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Featured Application: A support vector machine was used to achieve the best jackknife and the
5-fold cross-validation outcomes for identifying piRNAs (Piwi-interacting RNA) by combining
these multiple features.

Abstract: Piwi-interacting RNA (piRNA) is a newly identified class of small non-coding RNAs. It can
combine with PIWI proteins to regulate the transcriptional gene silencing process, heterochromatin
modifications, and to maintain germline and stem cell function in animals. To better understand
the function of piRNA, it is imperative to improve the accuracy of identifying piRNAs. In this
study, the sequence information included the single nucleotide composition, and 16 dinucleotides
compositions, six physicochemical properties in RNA, the position specificities of nucleotides both in
N-terminal and C-terminal, and the proportions of the similar peptide sequence of both N-terminal
and C-terminal in positive and negative samples, which were used to construct the feature vector.
Then, the F-Score was applied to choose an optimal single type of features. By combining these
selected features, we achieved the best results on the jackknife and the 5-fold cross-validation running
10 times based on the support vector machine algorithm. Moreover, we further evaluated the stability
and robustness of our new method.

Keywords: Piwi-interacting RNA; sequence information; feature extraction; feature selection;
machine learning

1. Introduction

Piwi-interacting RNA (PiRNA), a newly identified class of small non-coding RNA of which the
length is 26–33 nt, can combine with PIWI proteins to regulate a transcription gene silencing process,
heterochromatin modifications and to maintain germline and stem cell function in animals [1–4].
However, high-throughput sequencing indicates that tens of thousands of different piRNAs produced
in various animals cannot recognize transposons [5]. Therefore, the function of piRNA needs to be
further investigated. Experimental verification of piRNA targets and the piRNA-targeting rules are
quite difficult to prove [6]. Crosslinking immunoprecipitation (CLIP) analyses of PIWIs suggest that
they associate with diverse mRNAs. However, because diverse piRNAs engage with many mRNAs,
it is hard to infer the target of a given piRNA from these CLIP analyses [6–8]. Therefore, additional
approaches are required to distinguish piRNA sites in vivo.

In recent years, several computing biology tools have been proposed to identify piRNAs. The
first model to identify piRNAs was piRNApredictor, firstly developed by Zhang et al. [9]. After three
years, Wang et al. [10] proposed the second model for predicting piRNAs based on the transposon
interaction and SVM (Support Vector Machine). Recently, Luo et al. [11] applied the sequence
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information and physicochemical features of piRNAs and non-piRNAs to construct the model to
predict piRNAs. In addition, Li et al. [12] used a powerful ensemble approach, which achieved a
substantial improvement. According to the most attractive work by Lin et al. [13], 2L-piRNA (two-layer
ensemble classifier for identifying piRNAs) can be used to identify piRNAs and their function types.
2L-piRNA yielded an accuracy of 86.1% for identifying piRNAs and non-piRNAs, and achieved an
accuracy of 77.6% for identifying piRNAs with the function of instructing target mRNA deadenylation
and piRNAs without the function of instructing target mRNA deadenylation.

Aiming to improve the prediction accuracy, we developed a novel predictor, 2L-piRNAPred
(2-layer integrated program for identifying piRNAs in the first layer and determining if piRNAs
have the function of instructing target mRNA deadenylation in the second layer.), by considering
single nucleotide composition (SNC), the 16 dinucleotides compositions (DNC), six physicochemical
properties in RNA, the position specificities of nucleotides both in N-terminal and C-terminal, and
the proportions of similar peptide sequences of both N-terminal and C-terminal in the positive and
negative samples. Consequently, F-Score was utilized to select the most efficient unique type of features.
Furthermore, all the optimized feature vectors were combined to build our prediction model based on
a support vector machine classifier. Both the jackknife test and 5-fold cross-validation running 10 times
were implemented to test the stability and robustness of the model. In addition, the major comparison
with the previous work based on 2L-piRNA showed that our model, 2L-piRNAPred, is superior both
in sensitivity and specificity for the first layer and the second layer.

2. Methods

2.1. Datasets

We applied the same dataset as in [13]. Firstly, the piRNA sequences were originally taken from
piRBASE [14] and non-piRNA sequences were obtained from [15]. Then, the CD-HIT with a cutoff
threshold of 0.8 was employed to remove high-similarity sequences. Thirdly, we randomly selected
the same number of negative samples as that of the positive samples to avoid the high false negative
rate caused by the imbalanced dataset. Finally, there were 709 piRNA samples having the function of
instructing target mRNA deadenylation (denoted as S+

inst), 709 piRNA samples without this function
(denoted as S+

non−inst), and 1418 non-piRNA samples (denoted as S−). The benchmark positive dataset
was the union of S+

inst and S+
non−inst. Therefore, the training datasets in this study can be formulated as:{

S = S+ ∪ S−

S+ = S+
inst ∪ S+

non−inst
(1)

2.2. Sequence Information

2.2.1. Pse-Nucleotide Composition

The concept of the pseudo amino acid composition or Chou’s PseAAC (Pseudo Amino Acid
Composition) was proposed in 2001 and has been rapidly applied in all fields of computational
biology [16]. To learn the detailing introduction of Chou’s PseAAC and its recent development and
applications, we can see the comprehensive review in [17]. In this work, SNC, DNC and tri-nucleotides
composition (TNC) were employed to extract sequence information, which were formulated as follows,
respectively:

NC(i) =
Total number o f nucleotide (i)

The length o f sequence
× 100 (2)

where i ∈ {A, C, G, U} and the length of the sequence is the number of nucleotides in this

DNC(j) =
Total number o f dinucleotide(j)

The length o f sequence− 1
× 100, j = 1, 2, . . . L, 16 (3)
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where j ∈ {AA, AC, . . . L, GT, TT} sequences;

TNC(k) =
Total number o f dinucleotide(k)

The length o f sequence− 2
× 100, k = 1, 2, . . . , 64 (4)

where k s ∈ {AAA, AAC, . . . , UUG, UUU} equences.

2.2.2. Split-Position-Specific Matrix

It has been indicated in [13] that N- and C-terminal segments are critical to piRNAs. In this study,
we considered the amino acids distribution both in N- and C-terminals. Moreover, the number of
selected nucleotides of N- and C-terminal segments decreased successively, which were set to 15, 13, 11,
9, 7 and 5 nucleotides, respectively. Then, the bi-profile Bayes (BPB) features were used to characterize
the probability distributions of each nucleotide at each position. As reported in many studies [18–21],
the BPB feature vector was formulated as follows:

P = (x1, x2, . . . , xn, xn+1, . . . , x2n) (5)

where P is the posterior probability vector; x1, x2, . . . , xn represent the posterior probability
of each nucleic acid at each position in positive peptide sequence datasets, respectively; and
xn+1, . . . , x2n represent the posterior probability of each nucleic acid at each position in negative
datasets, respectively.

2.2.3. Six RNA Dimer’s Physicochemical Properties

Six RNA dimer’s physicochemical properties, including rise, roll, shift, slide, tilt, and twist, have
been used in [13], and have shown decently the prediction performance. The normalized values of
six physicochemical properties for 16 dimers were derived in [13], and we listed them in Table 1 for
convenience. We mapped the RNA sequence to the following vector according to the physicochemical
properties:

V = ( fAA · RiseAA, fAA · RollAA, · · · , fUU · RiseUU , fUU · RollUU) (6)

Then, we obtained a physicochemical property vector with 96 dimensions (96-D).

Table 1. The Normalized Values of Rise, Roll, Shift, Slide, Tilt, and Twist for the 16 Dinucleotides
in RNA.

Physicochemical Property

Dimer Rise Roll Shift Slide Tilt Twist

AA −0.862 −0.689 −1.163 1.386 −1.896 −0.27
AC −0.149 −1.698 1.545 0.51 0.555 0.347
AG 0.565 0 −0.813 0.127 0.096 −0.888
AU −0.149 −0.643 −0.988 0.894 1.015 0.965
CA −1.931 0.643 0.497 0.346 0.862 −0.27
CC 0.802 0.092 −0.551 −0.1407 −0.211 0.347
CG 0.565 1.652 2.156 −2.009 −0.823 −2.741
CU 0.565 0 −0.813 0.127 0.096 −0.888
GA 1.515 0.413 0.147 −0.969 1.321 0.347
GC −0.386 −1.102 0.147 0.729 −0.67 2.201
GG 0.802 1.652 −0.551 −1.407 −0.211 0.347
GU −0.149 −1.698 1.545 0.51 0.555 0.347
UA 0.089 1.01 −0.639 0.401 −0.977 0.347
UC 1.515 0.413 0.147 −0.969 1.321 0.347
UG −1.931 0.643 0.497 0.346 0.862 −0.27
UU −0.862 −0.689 −1.163 1.386 −1.896 −0.27
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2.2.4. Feature Optimization

When four types of features were incorporated to train the model, the dimension of the hybrid
features vector was 240. Additionally, the initial combined features may contain redundant and noisy
information. This might exert the negative effect on model training. In this work, the importance of
each feature was ranked by a feature selection tool known as F-score. The F-score of the j-th feature
was defined as:

F− score(j) =
(x(+)

j − xj)
2
+ (x(−)j − xj)

2

1
m+−1 ∑m+

k=1 (x(+)
k,j − x(+)

j )
2
+ 1

m−−1 ∑m−
k=1 (x(−)k,j − x(−)j )

2 (7)

where xj, x(+)
j and x(−)j are the average values of the j-th feature in whole, positive and negative

datasets, respectively, m+ denotes the number of positive data, m− denotes the number of negative
data, x(+)

k,j denotes the j-th feature of the k-th positive instance and x(−)k,j denotes the j-th feature of the
k-th negative instance. The greater F-score indicates that the feature is more different between positive
and negative samples, and is useful to classification [22].

2.3. SVM Implementation and Parameter Selection

SVM is a set of related supervised learning methods used for classification and regression
based on the statistical learning theory, and has been illustrated to be powerful in many areas of
bioinformatics [23–27]. As in other works [28–31], SVM was trained and tested by using the LIBSVM
package [30] to build the model and implement the prediction. The radial basis function kernel was
used in our SVM model. For different input features, the penalty parameter C and kernel parameter
γ were optimized using SVMcg in the LIBSVM package based on a 5-fold cross-validation test.
The optimal parameters C = 8 and γ = 0.044194 were set for the detection of piRNAs and non-piRNAs,
while C = 0.35355 and γ = 1.4142 were assigned for the distinguishing samples with the function of
instructing target mRNA deadenylation.

2.4. Model Construction and Evaluation

The performance of 2L-piRNAPred was evaluated using four measurements derived based on
the symbols introduced by Chou in predicting signal peptides. Particularly, its advantages have been
analyzed and endorsed by a series of studies published very recently [28–30]. The four measurements
were given as follows:

Acc =
TP + TN

TP + FP + TN + FN
(8)

Sn =
TP

TP + FN
(9)

Sp =
TN

FP + TN
(10)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

where TP represents the number of true positives, TN represents the number of true negatives, FP
represents the number of false positives and FN represents the number of false negatives.

3. Results and Discussion

The test process of our model piRNAPred is summarized in Algorithm 1.
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Algorithm 1: The Predictive Algorithm for piRNAPred.

Input: X = {xi}N
i=1 is a set of samples and the number of categories is c.

Output: The prediction label of each sample.
For each Xi, i = 1, 2, . . . , N do
Take Xi as the test sample, and the others as the training dataset.
Extract features.
Predict the category.
end

3.1. Window Size Optimization for Bi-Profile Bayes

For the number of selected nucleotides, both N- and C-terminals affect the prediction performance,
so we tried different window sizes to find the optimal prediction performance. The detailed results for
the different window sizes are listed in Table S1 (Supplementary Materials). The highest Acc 82.81% was
achieved at a window size of 15. Considering the minimum length in the whole training dataset was
24, we selected the maximum window size of 15. If we chose the window size that was much greater,
there would be more repeated nucleic acids in the selected N-terminal and C-terminal segments.

3.2. Feature Selection for the First Layer

We first picked out the most contributing characteristics with a step of 2 for the other three types
of characteristics, except for SNC with a step of 1. We decided which characteristics were retained
based on the average results of 5-fold cross-validation test running 5 times for both the first and the
second layers. To avoid wordiness, we only described the process of feature selection for the first layer.
For the characteristic of SNC, the best prediction performance was achieved at all the four features
(Table S2, Supplementary Materials). For the DNC, we sorted the 16 values according to the F-scores,
and then selected 2, 4, . . . , 14, 16 features step by step. As listed in Table S3, the best performance
achieved at 8 di-nucleotides selected (i.e., CG, UG, GA, AG, UA, CC, UU, and AU), with an Sn of
86.55%, an Sp of 82.05%, an Acc of 84.29%, and an MCC of 0.6870. The same processes were made
for TNC and physicochemical properties (See Tables S4 and S5 (Supplementary Materials) for detail
description) and the best performance parameters for these features are listed in Table 2. As we can see
from Table 2, the DNC features achieved the best performance with an Acc of 84.29% and an MCC of
0.6870; on the contrary, the SNC feature achieved the worst prediction results with an Acc of 62.96%
and an MCC of 0.2791. At last, all the selected characteristic vectors were combined together to get the
higher results with an Acc of 88.95% and an MCC of 0.7791. Both the Sn and Sp were satisfactory.

Table 2. The best prediction achieved by single type of features for the first layer.

Cross-Validation Features Dimension Sn (%) Sp (%) Acc (%) MCC

BPB 15 88.4 77.1 82.8 0.660
SNC 4 45.4 80.62 63.0 0.279

5-fold DNC 8 86.6 82.1 84.3 0.687
TNC 56 85.3 82.6 83.9 0.678
PP 84 84.5 79.1 81.8 0.636

BPB + SNC + DNC + TNC + PP - 90.4 87.5 89.0 0.779
Jackknife BPB + SNC + DNC + TNC + PP - 90.4 87.9 89.2 0.784

3.3. Feature Selection for the Second Layer

The same features selection processes for the second layer were performed as those for the first
layer (see Tables S6–S10, Supplementary Materials for the detail). As can be seen from Table 3, using
the unique type feature of TNC, we achieved the best Acc of 77.7% and MCC of 0.554, and the worst
performance again was achieved by SNC with an Acc of 71.4% and an MCC of 0.427. When we
combined all the features, the Acc slightly increased to 78.7% and MCC slightly increased to 0.573.
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However, the Sp was 77.3%, less than 77.60% achieved by using TNC only. From the analysis, the
prediction results were not as satisfactory as those for the first layer. Therefore, we had to add another
type of features to further improve the prediction performance. Inspired by the k nearest neighbor
(KNN) classification algorithm, we used KNN to embody the distribution of neighbor sequences [32].
Unlike in the samples investigated above, the lengths of samples in S+

inst and S+
non−inst were not the

same. To deal with this problem, the similar strategy was adopted to consider 10 nucleotides in
N-terminal and C-terminal separately. The algorithm of using KNN to extract features is described in
detail in [33]. The KNN features (k = 10) of N-terminal were firstly added to the original combination
of BPB(15) + SNC(4) + DNC(10) + TNC(48) + PP(24), which increased the Sp to 79.3%, and Sn to 80.1%.
Then, the KNN features (k = 10) of C-terminal were further added, which increased the Sp to 83.6%,
and Sn to 84.3%.

Table 3. The best prediction achieved by single type of features for the second layer.

Cross-Validation Features Dimension Sn (%) Sp (%) Acc (%) MCC

5-fold

BPB 15 73.0 73.0 72.9 0.459
SNC 4 69.2 73.6 71.4 0.427
DNC 10 75.2 73.6 74.3 0.488
TNC 48 77.8 77.6 77.7 0.554
PP 24 74.7 74.2 74.3 0.489

BPB + SNC + DNC + TNC + PP 101 80.0 77.3 78.7 0.573
BPB + SNC + DNC + TNC + PP + KNN (N-terminal) 111 80.1 79.3 79.8 0.598
BPB + SNC + DNC+ PP + KNN (N- and C-terminals) 121 84.3 83.6 84.0 0.68

Jackknife BPB + SNC + DNC + PP + KNN (N- and C-terminals) 121 85.1 83.2 84.1 0.683

3.4. Performance of 2L-piRNAPred

One way to prove the superiority of the new model is to compare its prediction performance
with that obtained by other existing methods. The compared results are listed in Table 4. For the
first layer, our model achieved the best values of Sn and Sp among the four methods. While for
the second layer, our model also achieved the best Sn and Sp values if our model piRNAPred was
compared with the first two-layer model named 2L-piRNA. We noted that the increase in Sp value
was more significant than that in Sn value both for the first and the second layers. Next, we further
implemented the jackknife validation test. From the last line in Tables 2 and 3, we showed that our
model piRNAPred obtained the MCC value of 0.784 for the first layer and the MCC value of 0.683 for
the second layer. To further rank the classification methods for the first layer, a Friedman or a Friedman
Aligned Ranks test (number of datasets: <20) with the Holm post-hoc test [34] was performed using [R].
Among all predictors, piRNAPred was significantly better than other approaches according to the MCC
measurement. These comparisons illustrate the stability and robustness of our model piRNAPred. The
reason why the methodology works well is the comprehensive features we extracted. The features
reflected the global and local information of the samples in the dataset. Moreover, the running time for
predicting one sample was about one second.

Table 4. The best prediction achieved by single type of features for the first layer.

Methodology Sn (%) Sp (%) Acc (%) MCC

First Layer
piRNAPred 90.4 87.5 89 0.779
2L-piRNA 88.3 83.9 86.1 0.723

Accurate piRNA prediction 83.1 82.1 82.6 0.651
GA-WE 90.6 78.3 84.4 0.694

Second Layer
piRNAPred 84.3 83.6 84 0.68
2L-piRNA 79.1 76 77.6 0.552
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3.5. Comparison for Different Classifiers

In order to test whether the prediction performance of piRNAPred can be further improved, we
tried different classifiers on the jackknife test. The prediction performances of Random Forest (RF),
KNN and Ensemble for Boosting are listed in Table 5. It is illustrated that both for the first layer and
the second layer, SVM achieved the best performance. Therefore, our predictor adopted SVM as the
final classifier.

Table 5. The performances of different classifiers on the jackknife test.

Method Sn (%) Sp (%) Acc (%) MCC

First Layer
SVM 90.4 87.5 89 0.779
RF 85.8 88.4 87.1 0.743

KNN 88.7 83.6 86.1 0.724
Ensemble 89.9 87.0 88.5 0.770

Second Layer
SVM 84.3 83.6 84.0 0.680
RF 72.9 72.8 72.9 0.457

KNN 73.3 69.7 71.5 0.431
Ensemble 75.9 73.6 74.8 0.495

4. Conclusions

In this work, we proposed a computational method for identifying piRNAs with the function
of instructing target mRNA deadenylation and piRNAs without the function of instructing target
mRNA deadenylation. According to the average outcomes of 5-fold cross-validation test for running
10 times, the combination of BPB(15) + SNC(4) + DNC(8) + TNC(56) + PP(84) achieved the best Sn,
Sp, Acc, and MCC values for the first layer. While for the second layer, it was a bit complex. The
original combination BPB(15) + SNC(4) + DNC(10) + TNC(48) + PP(24) must contain KNN (k = 10)
features in N-terminal and C-terminal to get satisfactory Sn, Sp, Acc, and MCC average results of
5-fold cross-validation test for 10 times. Moreover, the comparison between the jackknife and 5-fold
cross-validation outcomes shows the robustness of 2L-piRNAPred. It should be pointed that the
predictor was not tested on an independent dataset, and the prediction performance might cause a
certain overfitting.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/11/2204/
s1, Table S1: The average 5-fold cross-validation results using split-BPB on different window sizes both on N- and
C- terminal for the first layer, Table S2: Features selection process for SNC by F-scores for the first layer, Table S3:
Features selection process for DNC by F-scores for the first layer, Table S4: Features selection process for TNC by
F-scores for the first layer, Table S5: Features selection process for physicochemical properties by F-scores for the
first layer, Table S6: The average 5-fold cross-validation results using split-BPB on different window sizes both on
N- and C- terminal for the second layer, Table S7: Features selection process for SNC by F-scores for the second
layer, Table S8: Features selection process for DNC by F-scores for the second layer, Table S9: Features selection
process for TNC by F-scores for the second layer, Table S10: Features selection process for physicochemical
properties by F-scores for the second layer.
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