
applied
sciences

Article

A Novel Approach for a Inverse Kinematics Solution
of a Redundant Manipulator

Michal Kelemen 1, Ivan Virgala 1,* , Tomáš Lipták 1, L’ubica Miková 1, Filip Filakovský 1 and
Vladimír Bulej 2

1 Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia;
michal.kelemen@tuke.sk (M.K.); tomas.liptak@tuke.sk (T.L.); lubica.mikova@tuke.sk (L’.M.);
filip.filakovsky@tuke.sk (F.F.)

2 Faculty of Mechanical Engineering, University of Žilina, 01026 Žilina, Slovakia;
vladimir.bulej@fstroj.uniza.sk

* Correspondence: ivan.virgala@tuke.sk; Tel.: +421-55-602-2455

Received: 18 September 2018; Accepted: 8 November 2018; Published: 12 November 2018 ����������
�������

Abstract: Kinematically-redundant manipulators present considerable difficulties, especially from
the view of control. A high number of degrees of freedom are used to control so-called secondary
tasks in order to optimize manipulator motion. This paper introduces a new algorithm for the control
of kinematically-redundant manipulator considering three secondary tasks, namely a joint limit
avoidance task, a kinematic singularities avoidance task, and an obstacle avoidance task. For path
planning of end-effector from start to goal point, the potential field method is used. The final inverse
kinematic model is designed by a Jacobian-based method considering weight matrices in order to
prioritize particular tasks. Our approach is based on the flexible behavior of priority value due to
the acceleration of numerical simulation. The results of the simulations show the advantage of our
approach, which results in a significant decrease of computing time.

Keywords: computing time; inverse kinematics; joint limit avoidance; kinematic singularity;
manipulator; obstacle avoidance; potential field

1. Introduction

Kinematically-redundant manipulators are mechanisms which have more degrees of freedom
(DOF) than is required for the execution of a given task. The advantage of kinematically-redundant
manipulators in comparison with conventional manipulators is in the utilization of redundant
manipulator joints for optimization tasks [1,2]. These optimization tasks are secondary tasks of
the inverse kinematic or dynamic model. Manipulator redundancy is used for tasks such as avoidance
of collision with obstacles, avoidance of kinematic singularities, maintenance of the admissible joint
ranges, increasing of manipulability in specified directions, optimization of execution time, minimizing
energy consumption, etc. [3,4]. On the other hand, kinematic redundancy causes disadvantages, such
as the requirements of greater structural complexity of manipulator construction (higher number of
actuators, sensors, costs, etc.). It is additionally important to note that control algorithms for inverse
kinematic and dynamic model are considerably more complicated [5].

This study investigates kinematically-redundant mechanisms moving in an environment with
obstacles. The investigated mechanisms additionally have to deal with a joint limit avoidance task and
a kinematic singularity avoidance task. There are several methods to solve the mentioned problems,
namely Jacobian-based methods, null-space methods, and task augmentation methods [6,7]. Many
approaches have been used for the kinematic control of manipulators with secondary tasks. The
gradient projection method (GPM) is one of them. It was first used in [8] to deal with joint limit

Appl. Sci. 2018, 8, 2229; doi:10.3390/app8112229 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8273-2384
http://dx.doi.org/10.3390/app8112229
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/11/2229?type=check_update&version=2

Appl. Sci. 2018, 8, 2229 2 of 20

avoidance. A later study [9] additionally introduced an iterative approach for joint limit avoidance.
These approaches used null space or enlarged space. A problem occurs when the number of all tasks
exceeds the number of DOF of manipulators. The weighted least-norm (WLN) method is a method
which deals with constraints all the time. Considering the joint limit avoidance task, WLN uses
self-motion only when it is necessary in comparison with GPM [10]. An approach with consideration
of WLN solution was suggested by Whitney [11], and has been used for minimizing energy by using
inertia matrix as the weighting matrix. This approach was also used in [12] for minimizing joint
torques and in [13] for minimizing joint velocities. Whitney and Chan [14,15] describe the role of
weight matrices and the priority of its choice for emphasizing or de-emphasizing the role of some
components in the computing process. Another algorithm, namely the clamping loop algorithm,
ensures the avoidance of joint limits, however is fairly time consuming [16]. Earlier research attempted
to assign the priority of the particular tasks by weight matrices [17,18]. However, in some cases the
task requirements cannot be achieved [19,20]. In [21], the authors assigned a lower priority to obstacle
avoidance task. Problems occurred when the secondary task was not compatible with the main task
and the numerical simulations failed. Some works allow the activation or deactivation of secondary
tasks by continuous inverse of Jacobian multiplied by the activation matrix [22]. In [23], the authors
proposed a new task-regulation framework based on a hierarchy of quadratic program. Within their
framework it is possible to forward the constraint task separation across priority levels, eliminating
the need for converting inequality constraints into equalities.

Our developed approach deals with Jacobian-based method using weight matrices to set the
priority of primary as well as all secondary tasks. Our approach is based on changing value of
task priority during numerical simulation. The behavior of priority changing is based on numerical
computing smoothness. During computing, all secondary tasks are active.

This paper is organized as follows. First, the paper deals with path-planning for end-effector of a
manipulator moving in an environment with obstacles. For this purpose, the potential field method
is introduced and an environment with obstacles is modeled. Next, the inverse kinematic model is
derived. Consequently, the low-level control of the experimental model is introduced. The paper
describes algorithms for all mentioned areas. Then, the simulations and experiment are performed,
and the results are compared and discussed in the conclusion.

2. Path Planning Task for End-Effector

The control of robot motion is a very complex and difficult task. The control system has to deal
with many circumstances and changes of conditions in robot environment, while the computing
algorithms are often excessively difficult from the view of computing power [24].

The aim of this section is to introduce a means of path planning for the manipulator end-effector.
As was mentioned earlier, the investigated manipulator will move in an environment with obstacles.
The manipulator has to move its end-effector from start point to goal point and the control algorithm
has to ensure the avoidance of any collision between manipulator links and obstacles. The path from
start to goal point of the end-effector is planned by means of potential field method, as described in
the following.

Potential Field Method

Our aim is to move the manipulator end-effector from its start position sstart =
[
xS, yS

]T to its
goal position sgoal =

[
xG, yG

]T, while the control system has to ensure the avoidance of collision with
obstacles. In this research we use potential field method for the purposes of path planning task. The
generated path is the shortest path from start point to goal point. This research assumes planar motion
of the manipulator.

The main idea of the potential field method is very simple, and at the same time the method is
very powerful for robot navigation. The potential field method deals with two kinds of fields, namely
an attractive field and a repulsive field [25].

Appl. Sci. 2018, 8, 2229 3 of 20

In general, the attractive potential field represents the relation between each point of the robot
workspace and the goal point. The workspace of the robot can be divided into a defined number of
points according to the chosen grid. The softer the workspace grid is, the more precise the planned
path will be. There are several ways to mathematically model the attractive field. The commonly used
relation of attractive potential function is [26,27]:

Uatt(s) =
1
2
ξ ‖ sgoal − sgrid ‖k (1)

where ξ is a positive scalar variable, sgrid is the position of every point from the workspace, and k is a
number higher than zero. For k = 1 the potential field has a conic shape and for k = 2 the potential
field has a parabolic shape. In this research we use k = 1. The corresponding force function can be
expressed as:

Fatt(s) = −∇Uatt(s) = −
∂Uatt(s)

∂s
(2)

By modeling the attractive field one obtains the function which has a local extreme at the goal
point. We can imagine the attractive field as, for example, a ball falling down a hill, which stops at the
lowest point. The example of attractive field is shown in Figure 1.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 3 of 20

path will be. There are several ways to mathematically model the attractive field. The commonly used

relation of attractive potential function is [26,27]:

Uatt(s) =
1

2
ξ ∥ sgoal − sgrid ∥

k (1)

where ξ is a positive scalar variable, sgrid is the position of every point from the workspace, and k

is a number higher than zero. For k = 1 the potential field has a conic shape and for k = 2 the potential

field has a parabolic shape. In this research we use k = 1. The corresponding force function can be

expressed as:

Fatt(s) = −∇Uatt(s) = −
∂Uatt(s)

∂s
 (2)

By modeling the attractive field one obtains the function which has a local extreme at the goal

point. We can imagine the attractive field as, for example, a ball falling down a hill, which stops at

the lowest point. The example of attractive field is shown in Figure 1.

Figure 1. Example of attractive field.

In Figure 1, the dark blue color in the position (0, 30, 0) represents the local minimum of the

potential function, that is, the goal point.

Besides the attractive field there is also the repulsive field. The repulsive field represents the

environment, with which the manipulator cannot collide. In our study, the repulsive field is

represented by obstacles of circular shape. The repulsive potential function usually takes the

following form:

Urep(s) = {
η (
1

d
−
1

d0
)
2

, d ≤ d0

0, d > d0

 (3)

where d =∥ sobstacle-srobot ∥ is the distance between the obstacle and manipulator link, d0

represents the influence of the obstacle, and η is a scalar parameter. The gradient corresponding to

this function is :

Frep(s) = ∇Urep(s) = {
η (
1

d
−
1

d0
)
2 (s − s0)

d3
, d ≤ d0

0, d > d0

 (4)

where s is the actual position of the manipulator link and s0 is the distance from the manipulator

link to the obstacle. The aim of the repulsive forces is to affect out from the obstacle. The example of

the repulsive field applied in this research can be seen in Figure 2.

Figure 1. Example of attractive field.

In Figure 1, the dark blue color in the position (0, 30, 0) represents the local minimum of the
potential function, that is, the goal point.

Besides the attractive field there is also the repulsive field. The repulsive field represents the
environment, with which the manipulator cannot collide. In our study, the repulsive field is represented
by obstacles of circular shape. The repulsive potential function usually takes the following form:

Urep(s) =

 η
(

1
d −

1
d0

)2
, d ≤ d0

0, d > d0

(3)

where d =‖ sobstacle − srobot ‖ is the distance between the obstacle and manipulator link, d0 represents
the influence of the obstacle, and η is a scalar parameter. The gradient corresponding to this function
is :

Frep(s) = ∇Urep(s) =

 η
(

1
d −

1
d0

)2 (s−s0)

d3 , d ≤ d0

0, d > d0

(4)

where s is the actual position of the manipulator link and s0 is the distance from the manipulator link
to the obstacle. The aim of the repulsive forces is to affect out from the obstacle. The example of the
repulsive field applied in this research can be seen in Figure 2.

The final potential field is given by the sum of the attractive and repulsive functions:

F(q) = −∇Uatt +∇Urep (5)

Appl. Sci. 2018, 8, 2229 4 of 20

The set of all obstacles in the workspace of the investigated manipulator can be represented
by the matrix O ∈ Rm × h, where h is the number of obstacles and m represents the dimension of
the performed task. Since our task is planar, the parameter m equals 2. By summing the attractive
field Uatt(s) and repulsive field Urep(s) we obtain the matrix F(q), which includes obstacles of the
manipulator environment as well as course of the attractive function with goal point (local extreme).
Based on this matrix the shortest way from the start point to the goal point can be obtained. The
principle is as follows. Each point of the workspace is represented by a numerical value. The goal point
has the lowest numerical value from each point of the workspace. Starting at the start point, the next
step is to move to the adjoining point, which has a lower numerical value than the start point. After
this step, an adjoining point has to be found with a lower numerical value than the previous point.
Thus, the path from the start point to the goal point can be generated (see Figure 3). The repulsive field,
which is included in the aforementioned final matrix, ensures that the obstacles have high numerical
values and, therefore, the path never goes through these obstacles.Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 20

Figure 2. Example of the repulsive field.

The final potential field is given by the sum of the attractive and repulsive functions:

F(q) = −∇Uatt + ∇Urep (5)

The set of all obstacles in the workspace of the investigated manipulator can be represented by

the matrix O ∈ Rm x h, where h is the number of obstacles and m represents the dimension of the

performed task. Since our task is planar, the parameter m equals 2. By summing the attractive field

Uatt(s) and repulsive field Urep(s) we obtain the matrix F(q), which includes obstacles of the

manipulator environment as well as course of the attractive function with goal point (local extreme).

Based on this matrix the shortest way from the start point to the goal point can be obtained. The

principle is as follows. Each point of the workspace is represented by a numerical value. The goal

point has the lowest numerical value from each point of the workspace. Starting at the start point, the

next step is to move to the adjoining point, which has a lower numerical value than the start point.

After this step, an adjoining point has to be found with a lower numerical value than the previous

point. Thus, the path from the start point to the goal point can be generated (see Figure 3). The

repulsive field, which is included in the aforementioned final matrix, ensures that the obstacles have

high numerical values and, therefore, the path never goes through these obstacles.

Figure 3. Final potential field matrix, which is used to find the shortest path from the start point to

the goal point.

In Figure 3, the square outlined in green represents the start point of the manipulator end-

effector and the square outlined in blue represents the goal point of the end-effector. The squares

outlined in red show the planned path according to the algorithm introduced above. As can be seen

in Figure 3, the minimum value of all values in the matrix is 350. This represents the goal point of the

manipulator end-effector.

Next, the algorithm for the path planning is introduced.

In the first step of the algorithm, the obstacles are determined. In this research it is irrelevant

whether the obstacles are scanned by camera, sensor, or whether they are defined by the user. The

generation of the arrays Uatt and Urep are performed in Steps 2–3. In the FOR cycles (Steps 4–5), the

Figure 2. Example of the repulsive field.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 4 of 20

Figure 2. Example of the repulsive field.

The final potential field is given by the sum of the attractive and repulsive functions:

F(q) = −∇Uatt + ∇Urep (5)

The set of all obstacles in the workspace of the investigated manipulator can be represented by

the matrix O ∈ Rm x h, where h is the number of obstacles and m represents the dimension of the

performed task. Since our task is planar, the parameter m equals 2. By summing the attractive field

Uatt(s) and repulsive field Urep(s) we obtain the matrix F(q), which includes obstacles of the

manipulator environment as well as course of the attractive function with goal point (local extreme).

Based on this matrix the shortest way from the start point to the goal point can be obtained. The

principle is as follows. Each point of the workspace is represented by a numerical value. The goal

point has the lowest numerical value from each point of the workspace. Starting at the start point, the

next step is to move to the adjoining point, which has a lower numerical value than the start point.

After this step, an adjoining point has to be found with a lower numerical value than the previous

point. Thus, the path from the start point to the goal point can be generated (see Figure 3). The

repulsive field, which is included in the aforementioned final matrix, ensures that the obstacles have

high numerical values and, therefore, the path never goes through these obstacles.

Figure 3. Final potential field matrix, which is used to find the shortest path from the start point to

the goal point.

In Figure 3, the square outlined in green represents the start point of the manipulator end-

effector and the square outlined in blue represents the goal point of the end-effector. The squares

outlined in red show the planned path according to the algorithm introduced above. As can be seen

in Figure 3, the minimum value of all values in the matrix is 350. This represents the goal point of the

manipulator end-effector.

Next, the algorithm for the path planning is introduced.

In the first step of the algorithm, the obstacles are determined. In this research it is irrelevant

whether the obstacles are scanned by camera, sensor, or whether they are defined by the user. The

generation of the arrays Uatt and Urep are performed in Steps 2–3. In the FOR cycles (Steps 4–5), the

Figure 3. Final potential field matrix, which is used to find the shortest path from the start point to the
goal point.

In Figure 3, the square outlined in green represents the start point of the manipulator end-effector
and the square outlined in blue represents the goal point of the end-effector. The squares outlined
in red show the planned path according to the algorithm introduced above. As can be seen in
Figure 3, the minimum value of all values in the matrix is 350. This represents the goal point of the
manipulator end-effector.

Next, the algorithm for the path planning is introduced.
In the first step of the algorithm, the obstacles are determined. In this research it is irrelevant

whether the obstacles are scanned by camera, sensor, or whether they are defined by the user. The
generation of the arrays Uatt and Urep are performed in Steps 2–3. In the FOR cycles (Steps 4–5),
the relation between each point of the manipulator workspace in regard to the particular obstacles
is investigated. The output of Algorithm 1 (Generation of Attractive and Repulsive Fields) is an

Appl. Sci. 2018, 8, 2229 5 of 20

attractive field and a repulsive field in the form of matrices. The constants xmax and ymax characterize
the workspace in which the manipulator works. Following the generation of the final function, it is
then necessary to find the shortest path from the start point of the manipulator end-effector to its goal
point in the workspace, according to Figure 3. This can be achieved by the following algorithm.

Algorithm 1 Generation of Attractive and Repulsive Fields

1: Determination (scan) of the obstacles
2: Uatt - > zero matrix, Uatt ∈ Rxmax × ymax

3: Urep - > unit matrix, Urep ∈ Rxmax × ymax

4: FOR x = x_min: x_max
5: FOR y = y_min: y_max
6: Computation of −∇Uatt(x, y)
7: FOR obstacle = 1: number_of_obstacles
8: IF ‖ sobstacle − srobot ‖≤ d0

9: ∇Urep(x, y) = ∇Urep + η
(

1
d −

1
d0

)2

10: ELSE
11: ∇Urep(x, y) = ∇Urep(x, y) + 0
12: END IF
13: END FOR
14: END FOR
15: END FOR
16: F(q) = −∇Uatt +∇Urep

Algorithm 2 (Path Planning) works with the output of Algorithm 1 (Generation of Attractive and
Repulsive Fields). The aim of this algorithm is to determine the shortest path from the start point to the
goal point. The output of this algorithm is the matrix P ∈ Rr × 2, where r is the number of workspace
positions between the start point and the goal point. The matrix P is then used as the input to the
inverse kinematic model to control the manipulator links.

The designed environment in our study, including the planned path from the start to the goal
point, can be seen in the Figure 4.

Figure 4 shows the goal position in (2, 140, 0), which is the local extreme of the attractive field.
This environment with five obstacles and exactly defined start and goal points is used for all of the
case studies in this paper. A different view of the generated potential field can be seen in Figure 5. The
field surrounding the obstacles affects out from the obstacles and each point of the workspace tends to
the goal point.

The planned path of the manipulator end-effector is subsequently used as input to the inverse
kinematic model of manipulator.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 20

20: 4:x_start = x_start, y_start = y_start+1

21: 5:x_start = x_start-1, y_start = y_start-1

22: 6:x_start = x_start-1, y_start = y_start+1

23: 7:x_start = x_start+1, y_start = y_start-1

24: 8:x_start = x_start+1, y_start = y_start+1

25: END SWITCH

26: END WHILE

The designed environment in our study, including the planned path from the start to the goal

point, can be seen in the Figure 4.

Figure 4. The final potential field with the obstacles and planned path.

Figure 4 shows the goal position in (2, 140, 0), which is the local extreme of the attractive field.

This environment with five obstacles and exactly defined start and goal points is used for all of the

case studies in this paper. A different view of the generated potential field can be seen in Figure 5.

The field surrounding the obstacles affects out from the obstacles and each point of the workspace

tends to the goal point.

Figure 5. Planned path using potential field method.

The planned path of the manipulator end-effector is subsequently used as input to the inverse

kinematic model of manipulator.

3. Inverse Kinematic Model and Computing Algorithm

Figure 4. The final potential field with the obstacles and planned path.

Appl. Sci. 2018, 8, 2229 6 of 20

Algorithm 2 Path Planning

1: x_start = x_position_of_end-effector,
y_start = y_position_of_end-effector

2: flag = non zero value
3: WHILE flag 6= 0
4: i = i + 1
5: P[i,1] = x_start, P[i,2] = y_start
6: flag = F(q) [x_start, y_start]
7: U_temp[1] = F(q) [x_start-1, y_start]
8: U_temp[2] = F(q) [x_start+1, y_start]
9: U_temp[3] = F(q) [x_start, y_start-1]
10: U_temp[4] = F(q) [x_start, y_start+1]
11: U_temp[5] = F(q) [x_start-1, y_start-1]
12: U_temp[6] = F(q) [x_start-1, y_start+1]
13: U_temp[7] = F(q) [x_start+1, y_start-1]
14: U_temp[8] = F(q) [x_start+1, y_start+1]
15: k = position_of_min_value_of_U_temp
16: SWITCH (k)
17: 1:x_start = x_start-1, y_start = y_start
18: 2:x_start = x_start+1, y_start = y_start
19: 3:x_start = x_start, y_start = y_start-1
20: 4:x_start = x_start, y_start = y_start+1
21: 5:x_start = x_start-1, y_start = y_start-1
22: 6:x_start = x_start-1, y_start = y_start+1
23: 7:x_start = x_start+1, y_start = y_start-1
24: 8:x_start = x_start+1, y_start = y_start+1
25: END SWITCH
26: END WHILE

Appl. Sci. 2018, 8, x FOR PEER REVIEW 6 of 20

20: 4:x_start = x_start, y_start = y_start+1

21: 5:x_start = x_start-1, y_start = y_start-1

22: 6:x_start = x_start-1, y_start = y_start+1

23: 7:x_start = x_start+1, y_start = y_start-1

24: 8:x_start = x_start+1, y_start = y_start+1

25: END SWITCH

26: END WHILE

The designed environment in our study, including the planned path from the start to the goal

point, can be seen in the Figure 4.

Figure 4. The final potential field with the obstacles and planned path.

Figure 4 shows the goal position in (2, 140, 0), which is the local extreme of the attractive field.

This environment with five obstacles and exactly defined start and goal points is used for all of the

case studies in this paper. A different view of the generated potential field can be seen in Figure 5.

The field surrounding the obstacles affects out from the obstacles and each point of the workspace

tends to the goal point.

Figure 5. Planned path using potential field method.

The planned path of the manipulator end-effector is subsequently used as input to the inverse

kinematic model of manipulator.

3. Inverse Kinematic Model and Computing Algorithm

Figure 5. Planned path using potential field method.

3. Inverse Kinematic Model and Computing Algorithm

The inverse kinematic model serves to find such vector of generalized variables q ∈ Rn,
(n—number of DOF) in the joint space, by which the end-effector of the manipulator reaches the
required position in the task space x ∈ Rm. The vector of generalized variables is defined as
q = [q1, q2, . . . , qn]

T. The solution of the inverse kinematic model is significantly more difficult
to obtain than that of the direct kinematic model. In many cases there are no analytical solutions. This
especially holds in cases of kinematically-redundant manipulators [28]. In such cases, a numerical

Appl. Sci. 2018, 8, 2229 7 of 20

solution of inverse kinematics has to be applied. The solution arises from the following Equation (6),
which represents the relation between joint space and task space:

·
x = J

·
q (6)

where
·
x is vector of end-effector velocity, q is vector of generalized variables–joint velocities, and

J ∈ Rm×n is the Jacobian matrix. The indices m and n represent the dimension of task space and the
dimension of joint space, respectively. The inverse kinematics are usually based on the numerical
solution of:

·
q = J−1 ·x (7)

Equation (7) can be solved when the Jacobian matrix is symmetric. For non-symmetric Jacobian
matrices, any method developed for the purpose of Equation (7) solving has to be applied, such
as the pseudo-inverse of the Jacobian matrix, or its transposition. In this study, the damped least
squares method is used. The Equation (7) includes primary solution-finding, such as q, by which
the end-effector reaches the required position in the task space. Subsequently, the advantage
of kinematically-redundant manipulators can be applied. This advantage relates to the use of
the redundant degrees of freedom for optimization tasks. From the viewpoint of mathematics,
kinematically-redundant manipulators can reach the desired position of end-effector in an infinite
amount of ways. In other words, the required position x can be reached by an infinite amount of
generalized variable configurations.

The optimization tasks solved in this study are a joint limit avoidance task, a kinematic singularity
avoidance task, and an obstacle avoidance task. These tasks are so-called secondary tasks which can
be completed while the primary task is also performed. There are several methods to solve these
optimization tasks. This study uses a method which is part of the class of Jacobian-based methods
class. This method considers weight matrices in order to prioritize particular tasks. Very often,
some constraints cannot be satisfied simultaneously, although they can be satisfied separately [29];
accordingly, some compromise has to be made.

3.1. Kinematic Singularities Avoidance Task

The kinematic singularities avoidance task plays a significant role during numerical computing.
Around the singular positions, the manipulator loses its manipulability and the numerical computation
slows down until it fails [30]. Kinematic singularities represent the problem with the mapping of task
space to joint space. This problem occurs when the determinate of the Jacobian matrix equals zero, that
is, detJ(q) = 0. There are many methods dealing with these computing problems. In this study, the
damped least squares method arises from the objective function H. The damped least squares method
was used for the first time in 1986 by Nakamura [31] and also independently by Wampler [32]. H is
given as:

H = ‖J ·q− ·x‖
2
+ ‖ρ ·q‖

2
(8)

where the first term provides primary task solution and the second term deals with kinematic
singularities by suitable choice of non-zero positive parameter ρ. The vector of joint velocity

·
q

is derived by dH

d
·
q

T = 0:

·
q = JT

(
JJT + ρ2I

)−1 ·
x (9)

where I ∈ Rm×m is a square diagonal unit matrix with the dimension of end-effector task space.

3.2. Joint Limit Avoidance Task

The joint limit avoidance task deals with the range of motion of particular manipulator links.
In the case of revolute joints, the construction of real manipulators usually does not allow full joint

Appl. Sci. 2018, 8, 2229 8 of 20

revolution (360◦). During motion control of the manipulator, this limitation of link motion has to be
considered in order to prevent the destruction of manipulator construction.

For the joint limit avoidance task, we use an approach with changing of value of weight variable
Wli based on joint position. If the joint is in admissible range, the value of the weight variable is set
to be zero. When the joint reaches the boundary of its range motion, the value of the weight variable
increases. When the joint reaches a value out of its admissible range, the value of the weight variable
increases to its maximum. This approach can be expressed by Equation (10) [33]:

Wli =

WW ← qi < qimin
WW

2

{
1 + cos

[
π
(

qi−qimin
ρi

)]}
← qimin ≤ qi ≤ qimin + ρi

0← qimin + ρi ← qi ← qimax − ρi
WW

2

{
1 + cos

[
π
(

qimax−qi
ρi

)]}
← qimax − ρi ≤ qi ≤ qimax

WW ← qi > qimax

(10)

The value of the weight variable has to be set for every joint of the manipulator which needs to be
limited in the range of motion. Particular weight variables Wli are parts of the final weight matrix of
the joint limit avoidance task Wl ∈ Rn×n. The final weight matrix is the diagonal matrix:

Wl =

Wl1

Wl2
Wl3

. . .
Wln

 (11)

The weight matrix Wl is used with the corresponding Jacobian matrix Jl ∈ Rn×n. The Jacobian
matrix for the joint limit avoidance task is Jl =

∂e
∂q . If a particular joint does not consider the joint limit

avoidance task, the value of Jl is set to be zero; otherwise it is set to be one. The limit of all links of the
manipulator investigated in this study is ± 100◦.

3.3. Obstacle Avoidance Task

During the obstacle avoidance task, the control system investigates the relation between
manipulator links and obstacles in their environment. The aim of this secondary task is to prevent the
collision between any part of the manipulator and potential obstacles, regardless of whether the shape
of the obstacle is regular or irregular. Every obstacle of irregular shape can be geometrically modeled
as a cylinder, with the obstacle being situated in the center of the cylinder; the diameter of the cylinder
determines the distance of influence of this obstacle.

The coordinate of an obstacle in the end-effector task space is so. The projection of the line from
the i-th joint of the manipulator link to the center of a particular cylinder on the i-th link is [33]:

pi = eT
i (s0 − si) (12)

The coordinate of the potential link point which could collide with the obstacle is:

sci = si + piei (13)

The distance between the potential point of collision on the link and the center of the cylinder is
expressed as:

dci =‖ sci − s0 ‖ (14)

Appl. Sci. 2018, 8, 2229 9 of 20

The unit vector of the potential point of collision to the center of the obstacle is:

ui =
sai − s0

dci
(15)

Analogous to the joint limit avoidance task, the Jacobian matrix also has to be determined for the
obstacle avoidance task. The i-th row of the Jacobian matrix can be written as:

Jci = −uT
i Jsci

(16)

The matrix Jsci
is:

Jsci
=

∂sci

∂q
(17)

The Jacobian matrix Jc consists of submatrices Jci. The dimension of the Jacobian matrix is
Jc ∈ Rc×c, where c represents the number of manipulator links which could collide with the obstacles.

3.4. Final Inverse Kinematic Model

For the final inverse kinematic model, a Jacobian-based method is used. This method is based on
the minimization of the objective function, which deals with the primary task as well as secondary
tasks. The advantage of this method is that the number of secondary tasks is not limited, as it is in task
augmentation methods [33].

In this study, we investigate the algorithms for a five-link and 20-link manipulator moving in the
plane. The redundancy of the investigated manipulator is used for the abovementioned optimization
tasks, namely the obstacle avoidance task, the joint limit avoidance task, and the kinematic singularities
avoidance task. The redundancy problem can be expressed by finding a vector q which approximately
satisfies Equation (7) by minimizing the objective function H. The final inverse kinematic model can be
derived based on the same idea as mentioned in Section 3.1:

H =‖ J
·
q− ·x ‖

2
+ ‖ Jc

·
q− ·xc ‖

2
+ ‖ JL

·
q− ·xL ‖

2
+ ‖ ρ ·q ‖

2
(18)

where Jc ∈ Rc×c is the Jacobian matrix for the obstacle avoidance task, c is the number of links
which can collide with an obstacle, JL ∈ Rl×l is the Jacobian matrix for the joint limit avoidance task,
l is the number of joints in which its motion limit is considered, and ρ is a scalar constant which
overcomes computing problems around kinematic singularities. Equation (18) considers the primary

task represented by the term ‖ J
·
q− ·x ‖

2
and other secondary tasks. The weight matrix is assigned to

each task in order to set the priority of particular tasks. This can be achieved by using weight matrices,
as follows:

H =
(

J
·
q− ·x

)T
W
(

J
·
q− ·x

)
+
(

Jc
·
q− ·xc

)T
Wc

(
Jc
·
q− ·xc

)
+
(

JL
·
q− ·xL

)T
WL

(
JL
·
q− ·xL

)
+ Ws

·
q

T ·
q (19)

where W ∈ Rm×m is the weight matrix of the primary task, Wc ∈ Rc×c is the weight matrix of
the obstacle avoidance task, WL ∈ Rl×l is the weight matrix of the joint limit avoidance task, and
Ws ∈ Rn×n is the weight matrix of the kinematic singularities avoidance task. These weight matrices
are diagonal matrices multiplied by coefficients to set the level of priority of the given task. The choice
of these coefficients is subjective. The solution of Equation (19) is given by dH

d
·
q

T :

dH

d
·
q

T = 2
(

JTWeJ + JT
c WcJc + JT

l WlJl + Ws

) ·
q− 2

(
JTWe

·
x + JT

c Wc
·
xc + JT

l Wl
·
xl

)
(20)

Appl. Sci. 2018, 8, 2229 10 of 20

The vector of joint velocities
·
q is expressed by dH

d
·
q

T = 0:

·
q =

(
J−1WJ + JT

c WcJc + Jl
−1WlJl + Ws

)−1(
JTW

·
x + JT

c Wc
·
xc + JT

l Wl
·
xl

)
(21)

Considering Equation (21), the joint velocities
·
xc and

·
xL have to be set to zero in order to avoid

the joint limits and collisions with the obstacles. In other words, to prevent these secondary tasks,
their velocities have to be zero. In this study, the dimensions of matrices Wc, WL, and Ws are 5 × 5
for the five-link manipulator and 20 × 20 for the 20-link manipulator. Consequently, the final inverse
kinematic model is:

·
q =

(
J−1WJ + JT

c WcJc + Jl
−1WlJl + Ws

)−1(
JTW

·
x
)

(22)

Next, the algorithm for the inverse kinematics solution will be presented. The aim of Algorithm 3
(Inverse kinematic model) is the positioning of the end-effector of the manipulator through the points
of the planned path from Section 2 while manipulator links hold all secondary tasks.

Algorithm 3 Inverse kinematic model

1: CYCLE WHILE 1
2: Determination of new required vector xd ∈ Rm from the matrix of planned path P ∈ Rr × 2

3: CYCLE WHILE 2
4: Computation of Jacobian matrix J (damped least squares method)
5: Determination of actual end-effector position in the task space x ∈ Rm with actual

generalized variables q ∈ Rn

6: Computation of general equation
·
q =

(
J−1WJ + Jc

−1WcJc + Jl
−1WlJl + Ws

)−1(
JTW

·
x
)

7: q = qprevious +
·
qdt

8: qprevious = q

9: IF xd = x THEN
END CYCLE WHILE 2

ELSE
CYCLE WHILE 2 continues

END IF
10: END CYCLE WHILE 2
11: END CYCLE WHILE 1

The output of Algorithm 2 (Path Planning) is used as the input to Algorithm 3 (Inverse kinematic
model). The “WHILE 1” cycle ensures the positioning of the end-effector through each point of the
planned path given by P ∈ Rr × 2. The “WHILE 2” cycle finds the solution for xd by means of the final
inverse kinematic model given by Equation (22). This cycle ends when the end-effector position in
the task space equals the required position xd—the point from the planned path. The solution also
assumes a certain tolerance, which is given by the user.

One of the challenges of this method using weight matrices is the setting of the values of particular
weight matrices. Since this choice is subjective, the incorrect choice of weight matrices can cause the
computation to slow down or fail. Our contribution to this field is the modification of the computing
algorithm in using flexible tasks priority.

3.5. A New Algorithm of Inverse Kinematic Model—Acceleration of Computing

The problem in numerical modeling occurs in the case of inappropriate choice of the priority for
all tasks solved in the inverse kinematic model. Let us consider the inverse kinematic model, including
joint limit and obstacle and kinematic singularities avoidance tasks. By setting the priority for all tasks,

Appl. Sci. 2018, 8, 2229 11 of 20

the control system could work according to our requirements. For example, by adding obstacles to
the manipulator workspace, while the priority of weight matrices remains the same, the numerical
computing could not work as we expect. In many cases, the computing process not only slows down
but the process even fails. For this reason, we have improved this method in order to deal with these
problems during the simulation. Our approach is based on changing the priority of a particular task of
the inverse kinematic model during the simulation, according to simulation behavior.

During the performance of the “WHILE 2” cycle, the variable counter increases in each cycle
while the actual position of the end-effector x does not equal the required position xd. If the value
of the variable counter is greater than max. admissible value, which means that the calculation time is
too long, the priority of the chosen task decreases in order to accelerate the computation. When the
solution for the required position xd has been found and at the same time if the value of the variable
counter is lower than min. admissible value, the priority of the chosen task increases. Increasing, as
well as decreasing, the priority of the chosen task is in certain boundaries defined function (linear,
quadratic, etc.).

Our new approach, namely flexible priority solution (FPS), significantly accelerates the
computation of the inverse kinematic model with secondary tasks that will be shown in the
simulation results.

4. Low Level Control

For experimental purposes, we used a fuve-link manipulator with five Dynamixel AX-12
servomechanisms (ROBOTIS, Seoul, Korea) with a torque of 1.49 Nm and a speed of 0.169/60◦.
The servomechanisms were connected in series, as shown in Figure 6.

The servomechanisms communicate together through UART (Universal asynchronous
receiver-transmitter) communication protocol using circuit SN74LS241N. Every transmitted and
received packet has the following form:

0xFF–0xFF–Id–Length–Instruction–Parameter 1– . . . –Parameter N–Check sum

The first two bytes indicate the start of the received or transmitted packet. By other bytes we set
the required operation from all available functions of Dynamixel AX12. The servomechanisms of the
experimental manipulator were controlled by an ATmega162 microcontroller running at 16 MHz.

The ATmega162 microcontroller has RISC (Reduced instruction set computer) architecture
allowing up to 16 MIPS (Million Instruction Per Second) throughput at 16 MHz. The simplified
model of algorithm running on ATmega162 describes Algorithm 4 (Low level control):

Algorithm 4 Low level control

1: CYCLE WHILE 1
2: Find out positions of servomechanisms (UART 1)
3: Send positions to PC (UART 2)
4: CYCLE WHILE 2
5: wait for all required positions from PC
6: END CYCLE WHILE 2
7: Move servomechanisms to required positions
8: END CYCLE WHILE 1

The “WHILE 1” cycle is an infinite cycle running on microcontroller ATmega162. The
microcontroller uses two independent UART communications, the first one for communication with
the servomechanism inner controller and the second one for communication with a PC. Both of these
communications run at a speed of 200 kB/s.

The scheme of information flow is shown in Figure 7.

Appl. Sci. 2018, 8, 2229 12 of 20

Appl. Sci. 2018, 8, x FOR PEER REVIEW 11 of 20

During the performance of the “WHILE 2” cycle, the variable counter increases in each cycle

while the actual position of the end-effector x does not equal the required position xd. If the value

of the variable counter is greater than max. admissible value, which means that the calculation time is

too long, the priority of the chosen task decreases in order to accelerate the computation. When the

solution for the required position xd has been found and at the same time if the value of the variable

counter is lower than min. admissible value, the priority of the chosen task increases. Increasing, as well

as decreasing, the priority of the chosen task is in certain boundaries defined function (linear,

quadratic, etc.).

Our new approach, namely flexible priority solution (FPS), significantly accelerates the

computation of the inverse kinematic model with secondary tasks that will be shown in the

simulation results.

4. Low Level Control

For experimental purposes, we used a fuve-link manipulator with five Dynamixel AX-12

servomechanisms (ROBOTIS, Seoul, Korea) with a torque of 1.49 Nm and a speed of 0.169/60°. The

servomechanisms were connected in series, as shown in Figure 6.

The servomechanisms communicate together through UART (Universal asynchronous receiver-

transmitter) communication protocol using circuit SN74LS241N. Every transmitted and received

packet has the following form:

0xFF–0xFF–Id–Length–Instruction–Parameter 1– … –Parameter N–Check sum

The first two bytes indicate the start of the received or transmitted packet. By other bytes we set

the required operation from all available functions of Dynamixel AX12. The servomechanisms of the

experimental manipulator were controlled by an ATmega162 microcontroller running at 16 MHz.

Figure 6. Dynamixel AX12 connection.

The ATmega162 microcontroller has RISC (Reduced instruction set computer) architecture

allowing up to 16 MIPS (Million Instruction Per Second) throughput at 16 MHz. The simplified model

of algorithm running on ATmega162 describes Algorithm 4 (Low level control):

Algorithm 4 Low level control

1: CYCLE WHILE 1

2: Find out positions of servomechanisms (UART 1)

3: Send positions to PC (UART 2)

4: CYCLE WHILE 2

5: wait for all required positions from PC

6: END CYCLE WHILE 2

7: Move servomechanisms to required positions

8: END CYCLE WHILE 1

The “WHILE 1” cycle is an infinite cycle running on microcontroller ATmega162. The

microcontroller uses two independent UART communications, the first one for communication with

the servomechanism inner controller and the second one for communication with a PC. Both of these

communications run at a speed of 200 kB/s.

The scheme of information flow is shown in Figure 7.

Figure 6. Dynamixel AX12 connection.Appl. Sci. 2018, 8, x FOR PEER REVIEW 12 of 20

Figure 7. Scheme of information flow.

The user determines the input parameters, such as the priority of primary and secondary tasks.

The control systems are run using MATLAB (MathWorks, Massachusetts, USA) software, which

transmits the requirements of servomechanisms positions to the microcontroller and microcontroller

to the inner control system of the servomechanisms. The actual positions of the servomechanisms are

transmitted to the microcontroller by the inner control system of servomechanisms. The

microcontroller processes these data and transmits them to MATLAB. Algorithm 5 (Modified

algorithm for inverse kinematic model) is run in MATLAB, while Algorithm 4 (Low level control)

runs in the ATmega162 microcontroller.

Algorithm 5 New algorithm for inverse kinematic model

1: CYCLE WHILE 1

2: Determination of new required vector xd ∈ R
m from the matrix of planned

 path P ∈ Rr ×2

3: CYCLE WHILE 2

4: increase counter

5: IF counter > max. admissible value

6: decrease priority of chosen task by chosen function

7: counter = 0

8: END IF

9: Computation of Jacobian matrix J (damped least squares method)

10: Determination of actual end-effector position in the task space x ∈ Rm

 with actual generalized variables q ∈ Rn

11: Computation of general equation

 q̇ = (J-1WJ + JO
-1WcJc + Jl

-1WlJl +Ws)
-1
(JTWẋ)

12: q = qprevious + q̇dt

13: qprevious = q

14: IF xd = x THEN

15: END CYCLE WHILE 2

16: ELSE

17: CYCLE WHILE 2 continues

18: END IF

19: END CYCLE WHILE 2

20: IF counter < min. admissible value

21: increase priority of chosen task by chosen function

22: counter = 0

23: END IF

24: counter = 0

25: END CYCLE WHILE 1

5. Numerical Computing and Results

In this section, the testing of several case studies is presented. The first one assumed a 20-link

manipulator and the second one a 5-link manipulator. These case studies used the same initial

conditions as number and positions of obstacles, the same start and goal point of end-effector, and

range of links motion of ±100°. The link length of the five-link manipulator was 67 mm and the link

length of the 20-link manipulator was 16.75 mm. Both manipulators had a link length of 335 mm. The

admissible tolerance of end-effector positioning was set to be 5 mm.

All of the abovementioned algorithms were subsequently applied by numerical computing. All

case studies used the same scenario according to Figure 4. Case studies were run using an Intel Core™

Figure 7. Scheme of information flow.

The user determines the input parameters, such as the priority of primary and secondary
tasks. The control systems are run using MATLAB (MathWorks, Natick, MA, USA) software, which
transmits the requirements of servomechanisms positions to the microcontroller and microcontroller to
the inner control system of the servomechanisms. The actual positions of the servomechanisms
are transmitted to the microcontroller by the inner control system of servomechanisms. The
microcontroller processes these data and transmits them to MATLAB. Algorithm 5 (Modified algorithm
for inverse kinematic model) is run in MATLAB, while Algorithm 4 (Low level control) runs in the
ATmega162 microcontroller.

Algorithm 5 New algorithm for inverse kinematic model

1: CYCLE WHILE 1
2: Determination of new required vector xd ∈ Rm from the matrix of planned

path P ∈ Rr × 2

3: CYCLE WHILE 2
4: increase counter
5: IF counter > max. admissible value
6: decrease priority of chosen task by chosen function
7: counter = 0
8: END IF
9: Computation of Jacobian matrix J (damped least squares method)
10: Determination of actual end-effector position in the task space x ∈ Rm

with actual generalized variables q ∈ Rn

11: Computation of general equation
·
q =

(
J−1WJ + JO

−1WcJc + Jl
−1WlJl + Ws

)−1(
JTW

·
x
)

12: q = qprevious +
·
qdt

13: qprevious = q

14: IF xd = x THEN
15: END CYCLE WHILE 2
16: ELSE
17: CYCLE WHILE 2 continues
18: END IF
19: END CYCLE WHILE 2
20: IF counter < min. admissible value
21: increase priority of chosen task by chosen function
22: counter = 0
23: END IF
24: counter = 0
25: END CYCLE WHILE 1

Appl. Sci. 2018, 8, 2229 13 of 20

5. Numerical Computing and Results

In this section, the testing of several case studies is presented. The first one assumed a 20-link
manipulator and the second one a 5-link manipulator. These case studies used the same initial
conditions as number and positions of obstacles, the same start and goal point of end-effector, and
range of links motion of ±100◦. The link length of the five-link manipulator was 67 mm and the link
length of the 20-link manipulator was 16.75 mm. Both manipulators had a link length of 335 mm. The
admissible tolerance of end-effector positioning was set to be 5 mm.

All of the abovementioned algorithms were subsequently applied by numerical computing. All
case studies used the same scenario according to Figure 4. Case studies were run using an Intel Core™
i7-3770 3.40 GHz CPU. The resulting computing time for particular case studies was an average value
based on 10 repeated simulations.

5.1. Case Study 1

The first case study assumes a 20-link manipulator with a link length of 16.75 mm. The values of
the weight matrices are as follows: the weight matrix of the primary task, W = 0.1I, where I is a unit
matrix with dimension 2 × 2; the weight matrix of the obstacle avoidance task, Wc = 20I, where I is
a unit matrix with dimension 20 × 20; the weight matrix of the joint limit avoidance task, Wl = 50I,
where I is a unit matrix with dimension 20 × 20; and the weight matrix of the kinematic singularities
avoidance task, Ws = 50I, where I is a unit matrix with dimension 20 × 20.

In the case of the introduced method working with Algorithm 3 with constant weight matrices,
the simulation time was 46.3663 s. Using FPS, the simulation time was 34.9354 s. Our approach
speeds up the simulation by about 24.65%. Graphical representations of the simulation of the 20-link
manipulator are shown in Figure 8.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 13 of 20

i7-3770 3.40 GHz CPU. The resulting computing time for particular case studies was an average value

based on 10 repeated simulations.

5.1. Case Study 1

The first case study assumes a 20-link manipulator with a link length of 16.75 mm. The values

of the weight matrices are as follows: the weight matrix of the primary task, W = 0.1I, where I is a

unit matrix with dimension 2 × 2; the weight matrix of the obstacle avoidance task, Wc = 20I, where

I is a unit matrix with dimension 20 × 20; the weight matrix of the joint limit avoidance task, Wl =

50I , where I is a unit matrix with dimension 20 × 20; and the weight matrix of the kinematic

singularities avoidance task, Ws = 50I, where I is a unit matrix with dimension 20 × 20.

In the case of the introduced method working with Algorithm 3 with constant weight matrices,

the simulation time was 46.3663 s. Using FPS, the simulation time was 34.9354 s. Our approach speeds

up the simulation by about 24.65%. Graphical representations of the simulation of the 20-link

manipulator are shown in Figure 8.

Figure 8. Graphical representations of the simulation of the 20-link manipulator.

5.2. Case Study 2

The second case study assumes a 5-link manipulator with a link length of 67 mm. The values of

all weight matrices are the same as in Case Study 1. The only difference is in the dimension of weight

matrices.

In the case with constant weight matrices, the simulation time was 8.8106 s. Using our algorithm,

the simulation time decreased to 5.6325 s. Using FPS speeds up the simulation by about 36.07%.

Graphical representations of the simulation of Case Study 2 are shown in Figure 9.

Figure 8. Graphical representations of the simulation of the 20-link manipulator.

Appl. Sci. 2018, 8, 2229 14 of 20

5.2. Case Study 2

The second case study assumes a 5-link manipulator with a link length of 67 mm. The values
of all weight matrices are the same as in Case Study 1. The only difference is in the dimension of
weight matrices.

In the case with constant weight matrices, the simulation time was 8.8106 s. Using our algorithm,
the simulation time decreased to 5.6325 s. Using FPS speeds up the simulation by about 36.07%.
Graphical representations of the simulation of Case Study 2 are shown in Figure 9.Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 20

Figure 9. Graphical representations of the simulation of the five-link manipulator.

Algorithm 5 (New algorithm for inverse kinematic model) appeared to be significantly

accelerative. Using Algorithm 3, in some cases the computing fails, whereas using our approach the

computing finished successfully. The effectiveness of the improved approach is due to the suitable

choice of the parameters max. admissible value and min. admissible value from Algorithm 5. Despite

the fact that our algorithm consists of more computing instructions in comparison with the original

algorithm, it is significantly faster; in the case of the five-link manipulator, it is 36.07% times faster

and in the case of the 20-link manipulator it is 24.65% faster.

For all case studies, all weight matrices were constant besides the weight matrix of the primary

task. This means that the joint limit avoidance task, kinematic singularities avoidance task, and

obstacle avoidance task have more priority than the precise positioning of the end-effector through

each point of the planned path. In other words, it is better to move the end-effector slightly less

precisely than for the manipulator to collide with the obstacles, since this could result in destructive

consequences for the manipulator or its environment in real applications.

The second case study, considering the 5-link manipulator, was also tested by an experimental

model composed of five Dynamixel AX12 servomechanisms. The following figures compare

generalized variables q = [q1, q2, … , qn]
T from the simulation model to those of the experimental

model.

Figure 10 shows that the real manipulator, except for small deviations, almost exactly copies the

simulated values of the generalized variables. The small deviations are caused by the control system

of the servomechanisms not being properly tuned [34]. Figure 11 shows the end-effector positioning

error. The error of simulation is roughly 5 mm. This error was caused by the predetermined tolerance

of positioning, which is 5 mm.

Figure 9. Graphical representations of the simulation of the five-link manipulator.

Algorithm 5 (New algorithm for inverse kinematic model) appeared to be significantly accelerative.
Using Algorithm 3, in some cases the computing fails, whereas using our approach the computing
finished successfully. The effectiveness of the improved approach is due to the suitable choice of the
parameters max. admissible value and min. admissible value from Algorithm 5. Despite the fact that
our algorithm consists of more computing instructions in comparison with the original algorithm, it is
significantly faster; in the case of the five-link manipulator, it is 36.07% times faster and in the case of
the 20-link manipulator it is 24.65% faster.

For all case studies, all weight matrices were constant besides the weight matrix of the primary
task. This means that the joint limit avoidance task, kinematic singularities avoidance task, and obstacle
avoidance task have more priority than the precise positioning of the end-effector through each point
of the planned path. In other words, it is better to move the end-effector slightly less precisely than for
the manipulator to collide with the obstacles, since this could result in destructive consequences for
the manipulator or its environment in real applications.

The second case study, considering the 5-link manipulator, was also tested by an experimental
model composed of five Dynamixel AX12 servomechanisms. The following figures compare
generalized variables q = [q1, q2, . . . , qn]

T from the simulation model to those of the
experimental model.

Figure 10 shows that the real manipulator, except for small deviations, almost exactly copies the
simulated values of the generalized variables. The small deviations are caused by the control system

Appl. Sci. 2018, 8, 2229 15 of 20

of the servomechanisms not being properly tuned [34]. Figure 11 shows the end-effector positioning
error. The error of simulation is roughly 5 mm. This error was caused by the predetermined tolerance
of positioning, which is 5 mm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 14 of 20

Figure 9. Graphical representations of the simulation of the five-link manipulator.

Algorithm 5 (New algorithm for inverse kinematic model) appeared to be significantly

accelerative. Using Algorithm 3, in some cases the computing fails, whereas using our approach the

computing finished successfully. The effectiveness of the improved approach is due to the suitable

choice of the parameters max. admissible value and min. admissible value from Algorithm 5. Despite

the fact that our algorithm consists of more computing instructions in comparison with the original

algorithm, it is significantly faster; in the case of the five-link manipulator, it is 36.07% times faster

and in the case of the 20-link manipulator it is 24.65% faster.

For all case studies, all weight matrices were constant besides the weight matrix of the primary

task. This means that the joint limit avoidance task, kinematic singularities avoidance task, and

obstacle avoidance task have more priority than the precise positioning of the end-effector through

each point of the planned path. In other words, it is better to move the end-effector slightly less

precisely than for the manipulator to collide with the obstacles, since this could result in destructive

consequences for the manipulator or its environment in real applications.

The second case study, considering the 5-link manipulator, was also tested by an experimental

model composed of five Dynamixel AX12 servomechanisms. The following figures compare

generalized variables q = [q1, q2, … , qn]
T from the simulation model to those of the experimental

model.

Figure 10 shows that the real manipulator, except for small deviations, almost exactly copies the

simulated values of the generalized variables. The small deviations are caused by the control system

of the servomechanisms not being properly tuned [34]. Figure 11 shows the end-effector positioning

error. The error of simulation is roughly 5 mm. This error was caused by the predetermined tolerance

of positioning, which is 5 mm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 20

Figure 10. The time behavior of generalized variables.

Figure 11. End-effector positioning error.

Figure 12 shows images of the motion of the experiment using the five-link manipulator

according to the simulation from Figure 9. The video sequence was recorded using MATLAB image

equipment [35].

Figure 10. The time behavior of generalized variables.

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 20

Figure 10. The time behavior of generalized variables.

Figure 11. End-effector positioning error.

Figure 12 shows images of the motion of the experiment using the five-link manipulator

according to the simulation from Figure 9. The video sequence was recorded using MATLAB image

equipment [35].

Figure 11. End-effector positioning error.

Figure 12 shows images of the motion of the experiment using the five-link manipulator
according to the simulation from Figure 9. The video sequence was recorded using MATLAB image
equipment [35].

Figure 12 corresponds to the time behavior of the experimentally-given generalized variables
shown in Figure 10.

Appl. Sci. 2018, 8, 2229 16 of 20

Appl. Sci. 2018, 8, x FOR PEER REVIEW 15 of 20

Figure 10. The time behavior of generalized variables.

Figure 11. End-effector positioning error.

Figure 12 shows images of the motion of the experiment using the five-link manipulator

according to the simulation from Figure 9. The video sequence was recorded using MATLAB image

equipment [35].

Appl. Sci. 2018, 8, x FOR PEER REVIEW 16 of 20

Figure 12. Images from the experiment using the five-link manipulator.

Figure 12 corresponds to the time behavior of the experimentally-given generalized variables

shown in Figure 10.

5.3. Comparison with Other Methods

In the previous section, the WLN original approach working with task priorities was compared

with our developed FPS approach. In this section, analyses considering the next methods are

presented. Different simulation conditions will also be used.

The first method analyzed is from the gradient projection methods (GPM) class. GPM are

probably the most frequently discussed and used method for inverse kinematics of kinematically-

redundant manipulators. GPM was firstly introduced by Liegeois [8] to utilize kinematic redundancy

to avoid joint limits. By extension of the basic inverse kinematic model, a new model was derived [8]:

q̇ = J†ẋ + α(J†J − In)∇z (23)

where J† is the pseudoinverse matrix of J, In is the identity matrix In ∈ R
n×n, ∇z is the vector of

objective function, and α is a weighting parameter larger than zero. The term J†ẋ is a minimum-

norm solution and the term (J†J-In) is a null-space projection matrix. The homogeneous term

(J†J-In)∇z is orthogonal to J†ẋ and is referred to as the self-motion of the mechanism (manipulator)

in joint space with any influence on end-effector motion in task space. An arbitrary secondary task

can be applied for the objective function z according to requirements. For following case study, the

same secondary tasks that were introduced in previous sections were used. Equation (23) is presented

in the following tables as generalized GPM (GGPM).

Another widely used method for inverse kinematics is the closed-loop inverse kinematics (CLIK)

algorithm, which was developed to overcome the joint drift for open-chain robot manipulators [36].

The CLIK algorithm at velocity level can be formulated as follows. The expression of location error

and its derivative is:

e = xd − x (24)

ė = ẋd − ẋ (25)

The vector of joint velocity has to be set so the error tends to zero. Considering the pseudoinverse

solution, the generalized CLIK algorithm can be expressed as:

q̇ = J†[ẋd + KP(xd − x)] (26)

Equation (26) combined with Equation (6) gives:

ė = KPe (27)

where KP is a symmetric positive definite matrix. The final CLIK solution can be expressed as:

q̇ = J†[ẋd + KP(xd − x)] + α(J
†J − In)∇z (28)

Subsequently, all of the mentioned methods were applied in the simulations in order to compare

them in terms of computation time. The scenario was the same as in the first two case studies (Figure

4). For secondary tasks expression, the same approach as that introduced in previous sections is used.

Figure 12. Images from the experiment using the five-link manipulator.

5.3. Comparison with Other Methods

In the previous section, the WLN original approach working with task priorities was compared
with our developed FPS approach. In this section, analyses considering the next methods are presented.
Different simulation conditions will also be used.

The first method analyzed is from the gradient projection methods (GPM) class. GPM are probably
the most frequently discussed and used method for inverse kinematics of kinematically-redundant
manipulators. GPM was firstly introduced by Liegeois [8] to utilize kinematic redundancy to avoid
joint limits. By extension of the basic inverse kinematic model, a new model was derived [8]:

·
q = J† ·x + α

(
J†J− In

)
∇z (23)

where J† is the pseudoinverse matrix of J, In is the identity matrix In ∈ Rn×n, ∇z is the vector of
objective function, and α is a weighting parameter larger than zero. The term J† ·x is a minimum-norm
solution and the term

(
J†J− In

)
is a null-space projection matrix. The homogeneous term

(
J†J− In

)
∇z

is orthogonal to J† ·x and is referred to as the self-motion of the mechanism (manipulator) in joint space
with any influence on end-effector motion in task space. An arbitrary secondary task can be applied
for the objective function z according to requirements. For following case study, the same secondary
tasks that were introduced in previous sections were used. Equation (23) is presented in the following
tables as generalized GPM (GGPM).

Appl. Sci. 2018, 8, 2229 17 of 20

Another widely used method for inverse kinematics is the closed-loop inverse kinematics (CLIK)
algorithm, which was developed to overcome the joint drift for open-chain robot manipulators [36].
The CLIK algorithm at velocity level can be formulated as follows. The expression of location error
and its derivative is:

e = xd − x (24)
·
e =

·
xd −

·
x (25)

The vector of joint velocity has to be set so the error tends to zero. Considering the pseudoinverse
solution, the generalized CLIK algorithm can be expressed as:

·
q = J†

[·
xd + KP(xd − x)

]
(26)

Equation (26) combined with Equation (6) gives:

·
e = KPe (27)

where KP is a symmetric positive definite matrix. The final CLIK solution can be expressed as:

·
q = J†

[·
xd + KP(xd − x)

]
+ α

(
J†J− In

)
∇z (28)

Subsequently, all of the mentioned methods were applied in the simulations in order to compare
them in terms of computation time. The scenario was the same as in the first two case studies (Figure 4).
For secondary tasks expression, the same approach as that introduced in previous sections is used. In
the CLIK algorithm, matrix KP is set to be a diagonal matrix with values 10. The priority of the obstacle
avoidance task was then decreased from 20 to 2. In the following simulations, obstacle influence
was also changed. The obstacle influence is the parameter which causes increasing sense of obstacle
avoidance task. This parameter arises from Section 3.3. The higher this parameter is, the more difficult
the passage through the obstacles is. In other words, in the case of a high obstacle influence parameter,
the passage for manipulator motion is narrower. Thus, high obstacle influence represents highly
rugged terrain.

Based on numerical simulations, computing times are determined for all the described methods
in the following Tables 1–4. The simulations again consider a five-link and a 20-link manipulator.

Table 1. Simulation results with an obstacle influence of 10 mm.

Method Computation Time (s)—5 Links Computation Time (s)—20 Links

FPS 0.99 45.51
WLN 1.11 49.38

GGPM 19.15 92.62
CLIK 18.21 52.14

Table 2. Simulation results with an obstacle influence of 20 mm.

Method Computation Time (s)—5 Links Computation Time (s)—20 Links

FPS 1.24 44.54
WLN 1.57 49.61

GGPM 19.94 Failure
CLIK 18.39 Failure

Appl. Sci. 2018, 8, 2229 18 of 20

Table 3. Simulation results with an obstacle influence of 30 mm.

Method Computation Time (s)—5 Links Computation Time (s)—20 Links

FPS 1.29 45.52
WLN 1.82 69.96

GGPM 28.80 Failure
CLIK 26.79 Failure

Table 4. Simulation results with an obstacle influence of 40 mm.

Method Computation Time (s)—5 Links Computation Time (s)—20 Links

FPS 1.51 50.61
WLN 2.41 140.79

GGPM 31.09 Failure
CLIK 28.72 Failure

The simulation results show that our FPS method has significant utility. The computing time
is considerably lower, especially for the cases with a large number of DOF. The importance of FPS
also increases in cases with highly rugged terrain (i.e., those with large obstacle influence). The mark
“Failure” in the tables means that simulations lasted too long or the self-motion of particular joints
collided with obstacles or with other links.

6. Conclusions and Future Work

This study investigates the algorithms for investigating the positioning of manipulator
end-effector while secondary tasks are considered, namely a joint limit avoidance task, an obstacle
avoidance task, and a kinematic singularities avoidance task. The paper deals with path planning
for end-effector using potential field method. The output of path planning is used as the input to the
inverse kinematic model, which is designed by a Jacobian-based method. This approach includes
the use of weight matrices for primary and secondary tasks in order to set the priority of each task.
Using this method, during numerical simulations the computation significantly slowed down in
some cases. In this paper, a new approach is introduced which uses flexible choice of priority for
task of inverse kinematic model due to acceleration of computation. The choice of task priority was
performed based on simulation behavior. The simulations were performed using a 5-link and a 20-link
manipulator. If the computing power slowed down for a certain required position, the priority of
the main task decreased. Consequently, if the computing power during the simulation increased, the
priority of the main tasks also increased in order to increase the motion precision. In the case of the
20-link manipulator, our approach decreased computation time by 24.65%; and in the case of the 5-link
manipulator it decreased computation time by 36.07%. Our algorithm consists of more computing
instructions than the original algorithm, yet it is also faster. This paper also presents analysis including
the comparison of four methods for inverse kinematics. The analysis expresses the utility of FPS,
especially for cases when the manipulator has a large number of DOF and there is highly rugged
terrain. The results show the effectiveness of our approach.

In the future, we hope to continue in improving the new approach, that is, FPS, which is introduced
in this study. The aim of our future work will be to improve our approach by testing different functions
for increasing and decreasing level of task priority. Subsequently, we hope to utilize our approach in a
dynamically changing manipulator environment and to test it on an industry manipulator.

Author Contributions: I.V. and T.L.—mathematical model of redundant manipulator; L’.M.—simulations; M.K.
and F.F.—programming and experiments; and V.B.—data analysis.

Funding: This research was funded by Slovak Grant Agency VEGA1/0872/16 “Research of synthetic and
biological inspired locomotion of mechatronic systems in rugged terrain” and by project Slovak Grant Agency
VEGA 1/0389/18 “Research on kinematically redundant mechanisms”.

Appl. Sci. 2018, 8, 2229 19 of 20

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References

1. Chiaverini, S.; Oriolo, G.; Walker, I.D. Kinematically Redundant Manipulators; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 245–268.

2. Wei, Q.; Yang, C.; Fan, W.; Zhao, Y. Design of Demonstration-Driven Assembling Manipulator. Appl. Sci.
2018, 8. [CrossRef]

3. Kilin, A.; Bozek, P.; Karavaev, Y.; Klekovkin, A.; Shestakov, V. Experimental investigations of a highly
maneuverable mobile omniwheel robot. Int. J. Adv. Robot. Syst. 2017, 14. [CrossRef]

4. Siciliano, B. Kinematic Control of Redundant Robot Manipulators: A Tutorial. J. Intell. Robot. Syst. 1990, 3,
201–212. [CrossRef]

5. Wang, J.; Li, Y.; Zhao, X. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the
Closed-Loop Algorithm. Int. J. Adv. Robot. Syst. 2010, 7, 1–10. [CrossRef]

6. Flacco, F.; De Luca, A.; Khatib, O. Motion control of redundant robots under joint constraints: Saturation in
the null space. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul,
MN, USA, 14–18 May 2012; pp. 285–292.

7. Flacco, F.; De Luca, A. Discrete-time redundancy resolution at the velocity level with acceleration/torque
optimization properties. Robot. Auton. Syst. 2015, 70, 191–201. [CrossRef]

8. Liegeois, A. Automatic supervisory and control of the configuration and behavior of multibody and
mechanisms. IEEE Trans. Syst. Man Cybern. 1977, 12, 868–871. [CrossRef]

9. Chaumette, F.; Marchand, R. A redundancy-based iterative approach for avoiding joint limits: Application
to visual servoing. IEEE Trans. Robot. Autom. 2001, 17, 719–730. [CrossRef]

10. Konstantinov, M.S.; Markov, M.D.; Nencheu, D.N. Kinematic control of redundant manipulators. In
Proceedings of the 11th Znt. Symposium on Industrial Robots, Tokyo, Japan, 7–9 October 1981; pp. 561–568.
[CrossRef]

11. Whitney, D.E. The mathematics of coordinated control of prosthetic arms and manipulators. ASME J. Dyn.
Syst. Meas. Cont. 1972, 94, 303–309. [CrossRef]

12. Hollerbach, J.M.; Suh, K.C. Redundancy resolution of manipulators through torque optimization. IEEE J.
Robot. Autom. 1987, 3, 1016–1021. [CrossRef]

13. RunBin, C.; YangZheng, C.; Lin, L.; Jian, W.; Xu, M.H. Inverse Kinematics of a New Quadruped Robot
Control Method. Int. J. Adv. Robot. Syst. 2013, 10. [CrossRef]

14. Whitney, D.E. Resolved Motion Rate Control of Manipulators and Human Prostheses. IEEE Trans. Man-Mach.
Syst. 1969, 10, 47–53. [CrossRef]

15. Chan, T.F.; Dubey, R.V. A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for
Redundant Joint Manipulators. IEEE Trans. Robot. Autom. 1995. [CrossRef]

16. Huang, S.; Peng, Y.; Wei, W.; Xiang, J. Clamping weighted least-norm method for the manipulator kinematic
control with constraint. Int. J. Cont. 2016, 89, 2240–2249. [CrossRef]

17. Chiaverini, S. Singularity-Robust Task-Priority Redundancy Resolution for Real-Time Kinematic Control of
Robot Manipulators. IEEE Trans. Robot. Autom. 1997, 13, 398–410. [CrossRef]

18. Park, J.; Choi, Y.; Chung, W.K.; Youm, Y. Multiple Tasks Kinematics Using Weighted Pseudo-Inverse for
Kinematically Redundant Manipulators. In Proceedings of the IEEE International Conference on Robotics
and Automation, Seoul, Korea, 21–26 May 2001.

19. Lee, J.; Mansard, N.; Park, J. Intermediate Desired Value Approach for Task Transition of Robots in Kinematic
Control. IEEE Trans. Robot. 2012, 28, 1260–1277. [CrossRef]

20. Zlajpah, L.; Nemec, B. Kinematic control algorithms for on-line obstacle avoidance for redundant
manipulators. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Lausanne, Switzerland, 30 September–4 October 2002; pp. 1898–1903. [CrossRef]

21. Maciejewski, A.A.; Klein, C.A. Obstacle Avoidance for Kinematically Redundant Manipulators in
Dynamically Varying Environments. Int. J. Robot. Res. 1985, 4, 109–117. [CrossRef]

http://dx.doi.org/10.3390/app8050797
http://dx.doi.org/10.1177/1729881417744570
http://dx.doi.org/10.1007/BF00126069
http://dx.doi.org/10.5772/10495
http://dx.doi.org/10.1016/j.robot.2015.02.008
http://dx.doi.org/10.1109/TSMC.1977.4309644
http://dx.doi.org/10.1109/70.964671
http://dx.doi.org/10.1109/TRO.2011.2142450
http://dx.doi.org/10.1115/1.3426611
http://dx.doi.org/10.1109/JRA.1987.1087111
http://dx.doi.org/10.5772/55299
http://dx.doi.org/10.1109/TMMS.1969.299896
http://dx.doi.org/10.1109/70.370511
http://dx.doi.org/10.1080/00207179.2016.1153151
http://dx.doi.org/10.1109/70.585902
http://dx.doi.org/10.1109/TRO.2012.2210293
http://dx.doi.org/10.1109/IRDS.2002.1044033
http://dx.doi.org/10.1177/027836498500400308

Appl. Sci. 2018, 8, 2229 20 of 20

22. Mansard, N.; Khatib, O.; Kheddar, A. A Unified Approach to Integrate Unilateral Constraints in the Stack of
Tasks. IEEE Trans. Robot. 2009, 25, 670–685. [CrossRef]

23. Kanoun, O.; Lamiraux, F.; Wieber, P.B. Kinematic control of redundant manipulators: Generalizing the task
priority framework to inequality tasks. IEEE Trans. Robot. 2011, 27, 785–792. [CrossRef]

24. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path planning with modified a
star algorithm for a mobile robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]

25. Montiel, O.; Sepúlveda, R.; Orozco-Rosas, U. Optimal Path Planning Generation for Mobile Robots using
Parallel Evolutionary Artificial Potential Field. J. Intell. Robot. Syst. 2015, 79. [CrossRef]

26. Cosfo, F.A.; Padilla Castaneda, M.A. Autonomous Robot Navigation using Adaptive Potential Fields. Math.
Comp. Model. 2004, 40. [CrossRef]

27. Silva-Ortigoza, R.; Márquez-Sánchez, C.; Carrizosa-Corral, F.; Hernández-Guzmán, V.M.;
García-Sánchez, J.R.; Taud, H.; Marciano-Melchor, M.; Álvarez-Cedillo, J.A. Obstacle Avoidance
Task for a Wheeled Mobile Robot—A Matlab Simulink Based Didactic Application. Intech 2014. [CrossRef]

28. Žlajpah, L.; Petrič, T. Obstacle Avoidance for Redundant Manipulators as Control Problem, Serial and
Parallel Robot Manipulators—Kinematics, Dynamics, Control and Optimization. Intech 2012. [CrossRef]

29. Baerlocher, P.; Boulic, R. An inverse kinematics architecture enforcing an arbitrary number of strict priority
levels. Vis. Comput. 2004, 20, 402–417. [CrossRef]

30. Buss, S.R. Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least
Squares methods. IEEE Trans. Robot. Autom. 2004, 17, 1–19.

31. Nakamura, Y.; Hanafusa, H. Inverse kinematics solutions with singularity robustness for robot manipulator
control. J. Dyn. Syst. Meas. Cont. 1986, 108, 163–171. [CrossRef]

32. Wampler, C.W. Manipulator inverse kinematic solutions based on vector formulations and damped least
squares methods. IEEE Trans. Syst. Man Cybern. 1986, 16, 93–101. [CrossRef]

33. Fahimi, F. Autonomous Robots: Modeling, Path Planning, and Control; Springer: Berlin/Heidelberg, Germany,
2009; ISBN 978-0-387-09537-0.

34. Buscarino, A.; Famoso, C.; Fortuna, L.; Frasca, M. Passive and active vibrations allow self-organization in
large-scale electromechanical systems. Int. J. Bifurc. Chaos 2016, 26. [CrossRef]

35. Koniar, D.; Stofan, S.; Hargas, L.; Hrianka, M.; Simonova, A. Hardware conditioning in process of high speed
imaging. Adv. Electr. Electron. Eng. 2012, 13, 567–574. [CrossRef]

36. Liegeois, A. Automatic Supervisory Control of Configuration and Behavior of Multibody Mechanism.
IEEE Trans. Syst. Man Cybern. 1977, 7, 868–871. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TRO.2009.2020345
http://dx.doi.org/10.1109/TRO.2011.2142450
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1007/s10846-014-0124-8
http://dx.doi.org/10.1016/j.mcm.2004.05.001
http://dx.doi.org/10.5772/58392
http://dx.doi.org/10.5772/32651
http://dx.doi.org/10.1007/s00371-004-0244-4
http://dx.doi.org/10.1115/1.3143764
http://dx.doi.org/10.1109/TSMC.1986.289285
http://dx.doi.org/10.1142/S0218127416501236
http://dx.doi.org/10.15598/aeee.v13i5.1289
http://dx.doi.org/10.1109/TSMC.1977.4309644
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Path Planning Task for End-Effector
	Inverse Kinematic Model and Computing Algorithm
	Kinematic Singularities Avoidance Task
	Joint Limit Avoidance Task
	Obstacle Avoidance Task
	Final Inverse Kinematic Model
	A New Algorithm of Inverse Kinematic Model—Acceleration of Computing

	Low Level Control
	Numerical Computing and Results
	Case Study 1
	Case Study 2
	Comparison with Other Methods

	Conclusions and Future Work
	References

