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Abstract: The crystal structure and surface morphology of ceramics as well dielectric and thermal
properties of Bi1−xErxFeO3 (where x = 0.05 − 0.20, ∆x = 0.05) magnetoelectric solid solutions (SS)
were investigated. The regularities of changes in phase composition, microstructure, electrical and
dielectric properties of objects at room temperature are established.

Keywords: multiferroics; bismuth ferrite; rear earth elements; phase composition; thermal properties;
permittivity

1. Introduction

In connection with the recent sharp increase in the complexity of microelectronic devices caused by
the need to combine various technologies for recording, storing, and processing information, attention
has been paid to multifunctional materials with ferroelectric, ferroelastic, ferromagnetic, and other
properties—multiferroics. A special place among them is occupied by materials based on bismuth
ferrite (BiFeO3) due to the combination of magnetic and ferroelectric orderings in them, coexisting in a
rather wide temperature range (TN ≈ 643 K, TC ≈ 1083 K) [1]. The crystal structure of bismuth ferrite
at room temperature is characterized by rhombohedrally distorted perovskite cell with R3c space
group, very close to cubic one. In the area of temperatures below the TN bismuth ferrite has a complex
spatially modulated magnetic structure of cycloid type, which suppress ferromagnetic properties [2].
One of the possible ways to destroy this modulated structure and thus to enhance the magnetic
properties is substitution of bismuth by rare-earth elements (REE). Guided by the abovementioned
considerations, in continuation of earlier studies [3,4], this work aims to identify the general patterns of
formation of the crystal structure, microstructure, thermal and electrical properties of ceramic samples
of bismuth ferrite, replaced by Er of various concentrations.
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2. Materials and Methods

Objects of the present study were Bi1-xErxFeO3 type SS with 0.00 ≤ x ≤ 0.20, ∆x = 0.05, obtained
by two-stage solid-phase synthesis followed by sintering, by conventional ceramic technology at
T1sint = 1073 K, T2sint = 1093 K, τ1,2 sint = 10 h, Tsynt = 1183 K, τ = 2 h.

The phase composition of SS Bi1−xErxFeO3 was determined by X-ray powder diffraction (CoKα
radiation) with use of DRON-3 diffractometer (Bourevestnik, St. Petersburg, Russia). The parameters,
a, α, and volume Vexp, of the rhombohedral perovskite cell were calculated from the reflections (200)c

and (220)c using the corresponding quadratic forms [5]. Theoretical volume, Vth, was calculated by
the formula [5]:

Vth =

[√
2[(1− x)nBiLBiO + xnErLErO] + 2nFeLFeO

(1− x)nBi + xnEr + nFe

]3

where n is the valency of cations, L is the length of the unstressed cation–oxygen bond, taking into
account the coordination number of the cation in oxygen (the ionic radii on Belov-Bokiy [6]).

Investigation of surface morphology of the samples performed in reflected light on an optical
microscope Neophot 21 (Carl Zeiss Jena GmbH, Jena, Germany) and on the inverted high-precision
microscope Leica DMI 5000M (Leica Microsystems, Wetzlar, Germany).

Dependencies of relative dielectric permittivity, ε/ε0, were carried out in the range of frequencies
from 25 to 2 × 106 Hz and in the 300–900 K temperature range with use of precision LCR meter Agilent
E4980A (Agilent Technologies, Santa-Clara, CA, USA).

Thermal diffusivity (χ) was investigated at the LFA-457 “MicroFlash” facility
(NETZSCH-Gerätebau GmbH, Selb, Germany), heat capacity (Cp)—by means of the differential
scanning calorimeter DSC-204 F1 (NETZSCH-Gerätebau GmbH, Selb, Germany).

3. Results

Figure 1 demonstrates dependences of structural parameters SS on concentration of the modifiers.
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The results showed that, along with SS, the compounds Bi2Fe4O9, Bi25FeO40, and Er3Fe5O12 are
formed in the samples under study, whose content increases with x. The intensity of the strong lines of
these compounds at x = 0.15 and 0.20 reaches 50%.

The rhombohedral symmetry of the perovskite cell in SS is retained for all x. In Figure 1, it can be
seen that Vexp (x) does not correspond to the dependence Vth (x) calculated for the Er→ Bi substitution
SS, a slight drop in Vexp (x) is observed only in the range 0.00 < x ≤ 0.05, with x > 0. 05 Vexp practically
unchanged. From this it follows that in the structure of BiFeO3 under selected conditions for the
manufacture of ceramics can dissolve less than 5 mol % Er. Therefore, in Bi1−xErxFeO3 SS, an impurity
compound with the garnet structure Er3Fe5O12 is formed already at x = 0.05. The other two compounds
are routine impurity phases, which cannot be eliminated during the synthesis of bismuth ferrite.

Figure 2 demonstrates microstructure elements of BiFeO3 ceramic samples before and after
modifying with Er (x = 0.10; 0.20).
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Figure 2. Pictures of the microstructures of ceramic Bi1−xErxFeO3 samples. (1) BiFeO3; (2) x = 0.10;
(3) x = 0.20.

Black regions with roundish or curvilinear boundaries are pores. They are localized over the
surface non-uniformly. Ceramic grains (crystallites) were detected by etching their boundaries. It led
to the formation of etching grooves, observed as dark lines along the boundaries of the crystallites.

Both BiFeO3 and Bi1−xErxFeO3 ceramics are polycrystalline structures with non-phase grained
components. The brightest “light” crystallites represent the main phase. Gray grains are a fraction
of minor phases. The average, as well as the maximum sizes of crystallites of the main “light” phase
in the bismuth ferrite ceramics exceed the analogous parameters of the non-main “gray” phase. The
interval of their values is also wider. When modifying, the maximum size of the crystallites of the
“light” phase is somewhat reduced in the same way as their average size.

Unlike the main phase, where the formation of large crystallites is suppressed, the introduction of
a modifier leads to the growth of large grains of minor phases. In addition, with an increase in the
Er content, a characteristic hexagonal shape of a part of such crystallites arises, which corresponds to
the garnet structure (Figures 2 and 3). Thus, in the form of grains, we observe the appearance of an
additional non-basic phase. The percentage of minor phases is also increasing.

The interphase boundaries in the obtained multiphase objects are realized as boundary contacts
in mixtures of crystallites of different phases, and at the level of substructures formed by the smallest
grains of one phase inside the grains of another. Usually it leads to weakening of the dielectric
properties by increasing the internal electromechanical loss, space charge accumulation at the interfaces,
micro and mesoscopic areas having different electrical properties.

The results of the dielectric dispersion study of objects are shown in Figure 3. As can be seen from
the figures, in the temperature range of 300–500 K, the considered dependences experience anomalies
in the form of strongly dispersion maxima of ε/ε0, which have a relaxation character. The observed
phenomena are usually associated with the formation of the Maxwell-Wagner polarization [4], which
occurs in heterogeneous media at the interface of volume elements with different electrical properties.
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Figure 3. The dependencies of ε’/ε0 and ε’’/ε0 of Bi1−xErxFeO3 ceramic samples on the temperature in 
the frequency range 25–2 × 106 Hz. (Arrows show the increase in the frequency, f; (a,b) BiFeO3; (c,d) 
Er—x = 0.10, (e,f) x = 0.20. 

The increase in Er concentrations leads to complication of the registered dielectric spectra (their 
shift, enhancing the dispersion and formation of additional anomalies—ill-defined peaks in the 
ε/ε0(T) curves at T = 600 K (Figure 3c). A further increase in Er concentration leads to a significant 
decrease in the dielectric constant (Figure 3e). 

The relaxation analysis, performed using the Cole-Cole relation (Figure 4), made it possible to 
take into account the effect of reach-through conductivity. From Figure 4b it is clearly seen that at 
least two relaxation processes take place in the object. When erbium is added, the relaxation 
spectrum of objects is simplified and described by a single process. The calculations by the 
Cole–Cole relation allowed us to calculate the activation energy of both relaxation processes and 
reach-through conductivity (see Table 1). 

Figure 3. The dependencies of ε’/ε0 and ε”/ε0 of Bi1−xErxFeO3 ceramic samples on the temperature
in the frequency range 25–2 × 106 Hz. (Arrows show the increase in the frequency, f ; (a,b) BiFeO3;
(c,d) Er—x = 0.10, (e,f) x = 0.20.

The increase in Er concentrations leads to complication of the registered dielectric spectra (their
shift, enhancing the dispersion and formation of additional anomalies—ill-defined peaks in the ε/ε0(T)
curves at T = 600 K (Figure 3c). A further increase in Er concentration leads to a significant decrease in
the dielectric constant (Figure 3e).

The relaxation analysis, performed using the Cole-Cole relation (Figure 4), made it possible to take
into account the effect of reach-through conductivity. From Figure 4b it is clearly seen that at least two
relaxation processes take place in the object. When erbium is added, the relaxation spectrum of objects
is simplified and described by a single process. The calculations by the Cole–Cole relation allowed
us to calculate the activation energy of both relaxation processes and reach-through conductivity
(see Table 1).
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Figure 4. (a,d,g)—The dependencies of ε’/ε0 and ε’’/ε0 of Bi1−xErxFeO3 ceramic samples with x = 0, 0.10, 
0.20, respectively, on frequency ω. (b,e,h)—Cole–Cole plots of Bi1−xErxFeO3 ceramic samples with x = 
0, 0.10, 0.20, respectively. (c,f,i)—Arrhenius plots of relaxation times τ and reach-through 
conductivity σs of Bi1−xErxFeO3 ceramic samples with x = 0, 0.10, 0.20, respectively (Arrows show the 
increase in the temperature). 

Table 1. Activation energy of relaxation processes (in the case of x = 0—low-frequency process) and 
reach-through conductivity σs of Bi1-xErxFeO3 ceramic samples with x = 0, 0.10, 0.20, respectively, 
calculated by the Arrhenius law. 

x Ea, eV (τ) Ea, eV (σs) 
0 0.55 0.59 
0.10 0.73 0.76 
0.20 0.77 0.67 

Figure 5 shows the temperature dependences of thermal diffusivity (χ) and specific heat (Cp) of 
studied ceramic samples. The heat capacity of objects increases and up to 600 K, the experimental 
data are in satisfactory agreement with those calculated using the Meer–Kelly formula: Cp(T) = a + bT 
− cT−2, where a, b, and c are constant, which are determined from the temperature dependence of the 
heat capacity at temperatures of 290–320 K. In the temperature range of 640–670 K, covering the 
region of the antiferromagnetic transition, the behavior of thermophysical characteristics is extreme 
with a minimum of χ and a maximum of Cp. The observed effects are in good agreement with the 
literature data for similar objects [7,8]. It should be noted that in solid solutions with large amount of 
Er temperature dependencies of Cp experience at least two maxima, one of which can be referred to 
antiferromagnetic phase transitions and another one can be associated with the formation of internal 
stresses due to the ordering of structural defects (Figure 5a). 

Figure 4. (a,d,g)—The dependencies of ε’/ε0 and ε”/ε0 of Bi1−xErxFeO3 ceramic samples with x = 0,
0.10, 0.20, respectively, on frequency ω. (b,e,h)—Cole–Cole plots of Bi1−xErxFeO3 ceramic samples
with x = 0, 0.10, 0.20, respectively. (c,f,i)—Arrhenius plots of relaxation times τ and reach-through
conductivity σs of Bi1−xErxFeO3 ceramic samples with x = 0, 0.10, 0.20, respectively (Arrows show the
increase in the temperature).

Table 1. Activation energy of relaxation processes (in the case of x = 0—low-frequency process) and
reach-through conductivity σs of Bi1-xErxFeO3 ceramic samples with x = 0, 0.10, 0.20, respectively,
calculated by the Arrhenius law.

x Ea, eV (τ) Ea, eV (σs)

0 0.55 0.59

0.10 0.73 0.76

0.20 0.77 0.67

Figure 5 shows the temperature dependences of thermal diffusivity (χ) and specific heat (Cp) of
studied ceramic samples. The heat capacity of objects increases and up to 600 K, the experimental
data are in satisfactory agreement with those calculated using the Meer–Kelly formula: Cp(T) = a + bT
− cT−2, where a, b, and c are constant, which are determined from the temperature dependence of
the heat capacity at temperatures of 290–320 K. In the temperature range of 640–670 K, covering the
region of the antiferromagnetic transition, the behavior of thermophysical characteristics is extreme
with a minimum of χ and a maximum of Cp. The observed effects are in good agreement with the
literature data for similar objects [7,8]. It should be noted that in solid solutions with large amount of
Er temperature dependencies of Cp experience at least two maxima, one of which can be referred to
antiferromagnetic phase transitions and another one can be associated with the formation of internal
stresses due to the ordering of structural defects (Figure 5a).
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4. Discussion

It is well known that the introduction of large-sized rare-earth elements (REE) (with ionic
radius ≥ 0.99 Å) leads to the stabilization of the Rh phase, which is probably due to the creation of the
most favorable (dimensional) conditions for the existence of BiFeO3, which is known [5] as a boundary
position in the perovskite family.

In the solid solutions under consideration, the Rh phase, characteristic of BiFeO3, coexists with
the emerging R phase. The observed, apparently, is due to the presence of a large amount of Bi- and
Fe-containing impurities, usually accompanying the formation of BiFeO3, and the ballast phases of
the non-perovskite structure with the participation of REE, the number of which increases as the
ionic radius of the REE decreases, as is clearly seen in Figure 2 with microphotographs of the grain
structures of the studied objects. Accumulation of such phases (“gray” grains) leads to loosening of the
microstructure, thickening of the boundaries of crystallites, and deformation of the habitus of grains of
the main phase.

To describe the process of low-temperature dielectric relaxation, the curves lnτ(1/T) (τ—relaxation
time from Cole-Cole plot) and lnσs(1/T) (σs—reach-through conductivity) were constructed
(Figure 4c,f,i). All the obtained dependences satisfy the Arrhenius law with the activation energy,
Ea, in the range of 0.5–0.7 eV (see Table 1), which is characteristic of Maxwell–Wagner relaxation [9]
process associated with accumulation of free charges on the interface of components in spatially
inhomogeneous media against the background of interlayer, interphase and intraphase rearrangements,
inter alia, by the accumulation of charge in the near-electrode layer. It is clearly seen that in the case of
each object the values of Ea are almost identical. One can suggest that dielectric relaxation is caused
by the accumulation of free charges, which is consistent with the Maxwell–Wagner model. This
assumption is also confirmed by a sharp increase in the dielectric constant and dielectric loss above
the temperatures at which the described relaxation processes take place.

The reason for its development is the natural-composite structure of BiFeO3 and BiFeO3 with REE,
which is formed on the basis of at least four Bi-, Fe-containing compounds (Bi2O3, Fe2O3, Bi25FeO40,
Bi2Fe4O9) that practically always accompany the formation of BiFeO3 remaining in it (in different
amounts) in the form of ballast phases and undergoing a series of bifurcations in the above-mentioned
temperature ranges.



Appl. Sci. 2018, 8, 2183 7 of 7

5. Conclusions

It was established that modifying of BiFeO3 with erbium can increase it thermal stability
and decrease conductivity. With the addition of 20% of erbium, at the temperature of 365 K the
reach-through conductivity of samples is reduced by an order of magnitude compared to pure bismuth
ferrite. This fact should be taken into account when developing ferromagnetic materials and devices
based on them.
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