actuator 

consisting of a laterally compliant cantilever beam and a fixed curved electrode, both suspended 

above a ground plane. Torri et al. [3] studied mechanical properties, stress evolution, and high-
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temperature thermal stability of nano-layered Mo–Si–N/SiC thin films. Li et al. [4] analyzed the 

deformation of a single-wall carbon nanotube (SWCNT) interacting with a curved bundle of 

nanotubes. Verma and Jayaram [5] investigated the role of interface curvature on stress distribution 

under indentation for ZrN/Zr multilayer coating. 

During fabrication, and due to heating and cooling processes, the structure may exhibit an initial 

curved shape as a form of imperfection. Many MEMS devices employ curved structures as well [6]. 

The initial curvature of a beam structure has been a source of difficulty in developing relations 

between stresses and deformations. In addition, there is a coupling consisting of the extension, 

flexure, shear, and twist in the vibration of curved beams that involve in-plane and out-of-plane 

motions [7]. Petyt and Fleischer [8] investigated radial vibrations of a curved beam by three finite element 

models. Based on the principle of virtual work, Palani and Rajasekaran [9] derived the equilibrium 

equation of thin-walled curved beams of open cross sections that is solved using the finite element method 

(FEM). Chidamparam and Leissa [7] organized and summarized the published literature on the vibrations 

of curved bars, beams, rings, and arches. Lacarbonara [10] presented a solution of thermal postbuckling 

and vibrations of imperfect fixed-fixed beams. Howson and Jemah [11] found the exact out-of-plane 

natural frequencies of curved Timoshenko beams directly using the stiffness method. Raveendranath 

et al. [12] solved the problem of membrane and shear locking by using a new two-node shear flexible 

curved beam element. 

Lacarbonara and Yabuno [13] studied the nonlinear vibration of piezoceramic hinged-hinged 

actuators modeled as an imperfect beam. Lacarbonara et al. [14] presented a two-mode interaction 

activated in the vicinity of veering of the frequencies of the lowest two modes and results from the 

non-linear stretching of the imperfect beams. Gao et al. [15] developed a refined theory of rectangular 

curved beams by using Papkovich-Neuber solution in a polar coordinate system and Lur’e method 

without ad hoc assumptions. Chang and Hodges [16] studied coupled in-plane and out-of-plane 

vibrations of curved beams, whether the curvature is built-in or is caused by loading. Emam [17] 

presented a unified approach that handles the static and dynamic behavior of the postbuckling of 

imperfect multilayer beams. Shooshtari et al. [18] studied the mechanical behaviors, such as 

maximum stress, contact force, and fatigue life, of a specially designed metallic curved micro-

cantilever beam, using analytical, numerical (FEM), and experimental methods. Stanciulescu et al. 

[19] presented a nonlinear finite element formulation for modeling dynamic snapthrough of beams 

with initial curvature under thermo-mechanical loads. Wang et al. [20] examined the dynamics of 

geometrically imperfect simply supported pipes conveying a fluid. The effect of a sinusoidal wave or 

parabolic variations of imperfections is investigated for a four-degree-of-freedom model of the 

system. Wu et al. [21] presented exact solutions for free in-plane vibrations of curved beams and 

arches carrying various concentrated elements. Dastgerdi et al. [22] calculated the effective stiffness 

of carbon nanotubes and shape memory polymer (SMP) composites using the Mori-Tanaka method 

and found that it is significantly reduced by waviness and aggregation in CNTs. Lee and Yan [23] 

derived an analytical solution for out-of-plane deflection of a curved Timoshenko beam. 

Nano-mechanics, an emerging area of research in the field of computational mechanics, is 

focusing on the behavior of structures at the nano length scales. Nanobeam structure is widely used 

in NEMS, such as nanowires, nano-probes, atomic force microscopy (AFM), nanoactuators, and 

nanosensors. For designing nanodevices and nanostructures, the small-scale effects and the atomic 

forces should be included. The discrete nature of matter is usually associated with the long-range 

character of inter-atomic forces and may induce a nonlocal behavior, which conflicts with the 

postulated local character of classical elasticity [24]. One promising theory, which combines 

information about the forces between atoms and the internal length scale, is the nonlocal elasticity 

theory developed by Eringen [25–27].  

Tunneling Electron Microscope (TEM) images for carbon nanotubes (CNTs) illustrate that these 

tiny structures have a certain degree of curvature along the nanotubes’ length, as shown by Qian et 

al. [28] and Wang et al. [29]. Mikata [30] presented an exact elastica solution for a clamped-hinged 

beam and its applications to a single-walled carbon nanotube by the elliptic integral technique. 

Mayoof and Hawwa [31] investigated nonlinear vibration of a CNT with waviness along its axis 
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based on elastic continuum mechanics theory. Formica et al. [32] employed an equivalent continuum 

model based on the Eshelby–Mori–Tanaka approach to derive global elastic modal properties of 

nano-structured composite plates. Ouakad and Younis [33] used a 2D nonlinear curved beam model 

to simulate the coupled in-plane and out-of-plane motions of a CNT with curvature. 

The nonlocal elasticity theory, developed by Eringen [25–27], assumes that the stress at a point 

is a function of strains at all points in the continuum. Such a model contains information about the 

forces between atoms, and the internal length scale is introduced into the constitutive equations as a 

material parameter. Eringen’s nonlocal elasticity theory, characterized by a strain-driven integral 

convolution, is inapplicable to nanomechanics [34], due to a conflict between constitutive and 

equilibrium requirements [35]. 

All difficulties can be overcome by adopting the stress-driven integral model proposed in [36], 

whose mathematical consistency and applicative effectiveness have been acknowledged in the 

literature. 

Glavardanov et al. [37] presented optimal shapes against buckling of elastic nonlocal small-scale 

Pflüger beams with Eringen’s model. Eltaher et al. [38,39] presented static, buckling, and free 

vibration analysis of functionally graded (FG) nonlocal size-dependent nanobeams using the finite 

element method. Based on the nonlocal beam theory, Wang et al. [40,41] studied the vibrations of 

simply supported double-walled carbon nanotubes subjected to a moving harmonic load by using 

nonlocal Euler-Bernoulli and Timoshenko beam theories. Emam [42] presented a unified model for 

the nonlocal static response of nanobeams in buckling and postbuckling states. Thongyothee and 

Chucheepsakul [43] studied postbuckling behavior of curved nanorods including the effects of 

nonlocal elasticity theory and surface stress by elastica theory. Mohammadi et al. [44] investigated 

the static instability of an imperfect nonlocal Eringen nanobeam embedded in an elastic foundation. 

Khater et al. [45] studied the buckling behavior of curved nanowires, including surface energy under 

thermal loading. Eltaher et al. [46] exploited a nonlinear nonlocal Euler-Bernoulli beam to investigate 

the buckling of bonding wires under thermal loading. Eltaher et al. [47] presented a review on 

nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. 

Eltaher et al. [39] studied the effect of nonlinear von Karman strains on the static bending of CNTs 

modeled by nonlocal elasticity. Ghadiri and Shafiei [48] studied the small-scale effect on the nonlinear 

bending vibration of a rotating cantilever nanobeam modeled by Euler–Bernoulli beam theory with 

von Kármán geometric nonlinearity. The nonlocal models predict the stiffness softening with an 

increase in the nonlocal scale parameter. Kaghazian et al. [49] studied the free vibration of a 

piezoelectric nanobeam using nonlocal elasticity theory. Khetir et al. [50] developed a new nonlocal 

trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG 

plates. Mohamed et al. [51] presented a novel numerical procedure to predict nonlinear free and 

steady state forced vibrations of a clamped–clamped curved beam in the vicinity of postbuckling 

configuration. Ebrahimi and Barati [52] investigated the buckling behavior of a multi-phase 

nanocrystalline nanobeam resting on a Winkler-Pasternak foundation in the framework of nonlocal 

couple stress elasticity and a higher order refined beam model. Eltaher [53] studied static bending 

and buckling of perforated nonlocal size-dependent nanobeams by using both Timoshenko and 

Euler–Bernoulli beam theories with a nonlocal differential form of the Eringen model. Eltaher et al. 

[54] investigated resonance frequencies of size dependent perforated nonlocal Euler–Bernoulli and 

Timoshenko nanobeams. Ebrahimi and Barati [55,56] presented a unified formulation for the 

modeling of inhomogeneous nonlocal beams to include a shear deformation.  

Recently, several studies focusing on the bending behavior of cantilevered beams have produced 

insubstantial results [57,58]. Benvenuti and Simone [59] presented the equivalence between the 

nonlocal and the gradient elasticity models by making reference to one-dimensional boundary value 

problems equipped with two integral stress–strain laws proposed by Eringen. Fernández-Sáez et al. 

[60] studied the numerically static bending of Euler–Bernoulli beams using the Eringen’s integral 

form. They underlined that Eringen’s differential equation is not equivalent to the strain-driven 

integral convolution. 
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Romano et al. [34] further discussed the applicability of the strain-driven nonlocal model in 

simple beam problems, such as the cantilever with end-point loading. They found out that there is 

incompatibility between constitutive and equilibrium boundary conditions on the stress field. As a 

consequence, the resulting nonlocal structural problem does not admit a solution. This obstruction is 

confirmed by the evidence that the alleged closed-form solutions by Tuna and Kirca [61] violate 

kinematic boundary conditions. 

Also, Romano and Barretta [35,36] proved that the stress-driven integral constitutive law 

provides the natural way to get well-posed nonlocal elastic problems for application to nano-

structures. Apuzzo et al. [62] derived the equation of motion of Bernoulli-Euler nanobeams using 

effectively the stress-driven nonlocal integral model. 

Implementing the nonlocal elasticity into the analysis of curved, size-dependent laminated 

composite nanobeams has not yet been accomplished to the best of the authors’ knowledge. The 

present model takes into account the initial curvature, small size, lamination layout, and geometric 

nonlinearity for the static and dynamic response of beams. Buckling loads, postbuckling, and free 

vibrations pre and postbuckling are investigated by exploiting the classical von Kármán theory and 

Eringen’s nonlocal elasticity differential law to capture size effects. The buckling load, postbuckling, 

and free vibrations pre and postbuckling are investigated. A parametric study is performed in order 

to show the significance of size parameter, imperfection, and lamination on the resulting response. 

2. Problem Formulation 

2.1. Kinematic Relations 

We consider a geometrically imperfect multilayer beam of a nanoscale size whose ends are kept 

at a fixed distance in space. The beam has a thickness, �; initial curvature of amplitude, �; and a 

fixed length of, �, as shown in Figure 1. The beam is assumed to deform in the � − � plane. The beam 

is assumed to be subjected to a pre-stress compressive load due to the manufacturing processes that 

typically induce such residual stresses upon curing due to the mismatch of thermal expansion 

coefficients, as shown by Fang and Wickert [63]. It is worth noting that if the pre-stress load is beyond 

the buckling load, the beam will buckle and stretch because the ends are fixed in space. As a result, 

the effective compression at the end will reduce. The formula relating the pre-stress load and the 

possible buckling amplitude is different from the classical formulas assuming moving ends. This 

behavior will be outlined in more detail in the subsequent sections.  

 

Figure 1. A schematic of a curved, multilayer nanobeam with hinged boundaries. 
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Based on the classical Euler-Bernoulli beam theory, the axial and transverse displacements, � 

and �, of a point, �, originally located at a distance, �, from the origin at a height, �, from the 

beam’s midplane are defined as 

�(�, �, �) = �(�, �) − �[��(�) − ��
� (�)]  (1a) 

�(�, �, �) = �(�, �)  (1b) 

where � and � are the axial and transverse displacements along the midplane of the beam, and �� 

is the initial imperfection of the beam whose maximum amplitude is designated � in Figure 1. The 

beam is assumed to be thin in order for the Euler-Bernoulli (EB) beam theory to be justified. 

Nevertheless, for multilayer beams, the aspect ratio is not the only parameter that contributes to the 

validity of the EB theory, but it is also the moduli of elasticity in the axial and lateral directions [64]. 

Generally, an aspect ratio of 20 and higher can justify the application of the EB beam theory. 

According to Eltaher et al. [65], the midplane stretching, which is depicted by the nonlinear von 

Karman strain, has a significant effect on the bending of nonlocal Euler-Bernoulli and Timoshenko 

nanobeams. So, the von Karman effect is considered in the current model and expressed as 

�� = �� +
1

2
����

− ��
� �

� = �� − �(��� − ��
��) +

1

2
����

− ��
� �

� = �� + ��� (2) 

where 

�� = �� +
1

2
����

− ��
� �

� (3a) 

 �� = −(��� − ��
��)  (3b) 

are, respectively, the normal and bending strains. 

2.2. Equations of Motion 

The equations of motion of the beam are given as follows [66]: 

−� �̈ + �� = 0 (4a) 

−� �̈ + (� ��)� + ��� − ����� = 0 (4b) 

where � = ∫ ����
�

 is the force stress resultant, � = ∫ �� � ��
�

 is the moment stress resultant, �� is 

the normal stress, and � = ∫ � ��
�

 is the mass per unit length. The boundary conditions are: Either 

� or � is prescribed at � = 0, �; either �′ or � is prescribed at � = 0, �. Neglecting the in-plane 

inertia term from Equation (4a), it is assumed hereafter that �� = 0. Here, �� is the initial pre-stress 

that acts at the beam ends. It is important to emphasize that this load is not a mechanical load that 

can be increased beyond buckling. Since the beam ends are immovable, even if an external axial load 

is applied, it will be carried by the support. This is contrary to the case where one end is sliding 

towards the other as the load is increased.  

2.3. Constitutive Equations 

According to Eringen’s nonlocal elasticity differential model, the constitutive equation that 

describes the stress-strain relation for a laminated composite material is given by 

�� − ���
�� = ������ = ����(�� + ���) (5) 

where ����  is the reduced transformed stiffness from the material coordinates to the problem 

coordinates, and � is a size parameter such that � = (���)�, where �� is a constant and � is an 

internal-length parameter. The length parameter, ��� < 2 nm, for a single-wall carbon-nano tube 

[67]. Multiplying Equation (5) by the beam’s cross-sectional area, �, and integrating over the area 

yields the nonlocal resultant force, � , as follows: 



Appl. Sci. 2018, 8, 2238 6 of 19 

� − ���� = �� ��������
�

+ �� ���������
�

 = ����� + ����� (6) 

where � is the beam’s width, and ��� = ∫ �������
�

 and ��� = ∫ ��������
�

 are the axial and coupling 

stiffness constants of the beam’s cross section, respectively. From the equilibrium equations, we have 

�� = 0, and hence Equation (6) reduces to 

� = ����� + �����  (7) 

which in light of Equation (3) reads as 

� = ��� ��� +
1

2
����

− ��
� �

�� − ���(��� − ��
��)  (8) 

Differentiating Equation (8) twice with respect to � , and noting that ��� = 0, results in the 

following relation: 

��
�� =

���

���

(����� − ��
����) (9) 

Similarly, the nonlocal resultant moment, �, can be represented by 

� − ���� = ����� + ����� (10) 

where ��� = ∫ � ��������
�

 is the bending stiffness of the cross section. Substituting the term,���, from 

Equation (4b) into Equation (10) results in the moment stress resultant, � , as a function of only the 

displacements as 

� = �[� �̈ − (� − ��)���] + ����� + ����� (11) 

Differentiating Equation (11) twice with respect to �  and substituting the result back into 

Equation (4b), we obtain 

−� �̈ + � � �̈�� + (� − ��)��� − �(� − ��)����� + �����
�� + �����

�� = 0  (12) 

In order to eliminate the induced axial force, �, from Equation (12), we integrate Equation (8) 

once with respect to � and apply the non-moving end conditions, �(0) = 0, �(�) = 0, to get 

� =
���

2�
� ����

− ��
� �

���
�

�

−
���

�
�(��� − ��

��)�� 

�

�

 (13) 

Finally, by substituting �, ��, and �� into Equation (12), we obtain the equation of motion of a 

nonlocal, initially curved laminated multilayer nanobeam in terms of only the displacement, �, as 

follows: 

� �̈ − � � �̈�� + ���� + � �
���

2�
� ����

− ��
� �

���
�

�

−
���

�
�(��� − ��

��)��

�

�

− ���

−
���

�

���

� ��� − �
���

2�
� ����

− ��
� �

���
�

�

−
���

�
�(��� − ��

��)�� − ��

�

�

� ���

− ���� −
���

�

���
� ��

�� = 0  

(14) 

For a symmetric laminate,  ��� = 0. Therefore, the equation of motion reduces to 

� �̈ − � � �̈�� + ���� + � �
���

2�
� ����

− ��
� �

���
�

�

− ���� ���

− �
���

2�
� ����

− ��
� �

���
�

�

− ��� ��� = �����
�� 

(15) 

In order to assess the significance of the size, layup, and initial curvature on the resulting static 

and dynamic response, we introduce the following nondimensional parameters: 
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� =
��

�
 , � =

��

�
, � = ��/� , � = �̂�

���

���
  

The ( � )  identifies dimensional quantities, which is understood to apply to all previous 

equations. As a result, the nondimensional equation of motion can be simplified and expressed as 

follows: 

�1 − �̅  
��

���
� �̈ + �1 − �̅  ��� −

1

2
� �����

− ��
� �

���

�

�

�� ���

+ ��� −
1

2
� �����

− ��
� �

���

�

�

� ��� = ��
�� 

(16) 

where the nondimensional size parameter, �̅, pre-stress load, ��, and lamination coefficient, �, are 

defined as 

�̅ =
�

��
, �� =

�� ���

��
, � =

��� ��

���
   

Investigating Equation (16), one can notice that the size parameter contributes to the inertia and 

the stiffness of the beam. Due to the nature of the buckling shape, the second derivative with respect 

to the spatial coordinate, �, yields a minus sign, which causes the effect of the size parameter to 

increase the inertia. On the other hand, the size parameter reduces the stiffness, which means the 

small-size effect is of a softening type. Therefore, one concludes that as the size becomes smaller, the 

beam will end up having less buckling load and less natural frequencies. This will be clearly shown 

by the numerical results presenting lower buckling loads and lower natural frequencies in Sections 4 

and 5, where the significance of the size parameter, �̅ , the initial curvature, � , and lamination 

coefficient, �, on the buckling and free vibration of multilayer nanobeams is presented. 

3. Static Analysis 

The equation governing the static response of initially curved, multilayer nanobeams clamped at 

both ends can be obtained from Equation (16) by dropping the time-dependent terms. The result is  

�1 − �̅  ��� −
1

2
� ����

��
− ��

� �
���

�

�

�� ��
�� + ��� −

1

2
� ����

��
− ��

� �
���

�

�

� ��
�� = ��

�� (17) 

where ��(�) is the lateral static deflection of the beam. Again, �� is the nondimensional initial pre-

stress. Because geometric imperfection is present, Equation (17) governs all equilibrium positions that 

may exist at a given pre-load, ��. This is not the classical buckling problem that is basically an 

eigenvalue problem. Indeed, when the beam exhibits some imperfection, and for any nonzero load, 

there exists a static equilibrium position that grows gradually as the load is increased. The problem 

with imperfection, as given by Equation (17), is a boundary-value problem. This is evident by the fact 

that the right-hand-side of Equation (17) is nonzero. The question is can we still find a buckling load 

in this case. The answer is yes. The point of buckling, in this case, will not refer to Euler buckling or 

bifurcation buckling, but it refers to a limit point, which may define a buckling load that is less or 

larger than the Euler buckling load. The structural dynamics community use the terms, bifurcation 

points and limit points, to refer to Euler buckling of initially straight columns and initially curved 

columns, respectively [68]. In the meantime, the nonlinear dynamics community use the terms, pitch-

fork bifurcation and saddle-node bifurcations, to refer to these two points, respectively [69].  

To gain insight, we define the effective compressive force that acts at the beam ends after 

buckling as 

Λ = ��� −
1

2
� �����

− ��
� �

���

�

�

� (18) 
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This is simply the initial pre-stress load minus the induced tensile midplane stretching due to 

buckling. Therefore, Equation (17) can be expressed as 

(1 − �̅ Λ) ��
�� + Λ ��

�� = ��
�� (19) 

As such, the size effect is about reducing the bending stiffness, which will result in reduced 

buckling loads and an increased postbuckling response, as will be shown next.  

The initial configuration of a clamped-clamped imperfect beam is assumed to have the form [17] 

��(�) =
1

2
� (1 − cos 2 ��) (20) 

where � is the beam’s midspan initial rise, which is used as a control parameter representing the 

nondimensional imperfection amplitude. Emam [17] found that a general solution for the static 

deflection, ��(�), of a perfect or imperfect beam, can be expressed as follows  

��(�) =
1

2
ℎ(1 − cos 2 ��) (21) 

where ℎ is the buckling amplitude. Substituting Equations (20) and (21) into Equation (17) yields 

(1 + 4��)�ℎ� + �16 − ���(1 + 4 ���̅ ) −
4��

��
(1 + 4 ���̅ )� ℎ − 16 � = 0 (22) 

Equation (22) governs the buckling amplitude, ℎ , for a given pre-stress load, ��,  initial 

imperfection amplitude, �, laminate layup coefficient, �, and size parameter, �̅. Buckling occurs 

when the two roots of Equation (22) coalesce. This condition is satisfied if the discriminant of 

Equation (22) is zero. Equation (22) takes the form 

��ℎ� + ��ℎ + �� = 0 (23) 

where the constants, ��, can be defined in light of Equation (22). In the prebuckling state, Equation 

(22) yields only one real solution that corresponds to the stable equilibrium position. On the other 

hand, once the beam buckles, Equation (22) yields three real solutions: Two solutions give the stable 

buckled positions and the third solution gives the unstable position. Consequently, buckling occurs 

when the two roots of Equation (22) coalesce. Following Emam [17], we set the discriminant of 

Equation (23) to equal zero to identify the buckling load 

−4 ��
� − 27 ����

� = 0  (24) 

Solving Equation (24) for the buckling load, ��, we obtain 

�� =
4��

1 + 4���̅ 
−

��

4
� �� +

3 ���
�
��

�
�

(1 + 4���̅ )
�
�

 (25) 

which defines the buckling load for a multilayer nonlocal beam with imperfection. Inspecting 

Equation (25), we notice that as the size effect becomes significant, the buckling load decreases, which 

is consistent with the remark that the nonlocal effect due to a small size has a softening effect. In the 

meantime, the imperfection amplitude, �, appears in Equation (25) with different signs, which makes 

it possible to utilize it to enhance the buckling load. The maximum buckling load can be obtained by 

setting ���/�� = 0 . It is found that the optimum initial imperfection that yields the maximum 

buckling load is defined as follows: 

�∗ =
2√2

��(1 + 4���̅) 
  (26) 

If the size effect is neglected (�̅  = 0) and the material is isotropic (� = 1), the buckling load-

initial imperfection relation is defined as 

�� = 4�� −
1

4
���� + 3�� �

�
�  (27) 
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Additionally, the optimum initial imperfection is 

�∗ = 2√2 (28) 

Equations (27) and (28) are consistent with Lacarbonara [10] for clamped-clamped imperfect 

isotropic beams.  

3.1. Buckling Load of Imperfect, Multilayer Nanobeams 

In this section, we present the lowest buckling load for imperfect multilayer nanobeams. Namely 

three parameters are considered: The imperfection amplitude, the small-size parameter, and the 

lamination coefficient. 

Before the numerical results are presented, we shed light on the range of the nanobeam length 

considered in this study. The nondimensional size parameter is varied from 0 to 0.1, which varies the 

beam length up to 6 nm, according to ��� = 2 nm. The effects of the initial curvature and size 

parameter on the buckling load according to Equation (25) are given in Table 1 for � = 1. The first 

row of Table 1 is identical to the results reported by Aydogdu [70] and Emam [42] for nonlocal 

initially straight beams, which validates the current model. The table shows that as the size parameter 

increases, the buckling load decreases. On the other hand, the existence of the initial curvature may 

enhance the buckling load. For instance, the buckling load at �̅ = 0.1 is one-fifth of the classical 

buckling load (�̅ = 0.0) for a perfect beam. This means that the buckling load significantly decreases 

as the nonlocal parameter is increased for a given initial curvature. It is also noticed that the 

imperfection tends to increase the buckling load up to a certain limit then it inverses its effect. The 

buckling load increases from 39.48 to 78.86 as the initial curvature increases from 0 to 3 before the 

buckling loads drops with the increase of initial curvature. At a certain beam curvature, the buckling 

load may change its sense (i.e., from compression to tension), which is consistent with the shell 

structure theories [71]. The loads at which the buckling load changes sense are dubbed ‘null-loads’. 

The buckling load for � =  2  for different values of the imperfection amplitude and the size 

parameter is shown in Table 2. First, one can notice the significance of the layup on the buckling load 

as the two parameters are varied. The beam shows the same trend as the case discussed before. 

Table 1. Nondimensional buckling load for a variety of initial curvatures and size parameter for � = 1. 

Nondimensional 

Imperfection Amplitude (�) 

Nondimensional Size Parameter (�� = �/��) 

0 0.02 0.04 0.06 0.08 0.1 

0 39.4784 22.0603 15.3068 11.7192 9.4939 7.9789 

1 66.6198 39.6802 28.5831 22.4276 18.4767 15.7086 

2 76.6099 44.0773 30.4287 22.7649 17.8004 14.2962 

3 78.8606 41.6370 25.8483 16.9195 11.1047 6.9832 

4 74.6095 33.1988 15.4999 5.4418 −1.1318 −5.8044 

Table 2. Non-dimensional buckling load for a variety of initial curvatures and size parameter for a = 2. 

Nondimensional 

Imperfection Amplitude (�) 

Nondimensional Size Parameter (�� = �/��) 

0 0.02 0.04 0.06 0.08 0.1 

0 39.4784 22.0603 15.3068 11.7192 9.4939 7.9789 

1 71.8484 42.4339 30.2078 23.3849 18.9855 15.8917 

2 78.9568 42.4957 27.0549 18.3317 12.6551 8.6339 

3 72.6622 30.2908 12.1536 1.8365 −4.9113 −9.7103 

4 54.5237 6.8768 −13.6671 −25.4069 −33.1108 −38.6041 

Now, we turn our attention to the significance of the initial imperfection on the buckling load, 

according to Equation (26). Figure 2 shows the variation of the buckling load with the beam’s 

imperfection amplitude as the nondimensional small-size parameter that is varied. Typically, the 

buckling load increases as the imperfection amplitude increases up to a threshold where the buckling 

load starts to decrease as the imperfection amplitude increases. It can also be noted that beyond the 
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null-load, the buckling load switches from being positive (compressive) to being negative (tensile). 

The significance of the size parameter is evident from the figure where a considerable reduction in 

the buckling load is noticed. 

 

Figure 2. Variation of the buckling load with the imperfection amplitude for �=1. 

3.2. Postbuckling of Imperfect, Multilayer Nanobeams under Pre-Stress Loading 

In this section, we present the postbuckling response of clamped-clamped nanobeams with 

imperfection. The beam is supposed to be under compressive pre-stress load due to manufacturing 

residual stresses. If this pre-stress load is beyond the buckling load, the beam buckles while its ends 

are kept fixed. As a result, a tensile force is created at the midplane due to bending. The net 

compressive force at the beam ends does not remain constant as the compressive pre-stress is reduced 

by the amount of the midplane stretching. First, we investigate the significance of the small size on 

the postbuckling for an initially straight column. Figure 3 shows the buckling amplitude as the pre-

stress load is increased. Because the beam is perfect, the buckling point is called bifurcation or Euler 

buckling, where two symmetric stable equilibrium positions develop and grow gradually with the 

load. The initial straight position becomes unstable after buckling. The figure shows that as the size 

parameter becomes significant, i.e., size gets smaller and smaller, the buckling load reduces and more 

buckling amplitude is obtained at the same load. This is due to the softening effect of the nonlocal 

effect as highlighted before. 

As pointed out earlier, as the beam exhibits imperfection, the onset of buckling occurs at a limit 

point rather than a bifurcation point. Figures 4–7 show the postbuckling response of a beam with 

� = 1, initial imperfection, � = 1, and size parameter, �̅ = 0, 0.02, 0.04, 0.06, respectively. In these 

figures, solid lines represent stable positions and dashed lines represent unstable positions. The load-

deflection curves show the limit point where buckling occurs. It can be noticed that for the case in 

hand and for all size parameters the buckling load is greater than the Euler buckling load. As the 

beam size becomes smaller, the buckling load decreases and the buckling amplitude increases as a 

result of the nonlocal effect. In each figure, we plot the load-deflection curves for the perfect beam 

having the same size for the sake of comparison. 
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Figure 3. Variation of the buckling amplitude with the axial pre-stress load of a perfect nanobeam 

with � = 1 and a variety of the nonlocal parameter, �̅. 

To investigate the significance of the lamination, we present the postbuckling response for (� =

3.434) for the same imperfection amplitude (� = 1), as shown in Figure 8. As can be noted, the 

buckling load is higher than the Euler buckling as long as the imperfection amplitude is � = 1. The 

nonlocal effect of the size reduces the buckling load. The postbuckling response for beams with � =

3.434 shows a smaller buckling amplitude compared with the case where � = 1, shown in Figure 9. 

In order to see cases where the buckling load becomes less than the Euler buckling load, we use an 

imperfection amplitude of � = 4. Figure 9 shows the load-deflection curves for beams with � = 1, 

an imperfection amplitude of � = 4 , and a nonlocal parameter of �̅ = 0, 0.02, 0.04, 0.06 , 

respectively. For the case where �̅ = 0.06, the buckling amplitude is less than the Euler buckling 

load, as can be noticed from Figure 9d. This parametric study shows that the three parameters 

considered in this work, the size, lamination, and initial imperfection, have a significant effect on the 

buckling and postbuckling both qualitatively and quantitatively. 

 

Figure 4. Variation of the static deflection with the pre-load at � = 1, �̅ = 0.0 and � = 1. 
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Figure 5. Variation of the static deflection with the pre-load at � = 1, �̅ = 0.02, and � = 1. 

 

Figure 6. Variation of the static deflection with the pre-load at � = 1, �̅ = 0.04 and � = 1. 

 

Figure 7. Variation of the static deflection with the pre-load at � = 1, �̅ = 0.06 and � = 1. 
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Figure 8. Variation of the static deflection with the pre-load at � = 1 and � = 3.434. (a) �̅ = 0.0; (b) 

�̅ = 0.02; (c) �̅ = 0.04; (d) �̅ = 0.06. 

  

(a) (b) 

  

(c) (d) 
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Figure 9. Variation of the static deflection with the pre-load at � = 4 and � = 1. (a) �̅ = 0.0; (b) 

�̅ = 0.02; (c) �̅ = 0.04; (d) �̅ = 0.06. 

4. Free Vibrations 

The significance of the size parameter, imperfection, and lamination scheme on the free 

vibrations of nonlocal beams in the postbuckling regime is investigated. A small dynamic 

disturbance, �(�, �), is assumed to take place around a static deflected position, ��(�), such that the 

total deflection measured from an initial configuration is defined as follows: 

�(�, �) = ��(�) + �(�, �) (29) 

where the static position, ��(�), has been already defined for a given pre-load in the previous section. 

The linear free vibration problem in terms of the small dynamic disturbance, �(�, �), can be obtained 

by substituting Equation (25) into the governing equation, Equation (16). The result is 

�1 − �̅
��

���
 �

���

���
+ (1 − Λ �̅)

���

���
+ Λ

���

���
= �� � ��

�
��

��
�� 

�

�

� �1 − �̅
��

���
 � ��

�� (30) 

We note that the terms that have definite integrals can be dealt with as constants for any given 

functions, ��(�) and �(�, �). Assuming a harmonic solution in the form of �(�, �) = �(�)����, and 

solving Equation (26), yield the following general solution 

�(�) = �� cos ��� + �� sin � �� + �� cosh ��� + �� sinh ��� + �� cos 2 ��  (31) 

where �� and �� are given by 

��,� = �
±(Λ + ω��̅) + �Λ� + 4ω� − 2Λω��̅ + ω��̅�

2(1 − Λ�̅)
�

�
�

 (32) 

where �(�) is the mode shape and � is its frequency. This demands that the solution given by 

Equation (27) satisfies the boundary conditions and the equation of motion yields an eigenvalue 

problem that can be solved for the natural frequency, �, and its associated mode shape. For more 

details, the reader is referred to Nayfeh and Emam [72].  

Before the numerical results are presented, it is helpful to investigate the significance of the size 

parameter, �̅, on the free vibrations to gain more insight. The size parameter, as can be seen from 

Equation (26), has an effect on the inertia, bending stiffness, and forcing terms. It can be noticed that 

the size parameter reduces the stiffness knowing that the constant, Λ, is always positive. This means 

that the size effect has a kind of softening, which will in turn reduce the natural frequencies. The 

softening effect is noted from Figure 10, which represents the variation of the fundamental natural 

frequency with the pre-stress load for a unidirectional/cross-ply laminated beam. As the figure 

implies, for an initially straight multilayer nanobeam (� = 0), the natural frequency decreases as the 

pre-stress load increases in the prebuckling domain. This trend continues until the onset of buckling, 

where the fundamental frequency approaches zero. After that, the natural frequency increases as the 

pre-stress load is increased. This observation is noted for both classical and size-dependent 

nanobeams. The nonlocal effect on higher modes of perfect beams is further investigated and shown 

in Figure 10 for the third and fifth vibration modes, respectively. A greater reduction in the higher 

frequencies is noticed with the consideration of the size effect. However, the rate of change in the 

natural frequency in both the pre and postbuckling states is much less compared to the first mode. It is 

worth noting that for perfect beams, the natural frequencies of the even modes do not change with the 

pre-stress load in the postbuckling state (Nayfeh and Emam [72]). For instance, �� =

44.36 and 23.77 at  �̅ = 0 and 0.02 , respectively, and  �� = 182.12  and  64.91 at  �̅ = 0 and 0.02 , 

respectively. 
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(a) First natural frequency (b) Third natural frequency 

 
(c) Fifth natural frequency 

Figure 10. The variation of the first, third, and fifth natural frequencies with the applied axial load for 

� = 1 of the perfect nanobeam, � = 0, and �̅ = (0, 0.02). 

Now, we investigate the effect of the initial curvature on the free vibration response. An initial 

imperfection of � = 1 is introduced and the first five vibration modes are investigated for two values 

of the nonlocal parameter: �̅ = 0 and 0.02 . Figure 11 depicts the variation of the fundamental 

frequency with pre-stress load. Similar to perfect beams, the natural frequency exhibits a decrease in 

the prebuckling state, then it increases monotonically in the postbuckling state. It is noted that the 

inclusion of the nonlocal effect, � = 0.02, not only decreases the buckling load, but it also results in 

a leveling of the fundamental frequency as the axial load increases. This shows the hardening effect 

of nonlocal elasticity on the response of nanobeams. 

The nonlocal effect is more prominent for higher modes of vibration. Figure 11 shows the 

variation of the first to the fourth natural frequencies of the nanobeam with the pre-stress load. As 

can be seen from the figures, the natural frequencies significantly decrease with the inclusion of 

nonlocal effects. It is decreased by a factor of two for the second mode and by a factor of three for the 

fifth mode. It is also noted, except for the first and third modes, that the natural frequencies exhibit 

an initial decrease in the pre-buckling state then they level out in the post-buckling state. 
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(a) (b) 

(c) (d) 

Figure 11. The variation of the first four natural frequencies with the applied axial load for � = 1 of 

the imperfect nanobeam, � = 1 , and �̅ = (0, 0.02) . (a) The first natural frequency; (b) The 

second natural frequency; (c) The third natural frequency; (d) The fourth natural frequency. 

5. Conclusions 

An investigation into the postbuckling and free vibration response of size-dependent, 

geometrically imperfect multilayer nanobeams was introduced. The small-size effect was modeled 

according to the nonlocal elasticity differential model of Eringen within the nonlinear Bernoulli-Euler 

beam theory. It was found that the nonlocal effect reduces the buckling load and increases the 

postbuckling static response. The presence of initial imperfection changes the nature of the point at 

the onset of buckling from a bifurcation point to a limit point. The initial imperfection was found to 

be a key factor to enhance the buckling load; however, the optimum value of the initial imperfection 

that results in the maximum buckling load was found to be size dependent. The buckling load at 

different values of initial imperfection, a size parameter for a variety of lamination coefficients, was 

presented. Numerical results that show the buckling load and the load-deflection curves in the 

postbuckling domain for a variety of parameters were presented. It is shown that the buckling load 

with the presence of imperfection and a small-size effect can be less than or greater than the Euler 

buckling load. The linear free vibration problem has been solved for the vibration mode shapes and 

natural frequencies around the static postbuckling position. The fundamental natural frequency was 

found to be sensitive to the size effect, which has a significant qualitative and quantitative 

contribution. Moreover, the size effect was more prominent for higher modes of vibration where the 

buckling loads are significantly decreased. This study can be extended and supported by 

experimental testing to help design small-scale devices incorporating multilayered, initially curved 

beams at a nanoscale. 

0 40 80 120 160 200

Nondimensional axial load

0

10

20

30

40

50

60

0 40 80 120 160 200

Nondimensional axial load

0

20

40

60

80

100

120

140

0 40 80 120 160 200

Nondimensional axial load

0

40

80

120

160

200

240



Appl. Sci. 2018, 8, 2238 17 of 19 

Author Contributions: S.A.E. and M.A.E. formulated the problem and generated the data. S.A.E. wrote the 

manuscript and presented the results, M.A.E. and W.S.A. reviewed the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The third author acknowledges KFUPM for their support. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Bortz, J.; Shatz, N. Nanolayered polymer diffusive spectral filters. In Proceedings of the SPIE 8485, 

Nonimaging Optics: Efficient Design for Illumination and Solar Concentration IX, San Diego, CA, USA, 11 

October 2012. 

2. Legtenberg, R.; Gilbert, J.; Senturia, S.D.; Elwenspoek, M. Electrostatic curved electrode actuators. J. 

Microelectromech. Syst. 1997, 6, 257–265. 

3. Torri, P.; Hirvonen, J.P.; Kung, H.; Lu, Y.C.; Nastasi, M.; Gibson, P.N. Mechanical properties, stress 

evolution and high-temperature thermal stability of nanolayered Mo–Si–N/SiC thin films. J. Vac. Sci. 

Technol. B 1999, 17, 1329–1335. 

4. Li, Z.; Dharap, P.; Nagarajaiah, S.; Nordgren, R.P.; Yakobson, B. Nonlinear analysis of a SWCNT over a 

bundle of nanotubes. Int. J. Solids Struct. 2004, 41, 6925–6936. 

5. Verma, N.; Jayaram, V. Role of interface curvature on stress distribution under indentation for ZrN/Zr 

multilayer coating. Thin Solid Films 2014, 571, 283–289. 

6. Senturia, S.D. Microsystem Design; Kluwer Academic Publishers: Boston, MA, USA, 2001. 

7. Chidamparam, P.; Leissa, A.W. Vibrations of planar curved beams, rings, and arches. Appl. Mech. Rev. 1993, 

46, 467–483. 

8. Petyt, M.; Fleischer, C.C. Free vibration of a curved beam. J. Sound Vib. 1971, 18, 17–30. 

9. Palani, G.S.; Rajasekaran, S. Finite element analysis of thin-walled curved beams made of Composites. J. 

Struct. Eng. 1992, 118, 2039–2061. 

10. Lacarbonara W. A theoretical and experimental investigation of nonlinear vibrations of buckled beams, 

Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1997. 

11. Howson, W.P.; Jemah, A.K. Exact out-of-plane natural frequencies of curved Timoshenko beams. J. Eng. 

Mech. 1999, 125, 19–25. 

12. Raveendranath, P.; Singh, G.; Pradhan, B. A two-noded locking-free shear flexible curved beam element. 

Int. J. Numer. Methods Eng. 1999, 44, 265–280. 

13. Lacarbonara, W.; Yabuno, H. Closed-loop non-linear control of an initially imperfect beam with non-

collocated input. J. Sound Vib. 2004, 273, 695–711. 

14. Lacarbonara, W.; Arafat, H.N.; Nayfeh, A.H. Non-linear interactions in imperfect beams at veering. Int. J. 

Non Linear Mech. 2005, 40, 987–1003. 

15. Gao, Y.; Wang, M.Z.; Zhao, B.S. The refined theory of rectangular curved beams. Acta Mech. 2007, 189, 141–

150. 

16. Chang, C.S.; Hodges, D. Vibration characteristics of curved beams. J. Mech. Mater. Struct. 2009, 4, 675–692. 

17. Emam, S.A. A static and dynamic analysis of the postbuckling of geometrically imperfect beams. Structures 

2009, 90, 247–253. 

18. Shooshtari, A.; Kalhori, H.; Masoodian, A. Investigation for dimension effect on mechanical behavior of a 

metallic curved micro-cantilever beam. Measurement 2011, 44, 454–465. 

19. Stanciulescu, I.; Mitchell, T.; Chandra, Y.; Eason, T.; Spottswood, M. A lower bound on snap-through 

instability of curved beams under thermomechanical loads. Int. J. Non Linear Mech. 2012, 47, 561–575. 

20. Wang, B.; Deng, Z.; Zhang, K.; Zhou, J. Dynamic analysis of embedded curved double-walled carbon 

nanotubes based on nonlocal Euler-Bernoulli Beam theory. Multidiscipl. Model. Mater. Struct. 2012, 8, 432–

453. 

21. Wu, J.S.; Lin, F.T.; Shaw, H.J. Free in-plane vibration analysis of a curved beam (arch) with arbitrary various 

concentrated elements. Appl. Math. Model. 2013, 37, 7588–7610. 

22. Dastgerdi, J.; Marquis, G.; Salimi, M. The effect of nanotubes waviness on mechanical properties of 

CNT/SMP composites. Compos. Sci. Technol. 2013, 86, 164–169. 

23. Lee, S.Y.; Yan, Q.Z. An analytical solution for out-of-plane deflection of a curved Timoshenko beam with 

strong nonlinear boundary conditions. Acta Mech. 2015, 226, 3679–3694. 



Appl. Sci. 2018, 8, 2238 18 of 19 

24. Truesdell, C.; Noll, W. The Nonlinear Field Theories of Mechanics; Springer: Berlin/Heidelberg, Germany, 1992. 

25. Eringen, A.C. Nonlocal polar elastic continua. Int. J. Eng. Sci. 1972, 10, 1–16. 

26. Eringen, A.C.; Edelen, D. On nonlocal elasticity. Int. J. Eng. Sci. 1972, 10, 233–248. 

27. Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface 

waves. J. Appl. Phys. 1983, 54, 4703–4710. 

28. Qian, D.; Dickey, E.C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon 

nanotube-polystyrene Composites. Appl. Phys. Lett. 2000, 76, 2868–2870. 

29. Wang, Z.L.; Poncharal, P.; De Heer, W.A. Nanomeasurements of individual carbon nanotubes by in situ 

TEM. Pure Appl. Chem. 2000, 72, 209–219. 

30. Mikata, Y. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon 

nanotube. Acta Mech. 2007, 190, 133–150. 

31. Mayoof, F.N.; Hawwa, M.A. Chaotic behavior of a curved carbon nanotube under harmonic excitation. 

Chaos Solitons Fractals 2009, 42, 1860–1867. 

32. Formica, G.; Lacarbonara, W.; Alessi, R. Vibrations of carbon nanotube-reinforced s. J. Sound Vib. 2010, 329, 

1875–1889. 

33. Ouakad, H.M.; Younis, M.I. Natural frequencies and mode shapes of initially curved carbon nanotube 

resonators under electric excitation. J. Sound Vib. 2011, 330, 3182–3195. 

34. Romano, G.; Barretta, R.; Diaco, M.; de Sciarra, F.M. Constitutive boundary conditions and paradoxes in 

nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156. 

35. Romano, G.; Barretta, R. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. 

Compos. Part B 2017, 114, 184–188. 

36. Romano, G.; Barretta, R. Nonlocal elasticity in nanobeams: The stress-driven integral model. Int. J. Eng. Sci. 

2017, 115, 14–27. 

37. Glavardanov, V.B.; Spasic, D.T.; Atanackovic, T.M. Stability and optimal shape of Pflüger micro/nano 

beam. Int. J. Solids Struct. 2012, 49, 2559–2567. 

38. Eltaher, M.A.; Emam, S.A.; Mahmoud, F.F. Free vibration analysis of functionally graded size-dependent 

nanobeams. Appl. Math. Comput. 2012, 218, 7406–7420. 

39. Eltaher, M.A.; Emam, S.A.; Mahmoud, F.F. Static and stability analysis of nonlocal functionally graded 

nanobeams. Compos. Struct. 2013, 96, 82–88. 

40. Wang, L.; Dai, H.L.; Qian, Q. Dynamics of simply supported fluid-conveying pipes with geometric 

imperfections. J. Fluids Struct. 2012, 29, 97–106. 

41. Wang, B.; Deng, Z.; Zhang, K.; Zhou, J. Nonlinear vibration of embedded single-walled carbon nanotube 

with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory. Appl. 

Math. Mech. 2013, 34, 269–280. 

42. Emam, S.A. A general nonlocal nonlinear model for buckling of nanobeams. Appl. Math. Model. 2013, 37, 

6929–6939. 

43. Thongyothee, C.; Chucheepsakul, S. Postbuckling behaviors of nanorods including the effects of nonlocal 

elasticity theory and surface stress. J. Appl. Phys. 2013, 114, 243507. 

44. Mohammadi, H.; Mahzoon, M.; Mohammadi, M.; Mohammadi, M. Postbuckling instability of nonlinear 

nanobeam with geometric imperfection embedded in elastic foundation. Nonlinear Dyn. 2014, 76, 2005–

2016. 

45. Khater, M.; Eltaher, M.; Abdel-Rahman, E.; Yavuz, M. Surface and Thermal Load Effects on the Buckling 

of Curved Nanowires. J. Eng. Sci. Technol. 2014, 17, 279–283. 

46. Eltaher, M.A.; Khater, M.E.; Emam, S.A. A review on nonlocal elastic models for bending, buckling, 

vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 2016, 40, 4109–4128. 

47. Eltaher, M.A.; El-Borgi, S.; Reddy, J.N. Nonlinear analysis of size-dependent and material-dependent 

nonlocal CNTs. Multilayer Struct. 2016, 153, 902–913. 

48. Ghadiri, M.; Shafiei, N. Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s 

theory using differential quadrature method. Microsyst. Technol. 2016, 22, 2853–2867. 

49. Kaghazian, A.; Hajnayeb, A.; Foruzande, H. Free vibration analysis of a piezoelectric nanobeam using 

nonlocal elasticity theory. Struct. Eng. Mech. 2017, 61, 617–624. 

50. Khetir, H.; Bouiadjra, M.B.; Houari, M.S.A.; Tounsi, A.; Mahmoud, S.R. A new nonlocal trigonometric shear 

deformation theory for thermal buckling analysis of embedded nanosize FG plates. Struct. Eng. Mech. 2017, 

64, 391–402. 



Appl. Sci. 2018, 8, 2238 19 of 19 

51. Mohamed, N.; Eltaher, M.A.; Mohamed, S.A.; Seddek, L.F. Numerical analysis of nonlinear free and forced 

vibrations of buckled curved beams resting on nonlinear elastic foundations. Int. J. Non Linear Mech. 2018, 

101, 157–173. 

52. Ebrahimi, F.; Barati, M.R. Axial magnetic field effects on dynamic characteristics of embedded multiphase 

nanocrystalline nanobeams. Microsyst. Technol. 2018, 24, 3521–3536. 

53. Eltaher, M.A.; Kabeel, A.M.; Almitani, K.H.; Abdraboh, A.M. Static bending and buckling of perforated 

nonlocal size-dependent nanobeams. Microsyst. Technol. 2018, 24, 4881–4893. 

54. Eltaher, M.A.; Abdraboh, A.M.; Almitani, K.H. Resonance frequencies of size dependent perforated 

nonlocal nanobeam. Microsyst. Technol. 2018, 24, 3925–3937. 

55. Ebrahimi, F.; Barati, M.R. Vibration analysis of embedded size dependent FG nanobeams based on third-

order shear deformation beam theory. Struct. Eng. Mech. 2017, 61, 721–736. 

56. Ebrahimi, F.; Barati, M.R. A unified formulation for modeling of inhomogeneous nonlocal beams. Struct. 

Eng. Mech. 2018, 66, 369–377. 

57. Challamel, N.; Wang, C.M. The small length scale effect for a non-local cantilever beam: A paradox solved. 

Nanotechnology 2008, 19, 345703. 

58. Li, C.; Yao, L.; Chen, W.; Li, S. Comments on nonlocal effects in nano-cantilever beams. Int. J. Eng. Sci. 2015, 

87, 47–57. 

59. Benvenuti, E.; Simone, A. One-dimensional nonlocal and gradient elasticity: Closed-form solution and size 

effect. Mech. Res. Commun. 2013, 48, 46–51. 

60. Fernández-Sáez, J.; Zaera, R.; Loya, J.A.; Reddy, J.N. Bending of Euler–Bernoulli beams using Eringen’s 

integral formulation: A paradox resolved. Int. J. Eng. Sci. 2016, 99, 107–116. 

61. Tuna, M.; Kirca, M. Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and 

Timoshenko beams. Int. J. Eng. Sci. 2016, 105, 80–92. 

62. Apuzzo, A.; Barretta, R.; Luciano, R.; de Sciarra, F.M.; Penna, R. Free vibrations of Bernoulli-Euler nano-

beams by the stress-driven nonlocal integral model. Compos. Part B Eng. 2017, 123, 105–111. 

63. Fang, W.; Wickert, J.A. Post buckling of micromachined beams. J. Micromech. Microeng. 1994, 4, 116–122. 

64. Emam, S.A. Analysis of shear-deformable composite beams in postbuckling. Compos. Struct. 2011, 94, 24–

30. 

65. Eltaher, M.; Khater, M.; Abdel-Rahman, E.; Yavuz, M. Model for nano-scale bonding wires under thermal 

loading. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, ON, 

Canada, 18–21 August 2014; pp. 382–385. 

66. Reddy, J.N. On laminated plates with integrated sensors and actuators. Eng. Struct. 1999, 21, 568–593. 

67. Wang, Q. Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 2005, 

98, 124301. 

68. Jones, R.M. Buckling of Bars, Plates and Shells; Bull Ridge Publishing: Blacksburg, VA, USA, 2006. 

69. Nayfeh, A.H.; Balachandran, B. Applied Nonlinear Dynamics, Analytical, Computational, and Experimental 

Methods; Wiley Series in Nonlinear Sciences; Wiley Interscience: New York, NY, USA, 2000; ISBN 

0471593486. 

70. Aydogdu, M. A general nonlocal beam theory: Its application to nanobeam bending, buckling and 

vibration. Phys. E Low Dimens. Syst. Nanostruct. 2009, 41, 1651–1655. 

71. Srubshchik, L.S. Precritical equilibrium of a thin shallow shell of revolution and its stability. J. Appl. Math. 

Mech. 1980, 44, 229–235. 

72. Nayfeh, A.H.; Emam, S.A. Exact solution and stability of postbuckling configurations of beams. Nonlinear 

Dyn. 2008, 54, 395–408. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


