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Abstract: To reduce occurrences of emergency situations in large-scale interconnected power systems
with large continuous disturbances, a preventive strategy for the automatic generation control (AGC)
of power systems is proposed. To mitigate the curse of dimensionality that arises in conventional
reinforcement learning algorithms, deep forest is applied to reinforcement learning. Therefore, deep
forest reinforcement learning (DFRL) as a preventive strategy for AGC is proposed in this paper.
The DFRL method consists of deep forest and multiple subsidiary reinforcement learning. The deep
forest component of the DFRL is applied to predict the next systemic state of a power system,
including emergency states and normal states. The multiple subsidiary reinforcement learning
component, which includes reinforcement learning for emergency states and reinforcement learning
for normal states, is applied to learn the features of the power system. The performance of the
DFRL algorithm was compared to that of 10 other conventional AGC algorithms on a two-area
load frequency control power system, a three-area power system, and the China Southern Power
Grid. The DFRL method achieved the highest control performance. With this new method, both the
occurrences of emergency situations and the curse of dimensionality can be simultaneously reduced.

Keywords: deep forest reinforcement learning; preventive strategy; automatic generation control;
deep forest; reinforcement learning

1. Introduction

Over the past few decades, there has been a growing trend of connecting new and renewable
resources to large-scale interconnected power systems [1,2]. Automatic generation control (AGC) aims
to balance the active power between generators and system loads in such large-scale interconnected
power systems [3]. Recently, numerous control algorithms have been proposed for the AGC of large-
scale interconnected power systems. For example: an optimized sliding mode controller (SMC) [4] was
proposed for the AGC of interconnected multi-area power systems in deregulated environments [5];
a two-layer active disturbance rejection controller (ADRC) was designed for the load frequency control
(LFC) of interconnected power systems [6]; a fractional-order proportional–integral–derivative (FOPID)
controller with two or three degrees of freedom was employed for AGC [7,8]; and optimized fuzzy
logic control (FLC) was utilized for LFC in hydrothermal systems [9]. A modified cuckoo search
algorithm [10] and an efficient and new modified differential evolution algorithm [11] were also
proposed for hydrothermal power systems. Furthermore, many reinforcement learning algorithms
which can update their control strategies online have been utilized for AGC: a relaxed Q learning-based
controller was proposed for relaxed AGC [12,13]; a Q(λ) learning-based controller was applied to
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smart generation control in multi-agent systems (MASs) [14]; and an R(λ) imitation learning-based
controller was designed for AGC [15]. These reinforcement learning algorithms can achieve high
control performances with small system loads [12], and the convergence of reinforcement learning was
proved by Christopher John Cornish Hellaby Watkins [16]. However, these reinforcement learning
algorithms have two major weaknesses, including that (i) they may not balance active power between
generators and large system loads, and (ii) they may lead to a systemic frequency deviation that is
larger than the frequency deviation limitation (0.2 Hz) [17]. Moreover, a low-level reserve capacity
in an electric power system leads to emergency situations during generation control in large-scale
interconnected power systems [18–21]. For example, an frequency emergency control strategy was
considered for high-capacity generators and a low-load grid [19]; the emergency conditions were
applied to the LFC of power systems [20]; and regional frequency-based emergency control plans
were addressed in [21]. Therefore, a preventive strategy for an AGC controller with the aim to prevent
emergency situations should be considered.

Preventive strategies have been established in various fields. For instance, preventive replacement
and preventive maintenance were designed for offshore wind turbines [22]; both preventive and
emergency states were accounted for using a two-stage robust mixed-integer optimization model [23];
and preventive actions were applied to increase the transient stability margin in order to re-dispatch
generators [24]. Therefore, a preventive strategy for averting emergency situations involving an AGC
controller is considered in this paper.

The conventional reinforcement learning-based AGC controller can achieve a high control
performance in large-scale interconnected power systems in normal situations [12,13,15], but it
experiences a low control performance in emergency situations. To obtain a better control performance
from an AGC controller in large-scale interconnected power systems during an emergency situation,
the dimension of many parameters (e.g., Q-value matrix Q, probability distribution matrix P, action set
A, and state set S) of conventional reinforcement learning must be increased [25].However, increasing
the dimension of these parameters can lead to the overflow of calculation memory, i.e., the curse of
dimensionality [26].

Herein, a preventive strategy for AGC is considered to reduce emergency situation occurrences in
a large-scale interconnected power system with a large continuous disturbance. A preventive strategy
for AGC should have two major features, namely:

1. The strategy should predict the next systemic state of the power system, and it should learn the
feature of systemic frequency in the interconnected power system. That is to say, the preventive
strategy should know whether the next state of the power system is an emergency state or a
normal state, whereas conventional AGC without a preventive strategy cannot determine the
next systemic state.

2. The strategy should provide an advanced generation command to the AGC unit with the
prediction of the next systemic state, which includes the emergency state and normal state.

Recently, Zhihua Zhou and Ji Feng proposed an alternative to the deep neural network method for
classification; this new method is known as deep forest or multi-grained cascade forest (gcForest) [27].
In [27], deep forest achieved a highly competitive performance in numerous classification experiments,
such as image categorization, face recognition, music classification, hand movement recognition,
sentiment classification, and the classification of low-dimensional data. The deep forest algorithm
has been improved and further applied. For example, a discriminative deep forest was proposed
in combination with Euclidean and Manhattan distances [28]; transductive transfer learning was
applied to a convex quadratic optimization problem with linear constraints [29]; hyperspectral image
classification was integrated into local binary patterns and a Gabor filter to extract local/global image
features [30]; a distributed deep forest was applied to the automatic detection of cash-out fraud [31];
a Siamese deep forest was proposed for the prevention of overfitting, which takes place in neural
networks when only limited training data are available [32]. Therefore, as an efficient algorithm for
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classification with low-dimensional data, deep forest can be applied to predict the next systemic state
in a large-scale interconnected power system.

To reduce occurrences of emergency situations and simultaneously mitigate the curse of
dimensionality, deep forest reinforcement learning (DFRL) applied as a preventive strategy for AGC is
proposed in this paper. The DFRL method consists of multiple subsidiary reinforcement learning and a
deep forest. The multiple subsidiary reinforcement learning component of DFRL is applied to provide
the generation command to the AGC unit of the large-scale interconnected power system, while the
deep forest of DFRL is used to predict the next systemic state. Consequently, the major features of the
DFRL method can be summarized as follows:

1. Since reinforcement learning is applied to DFRL, DFRL can update its control strategy online.
2. The systemic states of a power system, including emergency states and normal states, can be

predicted by the deep forest of DFRL using low-dimensional data.
3. Since both the Q-value matrix and the action set of reinforcement learning are split into those of

an emergency situation and a normal situation, calculation memory is reduced. Thus, the curse of
dimensionality is mitigated.

This paper is organized as follows. The emergency state and automatic generation control are
discussed in Section 2. Section 3 describes basic principle of deep forest reinforcement learning.
Simulation results obtained by the DFRL method for a two-area LFC power system, a three-area power
system, and the China Southern Power Grid are presented in Section 4. Finally, Section 5 provides brief
conclusions of this paper.

2. Emergency State and Automatic Generation Control

2.1. Emergency State

AGC not only aims to balance the active power between generators and system loads in a
large-scale interconnected power system but is also designed to reduce the frequency deviation of
the power system. That is to say, a high control performance of an AGC controller is significantly
important for a control area to maintain the frequency deviation within normal levels.

Generally, frequency control has three gradations, i.e., a primary control zone, a secondary control
zone, and an emergency control zone (see Figure 1). The primary control zone, which is subject
to primary frequency regulation (PFR), is automatically regulated by the generator in response to
frequency changes. The secondary control zone, which leads to AGC or secondary frequency regulation
(SFR), is regulated by a control algorithm. The emergency control zone or tertiary control zone results in
the implementation of economical dispatch and unit commitment, which occur with longer timescales,
e.g., 15 min for economical dispatch (ED) and 24 h for unit commitment (UC). In particular, the range
of the area control error (ACE) for each gradation is dependent on the basic capacity of the power
system. Each gradation has a different frequency deviation range and a different control performance
standard (CPS) index range:

• The range of the frequency deviation for the dead zone is from ( f0−∆ f1) to ( f0 + ∆ f1), where the
frequency deviation ∆ f1 is set to 0.025 Hz; The range of the CPS index for the dead zone is from
kCPS(1) to 100%, where the CPS index kCPS(1) is set to 99% in this paper.

• The range of the frequency deviation for primary control is from ( f0 − ∆ f2) to ( f0 + ∆ f2), where
the frequency deviation ∆ f2 is set to 0.1 Hz; The range of the CPS index for primary control is
from kCPS(2) to kCPS(1), where the CPS index kCPS(2) is set to 95% in this paper.

• The range of the frequency deviation for secondary control is from ( f0−∆ f3) to ( f0 +∆ f3), where
the frequency deviation ∆ f3 is set to 0.5 Hz; The range of the CPS index for secondary control is
from kCPS(3) to kCPS(2), where the CPS index kCPS(3) is set to 85% in this paper.

• The range of the frequency deviation for emergency control is from ( f0 − ∆ f4) to ( f0 + ∆ f4),
where the frequency deviation ∆ f4 is set to ∞ Hz; The range of the CPS index for emergency
control is from kCPS(4) to kCPS(3), where the CPS index kCPS(4) is set to 0% in this paper.
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To minimize emergency situations for a power system when a large load suddenly occurs,
a preventive strategy for AGC is described below. Frequency deviation ranges from ( f0 − ∆ f3) to
( f0 − ∆ fe) and from ( f0 + ∆ fe) to ( f0 + ∆ f3) were selected as the ranges for the preventive strategy.
The preventive strategy aims to maintain the system frequency deviation ∆ f at a minimum value, i.e.,
∆ f → 0 and |∆ f | < ∆ fe. The frequency deviation for the preventive strategy ∆ fe was set to 0.2 Hz in
this study.

f

eACE

100%-kCPS Dead zone

Primary control zone

Secondary control zone
Emergency control zone

Preventive  strategy considered AGC

Figure 1. The three gradations of frequency control.

2.2. Framework of Automatic Generation Control

A basic AGC/LFC model contains two control areas. Each control area contains an AGC controller,
a governor, a non-reheat turbine generator, and a system power flow load ∆PLA or ∆PLB [33]. Three
major features required for the AGC controller in an interconnected power system can be summarized
as follows.

1. The controller should provide generation commands to the AGC unit to balance the real-time
active power flow between the generator and system loads;

2. The controller should reduce the frequency deviation in the control area;
3. The controller should decrease the scheduled tie-line power deviation between any two areas, i.e.,

mitigate the value of the ACE.

Therefore, the frequency deviation ∆ f , the ACE eACE, the scheduled tie-line power deviation ∆PT,
CPS indices (including CPS index kCPS, CPS1 index kCPS1, and CPS2 index kCPS2) are the inputs to
the AGC controller. The generation command provided to the AGC unit is then the output of the
controller.

2.3. Control Objective of Automatic Generation Control

In each control area, the AGC controller aims to (i) minimize the systemic frequency deviation ∆ f ,
(ii) reduce the value of the ACE eACE, and (iii) maximize the CPS index kCPS.

The value of the ACE eACE can be calculated as

eACE = ∆Pt − 10B∆ f , (1)

where ∆Pt is the scheduled tie-line power deviation; B is the frequency response coefficient of the
control area (in MW/0.1 Hz); ∆ f is the frequency deviation (in Hz).

The CPS index kCPS, which includes CPS1 index and CPS2 index, is established by the North
American Electric Reliability Council (NERC) [12,34,35]. The CPS index is the statistic index of ∆ f and
eACE over a long period of time, rather than the real-time values of ∆ f and eACE. The CPS index kCPS
can be calculated as

kCPS(%) =

(
NαCF=1

NαCF=1 + NαCF=0

)
× 100%, (2)
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where NαCF=1 is the number of periods when αCF = 1; NαCF=0 is the number of periods when αCF = 0.
The variable αCF can be calculated as

αCF =


1,

{
αCF1 ≥ 200%
100% ≤ αCF1 ≤ 200%, αCF2 = 1

0,

{
αCF1 < 100%
100% ≤ αCF1 ≤ 200%, αCF2 = 0

, (3)

where αCF1 and αCF2 can be calculated as follows.

αCF1 =
EAVE-1min∆FAVE-1min

−10Bε2
1min

, (4)

αCF2 =
EAVE-10min

16.5ε10 min
√

BsB
, (5)

where EAVE-1min is the clock-1-min average of the ACE; EAVE-10min is the the clock-10-min average
of the ACE; ∆FAVE-1min is the clock-1-min average of the frequency deviation; ε1min is the targeted
frequency bound for the CPS1 index with clock-1-min; ε10min is the targeted frequency bound for
the CPS1 index with clock-10-min; B represents the frequency bias of the control area, expressed in
MW/0.1 Hz; BS represents the frequency bias of the power system, expressed in MW/0.1 Hz.

Furthermore, the CPS1 index evaluates the impact of the ACE deviation on the frequency of
system, while the CPS2 index is used to restrict the ACE magnitude. They can be calculated as follows:

kCPS1 = (2− {αCF1}T)× 100%, (6)

kCPS2 = (
NαCF2<1

NαCF2<1 + NαCF2≥1
)× 100%, (7)

where {αCF1}T is the average value of the variable αCF1 at the period of T, which is always 1 year;
NαCF2<1 is the number of periods when αCF2 < 1; NαCF2≥1 is the number of periods when αCF2 ≥ 1.

3. Deep Forest Reinforcement Learning and Preventive Strategy

3.1. Deep Forest

As a decision tree ensemble algorithm, deep forest can perform representation learning [27].
Actually, deep forest contains two procedures, i.e., cascade forest structure and multi-grained scanning
(Figure 2).

In the cascade forest structure procedure, deep forest cascades decision tree forests level-by-level.
The input of each level is the feature information and is processed by the preceding level. The cascade
forest structure of deep forest includes two types of forests, i.e., two completely-random tree forests
(‘Forest A’) and two random forests (‘Forest B’) [27]. Both types of forests contain 500 trees. The
completely random trees, which randomly select a feature to split at each node of the tree, will stop
growing if each leaf node contains only the same classes of instances. The model of a random forest is
an ensemble algorithm, which contains a group of decision tree classifiers {h(X, Θk)}, where k = 1, 2,
..., nc; nc is the number of classes; Θk is a random vector; Θk and the kth decision tree are independent
with the same distribution. Then, the class that obtains the maximum vote is the right class to use for
prediction,

H(x) = arg max
Y

N

∑
i=1

I(hi(x) = Y), (8)

where x is a sample; hi(x) is the classification model of the ith decision tree; Y is the target classes;
and I(•) is the indicator function.
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The random trees randomly select b
√

dc features as candidates and then choose the one with the
best Gini coefficient for splitting, where d is the number of input features, and bdc rounds d to the
nearest integer that is less than or equal to d. The Gini coefficient G can be calculated as

G = 1−
nc

∑
i=1

[p(i|t)]2, (9)

where p(i|t) is the conditional probability of the ith class given the tth class; nc is the number of
samples. All the samples are of the same class when the Gini coefficient G = 0. When the set C is split
into subset C1 and subset C2, the split of the Gini coefficient index Gsplit(C) can be calculated as

Gsplit(C) =
n1

n
G(C1) +

n2

n
G(C2), (10)

where n1 and n2 are the number of samples of subset C1 and subset C2, respectively. To obtain the
average of the final class vector, each instance should be trained k− 1 times with k-fold cross-validation.
The training performance of the whole cascade forest is estimated based on the validation set when
a new level cascade is expanded. The total number of levels N is determined when the significant
performance stops increasing.

In the multi-grained scanning procedure: (I) sliding windows are applied to scan the raw features
of the input information; (II) an nf-dimensional feature vector is generated by the scanning window for
each feature if a window size of nf features is selected (Figure 3); (III) (d− nf + 1) feature vectors are
produced as transformed features for ‘Forest A’ and ‘Forest B’; (IV) a 2nc(d− nf + 1)-dim transformed
feature vector is produced for the inputs of the cascade forest structure if the number of classes is nc.
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Figure 2. Deep forest procedures.

For example: (I) nf(1), nf(2), and nf(nw) sizes of sliding windows are applied to scan the d-dim
raw features (Figure 2) if the number of classes is nc and the number of sliding windows is nw;
(II) nw × 2nc(d− nf + 1)-dim transformed feature vectors are produced by the multi-grained scanning
procedure for the cascade forest; (III) the deep forest cascade has N · nc levels of forests, where each nc

level has 4nc + 2nc(d− nf(1) + 1), 4nc + 2nc(d− nf(2) + 1), ..., 4nc + 2nc(d− nf(nw) + 1) dimensional
features, respectively, where 4nc-dim features are 4 (2 ‘Forest A’ + 2 ‘Forest B’) times the nc-dim class
vector; N is the number of each nw level; (IV) the deep forest terminates model complexity training
when adequate.
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Compared to the deep neural networks in [27], deep forest can obtain a higher performance
with low-dimensional data, while deep neural networks perform well for high-dimensional data.
In [27], convolutional neural networks, machine learning practical, random forest, support vector
machine, and k-nearest neighbors algorithms were compared to deep forest using low-dimensional
data. The results of these comparisons showed that the other deep learning algorithms have many
hyperparameters and a higher performance for high-dimensional data. Meanwhile, the prediction of
the next systemic state in the AGC problem is a problem with low-dimensional data.
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Figure 3. Multi-grained scanning procedures.

3.2. Reinforcement Learning

As one of the most famous methods for reinforcement learning, Q learning is a model-free
control algorithm. The framework of Q learning contains a controller and an environment. The Q
learning-based controller can update its strategy for an environment online. The inputs of the controller
are the state value and reward value, while the output is an action for the environment. A controller
that is based on Q learning provides an action a at the current state s in an environment based on
the Q-value matrix Q and probability distribution matrix P. These two matrices can be subsequently
updated as

Q(s, a)← Q(s, a) + α(R(s, s′, a) + γ max
a∈A

Q(s′, a)−Q(s, a)), (11)

P(s, a)←
{

P(s, a)− β(1− P(s, a)), if a′ = a
P(s, a)(1− β), Otherwise

, (12)

where α is the learning rate of Q learning; γ is the discount coefficient of Q learning; β is the probability
coefficient of Q learning; s and s′ are the current state and the next state of the environment, respectively;
R(s, s′, a) is the reward function obtained from the current state s to the next state s′ with a selected
action a. Both the current state s and the next state s′ belong to the state set S, i.e., s ∈ S and s′ ∈ S.
The selected action a belongs to the action set A, i.e., a ∈ A.
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A particular process in the AGC problem of a interconnected power system is: the frequency
deviation ∆ f and the ACE are set to states; the generation command ∆P is set to an action;
the parameters of Q learning for the simulation described in this paper are given in Appendix A.

The action for the output is selected by the given strategy, which should balance the exploration
and the exploitation of the search of the action space. Generally, a greedy strategy for action selection
always selects the maximum probability from the probability distribution matrix. Thus, the exploration
for a selection is lost using the greedy strategy. Therefore, a selection strategy with both exploration
and exploitation is applied to select an action from the action set. The selected action for the next
iteration a′ is selected by a random probability prand and the probability distribution matrix. The
constraint of action selection can be described as follows:

1+arg(a′)

∑
i=1

Ps′ ,i > prand ≥
arg(a′)

∑
i=1

Ps′ ,i, (13)

where arg (a′) is the index number of the selected action a′ in the action set.
Since the states and actions of Q learning are discrete values, the number of states in the state

set and the number of actions in the action set should be increased to improve the accuracy of Q
learning. Thus, to arrive at the optimal policy, the calculation memory of the state set and the action
set of Q learning should be increased. In particular, Q learning can be applied to discrete control
processes, such as AGC, whose control period is 4 s. Furthermore, to obtain higher convergence
speed, other reinforcement learning algorithms have been employed for the AGC controller, such as,
Q(λ) learning [14] and R(λ) learning [15]. Since the controller based on these reinforcement learning
algorithms can update the control strategy online without knowing the model of the control object,
the controller based on these reinforcement learning algorithms can obtain a high control performance
in delay dynamic systems, such as large-scale interconnected power systems.

3.3. Deep Forest Reinforcement Learning

To obtain a more accurate control performance, the number of states and the number of actions in
the action set of a conventional reinforcement learning should be increased. However, to reduce the
effect of the curse of dimensionality, which leads to calculation memory error, the number of states
and the number of actions in the action set of reinforcement learning should be reduced. To obtain a
more accurate control performance and simultaneously reduce the curse of dimensionality, a DFRL
algorithm is proposed in this paper.

The DFRL-based controller contains a recorder for diachronic states and actions, deep forest, and
Q learning frameworks (Figure 4). To reduce the memory of calculation, the Q-value matrix Q and
the probability distribution matrix P of Q learning are split into a total of ns Q-value matrices and ns

probability distribution matrices, respectively. Thus, the calculation memory for matrix Q and matrix
P can be reduced by 1

ns
,

η =

ns
∑

i=1
(

nq
ns
)2

n2
q

=
ns(

nq
ns
)2

n2
q

=
1
ns

, (14)

if both matrix Q and matrix P are nq× nq matrices, and if they are symmetrically split into two nq
ns
× nq

ns

matrices. Therefore, the curse of dimensionality of the framework of Q learning can be reduced by 1
ns

.
For instance, ns is set to 3 in the simulations reported in this paper; thus, the curse of dimensionality of

the framework of Q learning can be reduced by
1
3

.
In the framework of conventional Q learning, the immediate state St, which is the state of the

t-th time, is applied to represent a power system. However, in the framework of the DFRL, both the
diachronic states and the diachronic actions are utilized to represent a power system. The major
reasons are that (i) the power system is a time-delay system and (ii) diachronic actions can affect the
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state of the power system. Therefore, deep forest is applied to represent the next state of a power
system with diachronic states and diachronic actions. Consequently, the inputs to the deep forest are
the diachronic states of the environment and the diachronic actions of the DFRL -based controller,
while the output of the deep forest is the next state of the power system.

The major features of the proposed DFRL-based controller can be summarized as

1. Since the calculation memory is reduced because of the split matrices Q, P, and A, the curse
of dimensionality is reduced and a more accurate control performance can be obtained; thus,
the number of actions in the action set and the number of states in the state set of the reinforcement
learning of DFRL can be increased to obtain an accurate control action.

2. The next systemic state can be predicted more accurately by the deep forest of DFRL with
diachronic states and actions.

D
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n
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Q Learning (A2)

Q Learning (Ans)

DFRL based controller

Next state  1
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Actions: at,a(t- t),a(t-2 t),...,a(t-nt t). Q Learning (Ak)
Next state  k

Action (at)

Recorder

Figure 4. Structure of deep forest reinforcement learning.

3.4. Deep Forest Reinforcement Learning as a Preventive Strategy for Automatic Generation Control

In the framework of the DFRL-based controller as a preventive strategy for AGC, the Q-value
matrix is split into three submatrices, i.e., ns = 3. The number of classes of next states is three, depending
on the frequency deviation ∆ f , i.e., RL-I for (−∞,−0.1] Hz, RL-II for (−0.1, 0.1] Hz, and RL-III for
(0.1, ∞) Hz. The control period of the controller of the preventive strategy for AGC is set to 4 s, i.e.,
∆t = 4 s. The current state of the environment St is defined as the frequency deviation of the power
system ∆ ft, i.e., St = ∆ ft. The action at the t-th time of the power system at is defined as the generation
command for the AGC unit at the t-th time ∆PGt, i.e., at = ∆PGt (Figure 5). The reward value rt for the
reward function can be described as

rt = R(s, s′, a) =

{
λ1, |∆ ft| ≤ ∆ fs0

λ2∆ ft
2, Otherwise

, (15)

where the reward value rt is a positive value λ1 when |∆ ft| is less than or equal to ∆ fs0; λ1 > 0,
λ2 < 0, and ∆ fs0 < 0.1 Hz. The variables λ1, λ2, ∆ fs0 in this work were set to 10, −100, and 0.005 Hz,
respectively. The pseudo-code of the proposed DFRL for the preventive strategy for AGC is given
in Algorithm 1.
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Algorithm 1 Pseudo-code of the proposed deep forest reinforcement learning for the preventive
strategy for automatic generation control

1: Initial parameters of Q learning of the DFRL, i.e., α, γ, β
2: Initial system state s
3: Initial Q-value matrix Q and probability distribution matrix P
4: while loop: do
5: Obtain the system state s from the environment as Equations (1), (6), and (7)
6: Save the system state s to the recorder of the DFRL
7: Calculate the reward value R(s, s′, a) as Equation (15)
8: Select Q learning from the next systemic state as Equations (8)–(10)
9: Update Q-value matrix and probability distribution matrix as Equations (11) and (12), respectively

10: Select the output action by P and a random probability as Equation (13)
11: Given the selected output action to the AGC unit and the recorder of the DFRL
12: return loop

Large-scale interconnected power system

Frequency deviation  Δf, scheduled tie-line power deviation ΔPT

Emergency 

situations

Calculate indices of ACE, CPS1, CPS2 by (1),(6),(7)

Calculate the reward function by (15)

Predict the next systemic state with deep forest by (8)-(10)

Select Q learning from the next systemic state

Update Q value matrix and probability distribution matrix by (11),(12)

Select an action at the predicted state by (13)

DFRL based controller

AGC units

PG(t+ t)

States: ft, f(t- t), f(t-2 t), , f(t-m t)

Actions: PG(t), PG(t- t), PG(t-2 t), ..., PG(t-m t)

PG(t)

Figure 5. Flowchart of the deep forest reinforcement learning method for automatic generation
control (AGC).

3.5. Pre-Training Process of Deep Forest Reinforcement Learning

DFRL and reinforcement learning are data-hungry algorithms. Generally, in the pre-training
process of a reinforcement learning algorithm, the higher the control performance of the training data,
the higher the convergence speed obtained. However, DFRL needs all the training data, including
training data with high and low control performance. The training data of DFRL originated from
the simulation data of reinforcement learning in this work. In the training process of conventional
reinforcement learning, training data with a low control performance are ignored (Figure 6a). However,
in the training process of DFRL, training data with both high and low control performances are applied
to the deep forest for learning the dynamic system (Figure 6b). Furthermore, the more training data,
the higher the control performance obtained by DFRL. Consequently, the major reasons that training
data with high and low control performances can be applied to DFRL can be summarized as (i) the
more data, which includes data with high and low control performances, the more state spaces of the
power system covered; (ii) the more data, the more accurate the representation of DFRL obtained.
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f

eACE

100%-kCPS Dead zone

Primary control zone

Secondary control zone
Emergency control zone

f

eACE

100%-kCPS Dead zone

Primary control zone

Secondary control zone
Emergency control zone

(a) (b)

Primary control zone

Preventive strategy of AGC

St

S(t+1)
(1)

S(t+1)
(5)

S(t+1)
(2)

S(t+1)
(3)

S(t+1)
(4)

St

S(t+1)
(1)
S(t+1)

(2)
S(t+1)

(3)

S(t+1)
(4)

The data of transfer process will be ignored
The data of transfer process will be applied  

Figure 6. Training data of reinforcement learning and deep forest reinforcement learning:
(a) reinforcement learning; (b) deep forest reinforcement learning.

4. Case Study

The MATLAB/Simulink models and programs of the power system models in this study were
developed in an Intel Core 8 Duo processor of a 2.4 GHz and 8 GB RAM computer with MATLAB
version 9.1.0 (R2016b).

The number of forests in the multi-grained scanning and the cascade of DFRL were set to 2 and 8
as default settings, respectively. The number of trees in each forest of DFRL was set to 500 as a default.
A larger number for nt means that more diachronic actions and states are recorded for the deep forest
of DFRL and more calculation time. After extensive training, both the number of diachronic actions
and states in this paper were set to 10, i.e., nt = 10. The average calculation time of each iteration of
DFRL is 0.423 s when the number for nt is set to 10. Also, the prediction results with nt = 10 are the
same as the prediction results with nt = 30, while the average calculation time of each iteration of DFRL
is 1.862 s when this number nt = 30. The dimensions of the raw features were double the value of nt,
i.e., d = 2nt = 20. Sliding window sizes were set to {bd/8c, bd/4c, bd/2c}, i.e., {2, 5, 10}. The maximum
depth of each tree growth was 100. Since the number of classifications of the next state ns was set to
three, three subsidiary reinforcement learning algorithms were employed for DFRL. The learning rate
α of these subsidiary reinforcement learning algorithms was set to 0.1 in this study; the value range of
the learning rate should be α ∈ (0, 1); a small learning rate means a slow learning speed, and a small
learning rate is suitable for application; a large learning rate means a high learning speed, while a large
learning rate is suitable for offline training. Two different learning rates were configured for Q learning
in [14], and a dynamic learning rate strategy was proposed by Junhong Nie and Simon Haykin [36].
The discounted rate of reward γ of these subsidiary reinforcement learning algorithms was set to 0.9
in this simulation. The value range of the discounted rate was set to γ ∈ (0, 1]. A larger discounted
rate means greater importance of the Q-value history. The constant of the probability distribution β of
these subsidiary reinforcement learning algorithms were set to 0.05. A large value of β means a high
speed for updating the selection probability.

The total states of these reinforcement learning algorithms (i.e., RL-I, RL-II, and RL-III) of DFRL
cover from −∞ to ∞ (Table 1). These state range of these reinforcement learning algorithms are
divided for AGC, which is a special discrete control system (Table 1). The optimal control for an ideal
discrete control system based on AGC is one in which ∆Pi = −1× eACE. The number of actions in
the action set of each subsidiary reinforcement learning algorithm of DFRL was set to 11 (Table 1),
which is according to [3]; thus, the total number of actions in these three subsidiary reinforcement
learning algorithms of DFRL was 33, or 11×3; meanwhile, the number of actions in the action set of
conventional reinforcement learning was set to 33.
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Table 1. State ranges and action sets of RL-I, RL-II, and RL-III.

Pow. a Stat. b Value

All StaI. d


∆ f : (−∞,−0.50,−0.46,−0.42,−0.38,−0.34,−0.30,−0.26,−0.22,−0.18,−0.14,−0.10] Hz
kCPS : [0, 70, 80, 82, 84, 86, 88, 90, 92, 93, 94, 95]%

eACE :


2-area:[−10,−20,−30,−40,−50,−60,−70,−80,−90,−100,−110)(MW)
3-area:[−333,−633,−933,−1233,−1533,−1833,−2133,−2433,−2733,−3033,−3333) (MW)
4-area:[−567,−623,−680,−737,−793,−850,−907,−963,−1020,−1077,−1133) (MW)

All StaII. d


∆ f : (−0.10,−0.08,−0.06,−0.04,−0.02, 0.00, 0.02, 0.04, 0.06, 0.08, 0.10] Hz
kCPS : (95, 96, 97, 98, 99, 99.5, 99.5, 99, 98, 97, 96, 95)%

eACE :


2-area:(10, 8, 6, 4, 2, 0,−2,−4,−6,−8,−10) (MW)
3-area:(333, 267, 200, 133, 67, 0,−67,−133,−200,−267,−333) (MW)
4-area:(567, 453, 340, 227, 113, 0,−113,−227,−340,−453,−567) (MW)

All StaIII. d


∆ f : (0.10, 0.14, 0.18, 0.22, 0.26, 0.30, 0.34, 0.38, 0.42, 0.46, 0.50, ∞) Hz
kCPS : [95, 94, 93, 92, 90, 88, 86, 84, 82, 80, 70, 0]%

eACE :


2-area:(110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10](MW)
3-area:(3333, 3033, 2733, 2433, 2133, 1833, 1533, 1233, 933, 633, 333] (MW)
4-area:(1133, 1077, 1020, 963, 907, 850, 793, 737, 680, 623, 567] (MW)

2 c ActI. e {10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100}
2 c ActII. e {−10, −8, −6, −4, −2,0,2,4,6,8,10}
2 c ActIII. e {−100, −91, −82, −73, −64, −55, −46, −37, −28, −19, −10}
3 c ActI. e {300, 570, 840, 1110, 1380, 1650, 1920, 2190, 2460, 2730, 3000}
3 c ActII. e {−300, −240, −180, −120, −60,0,60,120,180,240,300}
3 c ActIII. e {−3000, −2730, −2460, −2190, −1920, −1650, −1380, −1110, −840, −570, −300}
4 c ActI. e {510, 561, 612, 663, 714, 765, 816, 867, 918, 969, 1020}
4 c ActII. e {−510, −408, −306, −204, −102,0,102,204,306,408,510}
4 c ActIII. e {−1020, −969, −918, −867, −816, −765, −714, −663, −612, −561, −510}

a Pow. = Power systems. b Stat. = State ranges or action sets. c 2 = Two-area (MW); c 3 = Three-area (MW);
c 4 = China Southern Power Grid (MW). d StaI. = State ranges (RL-I); StaII. = State ranges (RL-II); StaIII. =
State ranges (RL-III) . e ActI. = Action set (RL-I); ActII. = Action set (RL-II); ActIII. = Action set (RL-III) .

Numerous conventional AGC algorithms are compared with the proposed algorithm for the
preventive strategy for AGC in this paper, i.e., proportional–integral (PI), proportional–integral–
differential (PID), sliding mode controller (SMC), active disturbance rejection control (ADRC),
fractional-order PID (FOPID), fuzzy logic control (FLC), artificial neural network (ANN), Q learning,
Q(λ) learning, and R(λ) learning. Both the DFRL and the conventional AGC algorithms were simulated
for three power systems, i.e., IEEE two-area power system, three-area power system, and the China
Southern Power Grid (Figure 7). The parameters of these conventional AGC algorithms are given in
Appendix A. These parameters were obtained by genetic algorithm with a simple configuration, i.e.,
the population size was set to 100, and the maximum number of generations was set to 100.

Both conventional AGC algorithms and the proposed DFRL-based controller were applied to
‘Area A’ in these three power systems. The China Southern Power Grid contains four areas of China,
i.e., ‘Area A’ for the Guangdong Power Grid, ‘Area B’ for the Guangxi Power Grid, ‘Area C’ for the
Guizhou Power Grid, and ‘Area D’ for the Yunnan Power Grid [37]. In these three power systems: each
control area contains a governor 1/(1 + sTg), a generator 1/(1 + sTt), and a frequency response model
Kp/(1 + sTp); the frequency response coefficient and the droop coefficient are Bi and Ri, respectively.
Thus, the mathematical model of each generation unit can be described as follows.

Gunit =
1

(1 + sTg)

1
(1 + sTt)

(16)

where Tg and Tt are the time constants of the governor and generator of each control area, respectively.
Also, the generation rate constraint ki

GRC and adjustable capacity constraint Pi
max are included in

the real China Southern Power Grid model. In these three power systems, the ith area is connected to
the jth area with the alternating current tie-line response model 2πTij/s. The parameters of these
three power systems are given in Appendix B, Appendix C, and Appendix D, respectively. Two large
continuous disturbances were designed for these power systems, i.e., ‘Case 1’ and ‘Case 2’ (Figure 8).
These two large continuous disturbances may lead to the occurrence of emergency situations: (i) A
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large disturbance in the continuous coverage of all active power values represents the system load
value space, as designed for ‘Case 1’. (ii) Since the power systems are delay systems, a large system
load with delay was designed (‘Case 2’).

The control periods of the algorithms in all cases were set to 4 s, i.e., these algorithms were executed
once every 4 s. The number of iterations of the training process of DFRL was set to 300 (Figure 9).

Area A Area B

Area A Area B

Area C
Area D

Area B

Area C

Area A

(a) (b) (c)

Area BArea B

Figure 7. Topological graph of the three power systems: (a) Two-area power system; (b) Three-area
power system; (c) China Southern Power Grid.

0 400 800 1200

Time (s)

(a)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

D
is

tu
rb

a
n
c
e
s 

c
u
rv

e
 (

M
W

)

Case 1

Case 2

0 400 800 1200

Time (s)

(b)

-1200

-800

-400

0

400

800

1200

D
is

tu
rb

a
n
c
e
s 

c
u
rv

e
 (

M
W

)

Case 1

Case 2

Figure 8. Curves of large continuous disturbances: (a) two-area power system; (b) three-area power
system; and China Southern Power Grid.

Simulation results show that the proposed DFRL method can obtain the best control performance
with the smallest frequency deviation. The major reasons for this superior control performance are
that: (i) the next state of a power system can be predicted by DFRL, such as the next states of the
three-area power system in ‘Case 1’ (Figure 10); (ii) ∆ f obtained by conventional Q learning may be
larger than 0.03 Hz (Figure 10) when the next state of a power system lacks prediction. The calculation
memory of Q learning is 17,688 Bytes, while that of DFRL is 6072 Bytes. Thus, compared to Q learning,
the calculation memory of DFRL is reduced by 34.328% in these simulations. The training time for
the deep forest of the DFRL algorithm is 35.14 min. The training time for the ANN, Q learning,
Q(λ) learning, and R(λ) learning algorithms is less then 10 min.
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Figure 9. Convergence curves of frequency deviation, area control error (ACE), and control performance
standard (CPS) of the training process of deep forest reinforcement learning (DFRL): (a) frequency
deviation; (b) ACE; (c) CPS.
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Figure 10. Next states of the three-area power system in Case 1.

The statistic simulation result obtained by the DFRL and conventional AGC algorithms is shown
in Table 2 and Figure 11. Note that, in Table 2 and Figure 11, the frequency deviation ∆ f and ACE eACE
are the average absolute values of all areas in all cases in the two-area power system, three-area power
system, and four-area power system, respectively. Statistic simulation results (Table 2 and Figure 11)
obtained by the DFRL and conventional AGC algorithms show that:

1. The average absolute values of the frequency deviations obtained by DFRL are less than ∆ f2

(i.e., 0.1 Hz), while the average absolute values of the frequency deviations obtained by 10
conventional AGC algorithms may larger than 0.1 Hz in both Case 1 and Case 2 (Table 2);
Therefore, the emergency situation of a large-scale interconnected power system and the curse of
dimensionality can simultaneously be reduced by the proposed DFRL.

2. Compared to 10 conventional AGC algorithms, DFRL can obtain the highest control performance
with a smaller absolute value of frequency deviation ∆ f and larger CPS index kCPS (Figure 11).

3. Since the deep forest of DFRL can perform representation learning for the states of the
power system, the preventive strategy for AGC can be considered effective for a large-scale
interconnected power system.
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Table 2. Statistic simulation results.

Power Systems Algorithms ∆ f (Hz) eACE (MW) kCPS (%)

PI 0.063 27 84.82
PID 0.050 22 90.23
SMC 0.081 35 85.54
ADRC 0.056 24 82.34
FOPID 0.066 28 83.29

Two-area FLC 0.079 34 91.40
ANN 0.065 28 91.06
Q learning 0.091 39 77.72
Q(λ) learning 0.056 25 78.33
R(λ) learning 0.044 19 82.14
DFRL 0.002 1 99.48

PI 0.075 69 76.03
PID 0.076 69 86.33
SMC 0.184 192 67.24
ADRC 0.095 65 78.66
FOPID 0.188 209 78.78

Three-area FLC 0.145 365 80.82
ANN 0.133 88 83.87
Q learning 0.091 83 81.41
Q(λ) learning 0.076 128 88.13
R(λ) learning 0.093 209 80.84
DFRL 0.036 28 97.07

PI 0.072 237 80.43
PID 0.049 203 82.49
SMC 0.187 587 75.45
ADRC 0.059 48 88.22

China Southern FOPID 0.093 562 75.65
FLC 0.084 568 75.62

Power Grid ANN 0.093 242 79.65
Q learning 0.114 384 79.03
Q(λ) learning 0.111 443 77.23
R(λ) learning 0.111 256 78.36
DFRL 0.041 62 92.23
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Figure 11. Statistic simulation results: (a) two-area power system; (b) three-area power system; (c) China
Southern Power Grid.
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5. Conclusions

To reduce occurrences of emergency situations of power systems and mitigate the curse of
dimensionality of reinforcement learning, a DFRL algorithm as a preventive strategy for AGC in
large-scale interconnected power systems is proposed. Both the state set and action set of reinforcement
learning are split into subsidiary reinforcement learning for mitigating the curse of dimensionality
of reinforcement learning. A deep forest is then introduced to subsidiary reinforcement learning
for forecasting the next state of the power system. Two cases of three power systems (i.e., two-area
power system, three-area power system, and the China Southern Power Grid) with the DFRL and 10
conventional AGC algorithms were simulated in this work. The simulation results show that DFRL
achieves the highest control performance. The major contributions of the DFRL algorithm can be
summarized as follows:

1. After the pre-training process using the data of reinforcement learning, the deep forest of DFRL can
effectively forecast the next state of a power system. Different from the conventional applications
of deep forest, the deep forest of DFRL is incorporated into the control algorithm;

2. Since the subsidiary reinforcement learning algorithms of DFRL can update their strategies online,
the DFRL can effectively provide generation commands to the controller as a preventive strategy
for AGC in power systems. Compared to conventional AGC, the preventive strategy for AGC can
predict the next systemic state of the power system;

3. Since the next systemic state can be predicted and the calculation memory can be reduced by
the DFRL method, the proposed DFRL-based controller can effectively reduce occurrences of
emergency situations in large-scale interconnected power systems and simultaneously mitigate
the curse of dimensionality. The conventional framework of reinforcement learning can be divided
into multiple subsidiary structures for mitigating the curse of dimensionality.
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Abbreviations

The following abbreviations are used in this manuscript:

AGC Automatic generation control
DFRL Deep forest reinforcement learning
PI Proportional-integral
PID Proportional-integral-derivative
SMC Sliding mode controller
ADRC Active disturbance rejection controller
LFC Load frequency control
ANN Artificial neural network
FOPID Freedom fractional order PID
FLC Fuzzy logic control
ACE Area control error
CPS Control performance standard.

Appendix A. Parameters of Conventional AGC Algorithms

• PI, two-area: proportional kP = −0.882, integral kI = −0.10; three-area: kP = −402.63, kI = −747.86;
China Southern Power Grid: kP = −2527.60, kI = −559.42;

• PID, two-area: kP = −0.584, kI = −0.275, derivative kd = −0.01; three-area: kP = −415.12,
kI = −780.46, kd = −0.001; China Southern Power Grid: kP = −6640.60, kI = −658.77, kd = −0.005;

• SMC, switch on/off point kp = ±0.3 Hz; two-area: output when on/off kv± = 1000 (MW);
three-area kv± = 45,000 (MW); China Southern Power Grid: kv± = 40,000 (MW);
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• ADRC, extended state observer A =

 0 0.0001 0 0
0 0 0.0001 0
0 0 0 0.0001
0 0 0 0

, B =

 0 0
0 0

0.0001 0.0001
0 0

,

C = diag
(

0.1 0.1 0.1 0.1
)

, D = 04×2, k4 = 1, two-area: k1 = −1040, k2 = 1, k3 = 10;
three-area: k1 = −668.11, k2 = 734.67, k3 = −374.53; China Southern Power Grid: k1 = −851.95,
k2 = 161.64, k3 = 428.63;

• FOPID, two-area: kP =−0.89639, kI =−0.2071, kd = 0.33636, λ =−0.52061, µ = 0.51401; three-area:
kP = −83500, kI = −0.005, kd = 0, λ = −0.1, µ = 0.1; China Southern Power Grid: kP = −6.7573,
kI = −6.7002, kd = −9.7831, λ = 0.86527, µ = 0.61834;

• FLC, X (input, ∆ f ) 21 grids from −0.2 to 0.2 (Hz), Y (input,
∫

∆ f ) 21 grids from −1 to 1 (Hz),
two-area: Z (output, ∆P) is 441 grids from −256 to 256 (MW); three-area: Z from −91,285 to
91,285 (MW); China Southern Power Grid: Z from −58,527 to 58,527 (MW);

• ANN, layer size L = 8, epochs E = 2;
• Q learning, learning rate α = 0.1, the constant of probability distribution method β = 0.05,

the discounted rate of future reward γ = 0.9, state set S = {−∞,−0.50,−0.46, ..., 0.46, 0.50, ∞︸ ︷︷ ︸
33

},

two-area: action set A = {−100,−93.75, ..., 100︸ ︷︷ ︸
33

}; three-area: A = {−3000,−2812.5, ..., 3000︸ ︷︷ ︸
33

};

China Southern Power Grid: A = {−1020,−956.25, ..., 1020︸ ︷︷ ︸
33

};

• Q(λ) learning, λ = 0.9, α, β, γ, A are the same as that of Q learning algorithm;
• R(λ) learning, λ = 0.9, R0 = 0, α, β, γ, A are the same as that of Q learning algorithm.

Appendix B. Parameters of IEEE Two-Area Power System

Tg = 0.03 (s), Tt = 0.3 (s), Tp = 20 (s), TAB = 0.545 (s), R = 2.4 (Hz/MW), Kp = 0.000120 (Hz/MW),
αAB = −1, BA = BB = 0.425 (MW/Hz).

Appendix C. Parameters of Three-Area Power System

R = 2.4 (Hz/MW), TgA = TgB = TgC = 0.08 (s), TtA = TtB = TtC = 0.28 (s), TpA = TpB = TpC =
20 (s), KpA = KpB = KpC = 0.000120 (Hz/MW), TAB = TBC = 0.06 (s), TCA = 0.08 (s), BA = BB = BC =
0.425 (MW/0.1 Hz).

Appendix D. Parameters of China Southern Power Grid

RA = 1/2227 (Hz/MW), RB = 1/645 (Hz/MW), RC = 1/886 (Hz/MW), RD = 1/900 (Hz/MW),
Governor A, B, C, D: 5s+1

0.8s2+10.08s+1 , TtA = TtB = TtC = TtD = 0.3 (s), TpA = TpB = TpC = TpD = 20 (s),
KpA = 0.000325 (Hz/MW), KpB = 0.00285 (Hz/MW), KpC = 0.002667 (Hz/MW), KpD = 0.0025 (Hz/MW),
TAB = 157 (s), TBC = 78 (s), TBC = 15 (s), TCD = 78 (s), BA = 3742 (MW/0.1 Hz), BB = 824 (MW/0.1 Hz),
BC = 1077 (MW/0.1 Hz), BD = 1072 (MW/0.1 Hz), kA

GRC = 0.73 (p.u./min), kB
GRC = 0.19 (p.u./min),

kC
GRC = 0.22 (p.u./min), kD

GRC = 0.13 (p.u./min), PA
max = 44,555 (MW), PB

max = 12,904 (MW),
PC

max = 17,728 (MW), PD
max = 18,003 (MW).
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